Download citation
Download citation
link to html
Molecules of the title compound, [Cu(C2H3N)(C11H9N5)(C6H6N2O)](BF4)2·2C2H3N, comprise (aceto­nitrile)[2,6-bis(pyrazol-1-yl)­pyridine](isonicotin­amide)copper(II) cations, tetra­fluoro­borate anions and lattice aceto­nitrile mol­ecules. The cations have distorted square-pyramidal geometries in which the N3-donor, viz. 2,6-bis­(pyrazol-1-yl)­pyridine, and the N-donor, viz. the isonicotin­amide ligand, occupy the four basal positions, with the coordinated aceto­nitrile N-donor atom occupying the apical position. Pairs of cations are linked by N—H...F hydrogen bonds through tetra­fluoro­borate anions, forming centrosymmetric dimers, which are further linked by C—H...O hydrogen bonds into two-dimensional undulating sheets, three of which interpenetrate to generate a two-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102018097/gg1141sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102018097/gg1141Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270102018097/gg1141sup3.pdf
Supplementary material

CCDC reference: 199407

Comment top

The title compound, (I), comprises an acetonitrile[2,6-bis(pyrazol-1-yl)pyridine](isonicotinamide)copper(II) cation (Fig. 1), two tetrafluoroborate anions and two lattice acetonitrile molecules. All four F atoms of both tetrafluoroborate anions are disordered over two sites. The tridentate 2,6-bis(pyrazol-1-yl)pyridine ligand occupies three of the four basal positions of a distorted square-pyramidal CuN5 coordination sphere. The isonicotinamide ligand occupies the fourth basal position and the coordinated acetonitrile molecule the apical position. Of the three ligating N atoms of the tridentate ligand, the pyrazole N-donors atoms form much longer Cu···N contacts [2.024 (3) and 2.026 (3) Å] than the pyridine N-donor atom [1.946 (2) Å], which forms a similar Cu···N contact to the isonicotinamide N-donor atom [1.964 (2) Å]. Typical of square-pyramidal CuII centres, the apical acetonitrile N atom is somewhat more distant [2.316 (3) Å]. The magnitude of the distortion of the CuII coordination sphere (Fig. 1) can be quantified by the geometric parameter τ [i.e. (171.3 - 156.98)/60] of 0.24 (τ = 0.0 for C4v symmetry and τ = 1.0 for D3 h symmetry; Addison et al., 1984). The conformation of the pyridine ring of the isonicotinamide ligand is such that it makes a dihedral angle of 47.8(?)° with the pyridine ring of the tridentate ligand, which is effectively planar, with dihedral angles between the pyrazole and pyridine rings of 1.3 and 6.3°.

The cations form centrosymmetrically related pairs (Fig. 2) linked through two tetrafluoroborate anions by a R44(12) hydrogen-bonding motif (Etter, 1990; Bernstein et al., 1995). Pertinent structural parameters of the hydrogen-bonded contacts are collated in Table 2. The formation of this motif [Scheme 1(a)] was unexpected, the simpler R22(8) motif [Scheme 1(b)] based on the amide functionalities being anticipated by analogy with the well known carboxylic acid-based R22(8) supramolecular synthon [Scheme 1(c)] (Desiraju, 1995, 2000). Presumably, despite the greater strength of the N—H···OC hydrogen bond compared with the N—H···F—BF3 hydrogen bond, the energy release associated with the formation of four of the latter is greater than that associated with the formation of two of the former. Two C—H···O hydrogen bonds, in the form of a R21(7) motif, link the dimers through the amide O atom, generating an undulating sheet structure parallel to the (001) plane (Table 2 and Fig. 3). The periodicity of the undulation (24.5 Å) is such that the two-dimensional network comprises three interpenetrating sheets analogous to those observed in {[Co2(µ-4,4'-azopyridine)3(NO3)4]}n (Withersby et al., 1999, 2000).

Experimental top

The ligand 2,6-bis(pyrazol-1-yl)pyridine was synthesized by heating to reflux for 72 h the mixture formed by adding 2,6-dichloropyridine (4.12 g, 27.8 mmol) to a solution of sodium pyrazolate previously prepared in tetrahydrofuran (100 ml) by reaction of pyrazole (3.80 g, 55.8 mmol) with excess NaH (60% dispersion in mineral oil (2.80 g, 70 mmol). After cooling, the mixture was poured into iced water and the resultant precipitate recovered by filtration (yield: 5.10 g, 23.7 mmol, 85%). For the preapration of the title compound, (I), isonicotinamide (0.040 g, 0.33 mmol) was added to a mixture of 2,6-bis(pyrazol-1-yl)pyridine (0.068 g, 0.32 mmol) and hydrated {CuII(BF4)}- (0.100 g, 0.32 mmol) in acetonitrile (25 ml). After stirring at ambient temperature for 24 h, the resulting green solution afforded a small crop of green plate-like crystals.

Refinement top

The anions are affected by disorder which was modelled by allowing alternative positions for each F atom, with extensive restraints applied to B—F distances and F—B—F angles. Around B1, the major and minor orientations refined to 0.57 (2) and 0.43 (2), respectively, while the corresponding occupancies around B2 converged to 0.60 (1) and 0.40 (1). Aromatic and amide H atoms, after location from ΔF syntheses, were placed geometrically and refined with a riding model, for which the C—H and N—H distances were constrained to be 0.95 and 0.88 Å, respectively, and Uiso(H) = 1.2Ueq(C, N). Methyl H atoms were located and treated similarly, with C—H distances constrained to be 0.98 Å and Uiso(H) = 1.5Ueq(C)

Computing details top

Data collection: IPDS (Stoe & Cie, 1995); cell refinement: IPDS; data reduction: IPDS; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2002).

Figures top
[Figure 1] Fig. 1. A view of the cation in (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the centrosymmetric hydrogen-bonded dinuclear construction generated by the N—H···F contacts of the hydrogen-bonded R44(12) motif. Only one set of F atoms (F11A, F12A, F13A and F14A) is shown for each tetrafluoroborate anion. (Key: Cu atoms are large pale-grey spheres, C are intermediate black spheres, N are intermediate dark-grey spheres, O are intermediate pale-grey spheres, B are small pale-grey spheres and F are intermediate black spheres.)
[Figure 3] Fig. 3. A projection of the structure of (I) on to the (001) plane, showing the two-dimensional sheet structure generated by the C—H···O contacts of the hydrogen-bonded R21(7) motif. The lattice acetonitrile molecules and tetrafluoroborate anions ahve been omitted for clarity. Only one set of F atoms (F11A, F12A, F13A and F14A) is shown for each tetrafluoroborate anion (atom types are as depicted in Fig. 2).
Acetonitrile[2,6-bis(pyrazol-1-yl)pyridine](isonicotinamide)copper(II)– tetrafluoroborate–acetonitrile (1/2/2) top
Crystal data top
[Cu(C2H3N)(C11H9N5)(C6H6N2O)](BF4)2·2C2H3NF(000) = 2808
Mr = 693.68Dx = 1.560 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac2abCell parameters from 12955 reflections
a = 8.1790 (16) Åθ = 2.5–25.5°
b = 22.747 (5) ŵ = 0.83 mm1
c = 31.752 (6) ÅT = 193 K
V = 5907 (2) Å3Plate, green
Z = 80.32 × 0.08 × 0.02 mm
Data collection top
Stoe IPDS
diffractometer
6613 independent reflections
Radiation source: fine-focus sealed tube4385 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
area detector scansθmax = 28.1°, θmin = 3.1°
Absorption correction: multi-scan
(IPDS; Stoe & Cie, 1995)
h = 99
Tmin = 0.84, Tmax = 0.95k = 3025
19461 measured reflectionsl = 4229
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.115P)2]
where P = (Fo2 + 2Fc2)/3
6613 reflections(Δ/σ)max = 0.002
401 parametersΔρmax = 0.88 e Å3
40 restraintsΔρmin = 0.74 e Å3
Crystal data top
[Cu(C2H3N)(C11H9N5)(C6H6N2O)](BF4)2·2C2H3NV = 5907 (2) Å3
Mr = 693.68Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.1790 (16) ŵ = 0.83 mm1
b = 22.747 (5) ÅT = 193 K
c = 31.752 (6) Å0.32 × 0.08 × 0.02 mm
Data collection top
Stoe IPDS
diffractometer
6613 independent reflections
Absorption correction: multi-scan
(IPDS; Stoe & Cie, 1995)
4385 reflections with I > 2σ(I)
Tmin = 0.84, Tmax = 0.95Rint = 0.052
19461 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05940 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.01Δρmax = 0.88 e Å3
6613 reflectionsΔρmin = 0.74 e Å3
401 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.52637 (6)0.308975 (16)0.103332 (14)0.02755 (15)
N10.4945 (4)0.39363 (12)0.10617 (9)0.0261 (6)
C20.6115 (5)0.42767 (14)0.12180 (11)0.0285 (7)
C30.5956 (5)0.48748 (15)0.12475 (12)0.0351 (8)
H30.67950.51130.13640.042*
C40.4513 (5)0.51138 (15)0.10985 (14)0.0383 (9)
H40.43630.55270.11130.046*
C50.3278 (5)0.47697 (15)0.09290 (13)0.0370 (9)
H50.22850.49340.08280.044*
C60.3583 (5)0.41722 (13)0.09158 (11)0.0261 (7)
N610.2532 (4)0.37461 (11)0.07436 (9)0.0270 (6)
N620.3070 (4)0.31766 (11)0.07441 (10)0.0304 (7)
C630.1926 (5)0.28783 (15)0.05390 (13)0.0345 (8)
H630.19580.24670.04890.041*
C640.0666 (5)0.32513 (16)0.04063 (13)0.0358 (8)
H640.02870.31440.02540.043*
C650.1085 (5)0.37984 (15)0.05404 (12)0.0316 (7)
H650.04790.41500.04990.038*
N210.7485 (4)0.39461 (11)0.13394 (9)0.0294 (6)
N220.7431 (4)0.33528 (12)0.12769 (9)0.0299 (6)
C230.8842 (5)0.31541 (15)0.14199 (12)0.0353 (8)
H230.91610.27530.14170.042*
C240.9804 (6)0.36112 (18)0.15765 (14)0.0406 (9)
H241.08620.35800.16980.049*
C250.8912 (6)0.41119 (16)0.15190 (13)0.0380 (9)
H250.92310.45010.15910.046*
N110.5693 (4)0.22559 (11)0.09176 (10)0.0285 (6)
C120.7079 (5)0.20804 (13)0.07385 (12)0.0311 (8)
H120.79080.23650.06880.037*
C130.7373 (5)0.15040 (14)0.06217 (12)0.0329 (8)
H130.83800.13940.04950.040*
C140.6156 (5)0.10920 (13)0.06944 (11)0.0276 (7)
C150.4735 (5)0.12711 (14)0.08878 (12)0.0312 (7)
H150.38960.09940.09470.037*
C160.4535 (5)0.18550 (14)0.09951 (12)0.0308 (7)
H160.35490.19750.11270.037*
C170.6301 (5)0.04512 (13)0.05692 (12)0.0311 (8)
O170.5367 (4)0.00906 (11)0.07204 (10)0.0437 (7)
N170.7451 (5)0.03136 (12)0.02906 (11)0.0390 (8)
H17A0.75660.00530.02070.047*
H17B0.80980.05890.01900.047*
B10.1475 (5)0.12611 (15)0.00064 (12)0.0314 (8)
F11A0.0250 (6)0.0869 (2)0.01047 (14)0.0361 (12)*0.57
F12A0.2924 (5)0.09134 (17)0.00153 (16)0.0362 (10)*0.57
F13A0.1517 (7)0.1775 (2)0.02314 (18)0.0438 (14)*0.57
F14A0.1375 (7)0.1399 (2)0.04272 (15)0.0439 (14)*0.57
F11B0.0059 (7)0.1004 (3)0.01074 (18)0.0333 (15)*0.43
F12B0.2772 (9)0.0931 (3)0.0126 (3)0.055 (2)*0.43
F13B0.1690 (9)0.1678 (3)0.0328 (2)0.0413 (18)*0.43
F14B0.1282 (9)0.1545 (3)0.03640 (18)0.0418 (17)*0.43
B21.0488 (6)0.16208 (18)0.17207 (15)0.0475 (12)
F21A0.9755 (8)0.2040 (2)0.19773 (15)0.0488 (13)*0.60
F22A1.0674 (8)0.1894 (2)0.13152 (15)0.0616 (13)*0.60
F23A1.2059 (7)0.1514 (3)0.1869 (2)0.0726 (16)*0.60
F24A0.9480 (8)0.1165 (3)0.1674 (2)0.0853 (19)*0.60
F21B1.0372 (13)0.2085 (3)0.1977 (2)0.059 (2)*0.40
F22B0.9892 (17)0.1684 (6)0.1329 (3)0.118 (4)*0.40
F23B1.1988 (10)0.1355 (4)0.1695 (3)0.080 (3)*0.40
F24B0.9687 (11)0.1112 (3)0.1900 (3)0.069 (2)*0.40
N20.4097 (5)0.29291 (14)0.16880 (11)0.0400 (8)
C210.3516 (5)0.29218 (15)0.20130 (13)0.0369 (8)
C220.2758 (7)0.2915 (2)0.24242 (13)0.0510 (11)
H22A0.24200.33140.25000.076*
H22B0.35420.27680.26330.076*
H22C0.17980.26570.24180.076*
N30.5626 (8)0.0452 (2)0.18208 (18)0.0770 (16)
C310.5720 (7)0.0925 (2)0.19272 (15)0.0504 (11)
C320.5849 (8)0.1528 (2)0.20617 (19)0.0633 (14)
H32A0.70050.16390.20800.095*
H32B0.53370.15720.23390.095*
H32C0.52930.17830.18580.095*
N40.5251 (9)0.4160 (3)0.2284 (2)0.0872 (18)
C410.4310 (9)0.4523 (3)0.22369 (18)0.0673 (17)
C420.3117 (10)0.4987 (3)0.2179 (2)0.083 (2)
H42A0.25590.50630.24470.125*
H42B0.23130.48660.19680.125*
H42C0.36710.53450.20850.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0260 (3)0.0204 (2)0.0363 (2)0.00328 (14)0.00215 (17)0.00143 (14)
N10.0221 (18)0.0233 (12)0.0328 (14)0.0018 (10)0.0026 (11)0.0020 (10)
C20.026 (2)0.0270 (14)0.0321 (17)0.0006 (12)0.0015 (14)0.0005 (12)
C30.033 (2)0.0277 (15)0.044 (2)0.0008 (14)0.0046 (16)0.0042 (14)
C40.038 (3)0.0236 (15)0.054 (2)0.0038 (14)0.0081 (17)0.0062 (14)
C50.030 (3)0.0287 (16)0.052 (2)0.0051 (14)0.0053 (16)0.0030 (15)
C60.021 (2)0.0254 (14)0.0317 (16)0.0040 (12)0.0001 (12)0.0022 (11)
N610.0245 (18)0.0229 (12)0.0337 (14)0.0038 (10)0.0028 (12)0.0024 (10)
N620.0293 (19)0.0210 (12)0.0411 (16)0.0036 (10)0.0014 (12)0.0028 (11)
C630.030 (2)0.0284 (15)0.045 (2)0.0012 (13)0.0029 (16)0.0023 (14)
C640.028 (2)0.0351 (17)0.044 (2)0.0018 (14)0.0077 (15)0.0016 (14)
C650.024 (2)0.0316 (15)0.0390 (19)0.0051 (13)0.0010 (14)0.0016 (13)
N210.0271 (19)0.0262 (13)0.0348 (15)0.0011 (11)0.0052 (12)0.0009 (11)
N220.0303 (19)0.0251 (12)0.0343 (15)0.0037 (11)0.0033 (12)0.0017 (10)
C230.035 (3)0.0344 (16)0.0366 (18)0.0082 (14)0.0044 (15)0.0035 (14)
C240.031 (3)0.044 (2)0.047 (2)0.0036 (16)0.0115 (17)0.0000 (16)
C250.032 (3)0.0395 (18)0.042 (2)0.0011 (15)0.0093 (16)0.0010 (15)
N110.028 (2)0.0207 (12)0.0365 (15)0.0011 (10)0.0006 (12)0.0008 (10)
C120.026 (2)0.0202 (13)0.047 (2)0.0010 (12)0.0063 (15)0.0007 (13)
C130.027 (2)0.0242 (14)0.048 (2)0.0001 (13)0.0068 (15)0.0011 (13)
C140.029 (2)0.0217 (13)0.0318 (17)0.0018 (12)0.0017 (13)0.0010 (11)
C150.027 (2)0.0261 (15)0.0403 (18)0.0033 (13)0.0044 (15)0.0012 (13)
C160.027 (2)0.0250 (15)0.0400 (18)0.0005 (12)0.0056 (14)0.0012 (13)
C170.029 (2)0.0218 (14)0.043 (2)0.0007 (12)0.0022 (15)0.0024 (12)
O170.0410 (19)0.0244 (11)0.0657 (19)0.0079 (11)0.0194 (14)0.0041 (11)
N170.047 (2)0.0202 (12)0.0501 (19)0.0025 (12)0.0166 (16)0.0041 (12)
B10.028 (2)0.0288 (16)0.038 (2)0.0047 (14)0.0027 (16)0.0054 (14)
B20.044 (4)0.042 (2)0.057 (3)0.009 (2)0.001 (2)0.007 (2)
N20.044 (2)0.0364 (15)0.0399 (18)0.0021 (14)0.0070 (15)0.0002 (13)
C210.034 (2)0.0343 (17)0.042 (2)0.0042 (14)0.0036 (17)0.0027 (15)
C220.055 (3)0.064 (3)0.034 (2)0.003 (2)0.0069 (19)0.0048 (18)
N30.100 (5)0.050 (2)0.081 (4)0.005 (2)0.022 (3)0.012 (2)
C310.052 (3)0.049 (2)0.050 (3)0.011 (2)0.008 (2)0.0031 (19)
C320.070 (4)0.054 (3)0.065 (3)0.008 (2)0.003 (3)0.016 (2)
N40.100 (5)0.065 (3)0.097 (4)0.002 (3)0.002 (4)0.000 (3)
C410.089 (5)0.056 (3)0.058 (3)0.023 (3)0.002 (3)0.004 (2)
C420.091 (6)0.083 (4)0.074 (4)0.001 (4)0.003 (4)0.015 (3)
Geometric parameters (Å, º) top
Cu1—N11.945 (3)C14—C171.516 (4)
Cu1—N22.316 (3)C15—C161.381 (5)
Cu1—N111.964 (3)C15—H150.9500
Cu1—N222.024 (3)C16—H160.9500
Cu1—N622.026 (3)C17—O171.220 (4)
N1—C61.320 (5)C17—N171.328 (5)
N1—C21.327 (4)N17—H17A0.8800
C2—C31.370 (5)N17—H17B0.8800
C2—N211.404 (5)B1—F11A1.378 (5)
C3—C41.383 (6)B1—F12A1.426 (5)
C3—H30.9500B1—F13A1.371 (5)
C4—C51.387 (6)B1—F14A1.414 (6)
C4—H40.9500B1—F11B1.421 (6)
C5—C61.382 (4)B1—F12B1.354 (7)
C5—H50.9500B1—F13B1.405 (6)
C6—N611.406 (4)B1—F14B1.351 (6)
N61—C651.353 (5)B2—F21A1.391 (6)
N61—N621.368 (3)B2—F22A1.437 (6)
N62—C631.326 (5)B2—F23A1.390 (7)
C63—C641.400 (5)B2—F24A1.333 (7)
C63—H630.9500B2—F21B1.337 (7)
C64—C651.359 (5)B2—F22B1.345 (8)
C64—H640.9500B2—F23B1.371 (7)
C65—H650.9500B2—F24B1.447 (7)
N21—C251.353 (5)N2—C211.136 (5)
N21—N221.365 (4)C21—C221.446 (6)
N22—C231.320 (5)C22—H22A0.9800
C23—C241.396 (6)C22—H22B0.9800
C23—H230.9500C22—H22C0.9800
C24—C251.365 (6)N3—C311.129 (6)
C24—H240.9500C31—C321.440 (6)
C25—H250.9500C32—H32A0.9800
N11—C121.329 (5)C32—H32B0.9800
N11—C161.338 (5)C32—H32C0.9800
C12—C131.384 (4)N4—C411.139 (9)
C12—H120.9500C41—C421.449 (10)
C13—C141.387 (5)C42—H42A0.9800
C13—H130.9500C42—H42B0.9800
C14—C151.376 (5)C42—H42C0.9800
N1—Cu1—N293.41 (12)N11—C12—H12118.4
N1—Cu1—N11171.42 (13)C13—C12—H12118.4
N1—Cu1—N2278.87 (12)C12—C13—C14118.1 (3)
N1—Cu1—N6278.80 (11)C12—C13—H13120.9
N2—Cu1—N1195.12 (12)C14—C13—H13120.9
N2—Cu1—N2293.70 (14)C15—C14—C13118.7 (3)
N2—Cu1—N6293.29 (14)C15—C14—C17117.9 (3)
N11—Cu1—N22101.55 (12)C13—C14—C17123.4 (3)
N11—Cu1—N6299.67 (12)C14—C15—C16119.6 (3)
N22—Cu1—N62156.94 (11)C14—C15—H15120.2
C6—N1—C2120.1 (3)C16—C15—H15120.2
C6—N1—Cu1119.9 (2)N11—C16—C15121.8 (3)
C2—N1—Cu1119.9 (2)N11—C16—H16119.1
C21—N2—Cu1171.8 (3)C15—C16—H16119.1
N2—C21—C22179.3 (5)O17—C17—N17123.2 (3)
N1—C2—C3122.5 (3)O17—C17—C14119.6 (3)
N1—C2—N21111.5 (3)N17—C17—C14117.2 (3)
C3—C2—N21126.1 (3)C17—N17—H17A120.0
C2—C3—C4116.6 (3)C17—N17—H17B120.0
C2—C3—H3121.7H17A—N17—H17B120.0
C4—C3—H3121.7F11A—B1—F12A104.8 (4)
C3—C4—C5122.2 (3)F11A—B1—F13A116.9 (4)
C3—C4—H4118.9F11A—B1—F14A108.8 (4)
C5—C4—H4118.9F12A—B1—F13A118.5 (4)
C6—C5—C4115.8 (4)F12A—B1—F14A97.1 (4)
C6—C5—H5122.1F13A—B1—F14A108.6 (4)
C4—C5—H5122.1F11B—B1—F12B113.6 (5)
N1—C6—C5122.8 (3)F11B—B1—F13B103.0 (5)
N1—C6—N61111.8 (3)F11B—B1—F14B106.8 (5)
C5—C6—N61125.4 (3)F12B—B1—F13B94.1 (5)
C65—N61—N62111.4 (3)F12B—B1—F14B127.0 (5)
C65—N61—C6131.3 (3)F13B—B1—F14B108.9 (5)
N62—N61—C6117.1 (3)F21A—B2—F22A105.9 (4)
C63—N62—N61104.9 (3)F21A—B2—F23A108.6 (5)
C63—N62—Cu1142.9 (2)F21A—B2—F24A109.4 (5)
N61—N62—Cu1112.2 (2)F22A—B2—F23A106.3 (5)
N62—C63—C64110.9 (3)F22A—B2—F24A107.5 (5)
N62—C63—H63124.5F23A—B2—F24A118.3 (5)
C64—C63—H63124.5F21B—B2—F22B117.0 (7)
C65—C64—C63106.0 (3)F21B—B2—F23B116.7 (7)
C65—C64—H64127.0F21B—B2—F24B111.1 (6)
C63—C64—H64127.0F22B—B2—F23B108.4 (8)
N61—C65—C64106.8 (3)F22B—B2—F24B106.6 (8)
N61—C65—H65126.6F23B—B2—F24B94.3 (6)
C64—C65—H65126.6C21—C22—H22A109.5
C25—N21—N22111.4 (3)C21—C22—H22B109.5
C25—N21—C2131.0 (3)H22A—C22—H22B109.5
N22—N21—C2117.6 (3)C21—C22—H22C109.5
C23—N22—N21105.1 (3)H22A—C22—H22C109.5
C23—N22—Cu1142.7 (2)H22B—C22—H22C109.5
N21—N22—Cu1112.1 (2)N3—C31—C32179.6 (7)
N22—C23—C24111.1 (3)C31—C32—H32A109.5
N22—C23—H23124.4C31—C32—H32B109.5
C24—C23—H23124.4H32A—C32—H32B109.5
C25—C24—C23105.8 (4)C31—C32—H32C109.5
C25—C24—H24127.1H32A—C32—H32C109.5
C23—C24—H24127.1H32B—C32—H32C109.5
N21—C25—C24106.6 (3)N4—C41—C42179.6 (8)
N21—C25—H25126.7C41—C42—H42A109.5
C24—C25—H25126.7C41—C42—H42B109.5
C12—N11—C16118.5 (3)H42A—C42—H42B109.5
C12—N11—Cu1121.5 (2)C41—C42—H42C109.5
C16—N11—Cu1119.8 (3)H42A—C42—H42C109.5
N11—C12—C13123.2 (3)H42B—C42—H42C109.5
C6—N1—C2—C32.0 (5)C3—C2—N21—C252.2 (6)
C6—N1—C2—N21177.5 (3)N1—C2—N21—N220.9 (4)
N1—C2—C3—C41.1 (6)C3—C2—N21—N22178.5 (4)
N21—C2—C3—C4178.3 (4)C25—N21—N22—C230.0 (4)
C2—C3—C4—C50.3 (6)C2—N21—N22—C23179.4 (3)
C3—C4—C5—C60.4 (6)N21—N22—C23—C240.4 (4)
C2—N1—C6—C52.1 (5)N22—C23—C24—C250.6 (5)
C2—N1—C6—N61176.8 (3)N22—N21—C25—C240.3 (5)
C4—C5—C6—N11.3 (6)C2—N21—C25—C24179.0 (4)
C4—C5—C6—N61177.5 (4)C23—C24—C25—N210.5 (5)
N1—C6—N61—C65175.4 (4)C16—N11—C12—C131.1 (6)
C5—C6—N61—C653.5 (6)N11—C12—C13—C140.3 (6)
N1—C6—N61—N621.4 (4)C12—C13—C14—C151.6 (5)
C5—C6—N61—N62177.5 (4)C12—C13—C14—C17178.0 (3)
C65—N61—N62—C630.2 (4)C13—C14—C15—C161.6 (5)
C6—N61—N62—C63175.4 (3)C17—C14—C15—C16178.0 (3)
N61—N62—C63—C640.2 (4)C12—N11—C16—C151.1 (6)
N62—C63—C64—C650.1 (5)C14—C15—C16—N110.3 (6)
N62—N61—C65—C640.2 (4)C15—C14—C17—O1716.3 (6)
C6—N61—C65—C64174.4 (4)C13—C14—C17—O17164.1 (4)
C63—C64—C65—N610.0 (4)C15—C14—C17—N17162.8 (4)
N1—C2—N21—C25178.4 (4)C13—C14—C17—N1716.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17A···F11Ai0.882.603.334 (6)142
N17—H17B···F11Aii0.882.092.900 (6)152
N17—H17B···F11Bii0.882.012.866 (7)163
N17—H17A···F12Ai0.882.122.971 (5)163
N17—H17A···F12Bi0.882.032.885 (7)163
C5—H5···O17iii0.952.223.140 (5)162
C65—H65···O17iii0.952.363.221 (4)151
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Cu(C2H3N)(C11H9N5)(C6H6N2O)](BF4)2·2C2H3N
Mr693.68
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)193
a, b, c (Å)8.1790 (16), 22.747 (5), 31.752 (6)
V3)5907 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.32 × 0.08 × 0.02
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionMulti-scan
(IPDS; Stoe & Cie, 1995)
Tmin, Tmax0.84, 0.95
No. of measured, independent and
observed [I > 2σ(I)] reflections
19461, 6613, 4385
Rint0.052
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.175, 1.01
No. of reflections6613
No. of parameters401
No. of restraints40
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 0.74

Computer programs: IPDS (Stoe & Cie, 1995), IPDS, SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), CAMERON (Watkin et al., 1996), SHELXL97 and PLATON (Spek, 2002).

Selected geometric parameters (Å, º) top
Cu1—N11.945 (3)Cu1—N222.024 (3)
Cu1—N22.316 (3)Cu1—N622.026 (3)
Cu1—N111.964 (3)
N1—Cu1—N293.41 (12)N2—Cu1—N2293.70 (14)
N1—Cu1—N11171.42 (13)N2—Cu1—N6293.29 (14)
N1—Cu1—N2278.87 (12)N11—Cu1—N22101.55 (12)
N1—Cu1—N6278.80 (11)N11—Cu1—N6299.67 (12)
N2—Cu1—N1195.12 (12)N22—Cu1—N62156.94 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17A···F11Ai0.882.603.334 (6)142
N17—H17B···F11Aii0.882.092.900 (6)152
N17—H17B···F11Bii0.882.012.866 (7)163
N17—H17A···F12Ai0.882.122.971 (5)163
N17—H17A···F12Bi0.882.032.885 (7)163
C5—H5···O17iii0.952.223.140 (5)162
C65—H65···O17iii0.952.363.221 (4)151
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds