Download citation
Download citation
link to html
The title compounds, poly­[[[bis(2-methoxy­ethyl) ether]­lithium(I)]-di-μ3-tri­fluoro­methanesulfonato-lithium(I)], [Li2(CF3SO3)2(C6H14O3)]n, and poly­[[[bis(2-methoxy­ethyl) ether]­lithium(I)]-di-μ3-tri­fluoro­acetato-dilithium(I)-μ3-tri­fluoro­acetato], [Li3(C2F3O2)3(C6H14O3)]n, consist of one-dimensional polymer chains. Both structures contain five-coordinate Li+ cations coordinated by a tridentate diglyme [bis(2-methoxy­ethyl) ether] mol­ecule and two O atoms, each from separate anions. In both structures, the [Li(diglyme)X2] (X is CF3SO3 or CF3CO2) fragments are further connected by other Li+ cations and anions, creating one-dimensional chains. These connecting Li+ cations are coordinated by four separate anions in both compounds. The CF3SO3 and CF3CO2 anions, however, adopt different forms of cation coordination, resulting in differences in the connectivity of the structures and solvate stoichiometries.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102015135/gg1134sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102015135/gg1134Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102015135/gg1134IIsup3.hkl
Contains datablock II

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270102015135/gg1134sup4.pdf
Supplementary figure 1

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270102015135/gg1134sup5.pdf
Supplementary figure 2

CCDC references: 197316; 197317

Comment top

The structural characterization of [Li2(CF3SO3)2(C6H14O3)]n, (I), and [Li3(C2F3O2)3(C6H14O3)]n, (II), was performed as part of a comprehensive study of lithium salt phase behaviour with glyme ligands (Henderson, 2002). Single crystals of (I) and (II) were obtained during the preparation of samples for the determination of diglyme-LiCF3SO3 and diglyme-LiCF3CO2 phase diagrams. The exploration of such solvate structures provides insight into the properties of liquid electrolytes, as well as the poorly understood conductivity mechanisms in poly(ethylene oxide)-lithium salt solid electrolytes (Rhodes & Frech, 2001). \sch

The structure of (I) contains two Li+ cations, two CF3SO3- anions and one diglyme molecule in the asymmetric unit, all in general positions (Fig. 1). Atom Li1 is five-coordinate, coordinated by three ether O atoms from the diglyme and two O atoms from different CF3SO3- anions. Atom Li2 is four-coordinate, with four different CF3SO3- anions coordinated to the cation through O atoms. Both of the CF3SO3- anions in the asymmetric unit are tridentate, coordinated to three different Li+ cations (Fig. 3).

The structure of (II) contains three Li+ cations, three CF3CO2- anions and one diglyme molecule in the asymmetric unit, all in general positions (Fig. 2). Atom Li1 is five-coordinate, coordinated by three ether O atoms from the diglyme and two O atoms from different CF3CO2- anions. Atoms Li2 and Li3 are four-coordinated, by four O atoms from different CF3CO2- anions. The CF3CO2- anion containing atom C7 and that containing atom C9 are both tridentate, with one O atom coordinated to two Li+ cations and the other to only one cation. The CF3CO2- anion containing atom C11 has tetradentate coordination, with both O atoms coordinated to two Li+ cations (Fig. 4).

One-dimensional polymeric chains are formed from the aggregation of the Li+ cations and the anions in the two structures. The crystal structure of (I) contains an inversion centre in the centroid of an –Li—O—S—O—Li—O—S—O– eight-atom ring. This connects two [Li(diglyme)] fragments together. The crystal structure of (II) contains two inversion centres, one in the centroid of an –Li—O—C—O—Li—O—C—O– eight-atom ring and one in the centroid of an –Li—O—Li—O– four-atom ring. The former connects two [Li(diglyme)] fragments together, while the latter also connects the [Li(diglyme)] fragments, but has other cations and anions linking the four-atom ring to the fragments, as outlined above.

Despite the highly aggregated nature of the ions, the coordination in (I) still differs markedly from that found in crystalline LiCF3SO3 (Tremayne et al., 1992), in which four-coordinate Li+ cations are each coordinated by three CF3SO3- anions. The anions are tetradentate in the crystalline LiCF3SO3 salt, coordinated to three cations with two O atoms coordinated to the same cation.

The Li+ cations coordinated to the diglyme molecules in (I) and (II) have the same form of cationic coordination as that found in the structures of poly(ethylene oxide)3-LiCF3SO3 (Lightfoot et al., 1993) and (diglyme)-LiCF3SO3 (Rhodes & Frech, 2001). In the structure of (diglyme)-LiCF3SO3, the asymmetric unit contains two independent halves of two (diglyme)Li(CF3SO3)2Li(diglyme) dimers, which have the same connectivity but slightly different geometrical parameters. Each dimer has a crystallographic inversion centre at the centroid between two S atoms of the CF3SO3- anions. The dimers contain two five-coordinate Li+ cations, coordinated by three ether O atoms from a diglyme molecule and two O atoms from two separate CF3SO3- anions. The anions are bidentate coordinated to both Li+ cations in each dimer through two O atoms. In contrast, the CF3SO3- anions in (I) are tridentate coordinated to three different Li+ cations. In (II), the CF3CO2- anions are either tri- or tetradentate coordinated to three or four different Li+ cations.

The Li1—O bond lengths and angles in (I) and (II) (Tables 1 and 2) are similar to those found in both poly(ethylene oxide)3-LiCF3SO3 and (diglyme)1-LiCF3SO3. The remaining four-coordinate Li+ cations in (I) and (II) are coordinated by four separate anions. The O—Li—O angles at Li2 in (I) are within 4° of 109.5° [106.4 (2)–113.0 (2)°], indicating a regular tetrahedral geometry. However, the O—Li—O angles at Li2 [86.8 (1)–131.2 (1)°] and Li3 [86.6 (1)–141.9 (1)°] in (II) indicate a highly distorted tetrahedral geometry (Figs. 1 and 2). The difference in anion coordination accounts for the different stoichiometries of (I) and (II). The phase diagram of the diglyme-LiCF3CO2 system indicates that a (diglyme)1-LiCF3CO2 compound also forms (Henderson, 2002).

Note that although 1:1 mole ratio mixtures were used to prepare (I) and (II), the (diglyme)1-LiX (X is CF3SO3- or CF3CO2-) phases did not crystallize at 295 K, despite having melting temperatures of 320 and 302 K, respectively; single crystals of (I) and (II) formed slowly instead. The probable explanation for this is the considerable hysteresis between the crystallization and melting temperatures (Henderson, 2002) of many glyme-lithium salt phases. Some of the Li+ cations in the amorphous mixture which is formed after melting and cooling to room temperature are likely to be aggregated into solvate structures similar to those found in the reported compounds. This facilitates nucleation of (I) and (II) rather than the structures predicted thermodynamically from the phase diagrams.

Experimental top

Preparations were carried out in a dry room (<1% relative humidity). LiCF3SO3 and LiCF3CO2 (ex Aldrich) were dried at 383 K under high vacuum for 12 h. Anhydrous diglyme [bis(2-methoxyethyl) ether; 99.5%, ex Aldrich] was used as received. Compounds (I) and (II) were prepared by the addition of diglyme to the salts, in 1:1 mole ratios. The mixtures were stirred while heating to dissolve the salts. Single crystals grew slowly on standing the solutions at room temperature.

Refinement top

The H atoms were placed geometrically, with C—H = 0.98–0.99 Å, and allowed to refine as riding on the parent C atoms.

Computing details top

For both compounds, data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990) for (I); SIR92 (Altomare et al., 1993) for (II). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Bruker, 1998); software used to prepare material for publication: SHELXTL/PC and PLATON (Spek, 2001).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), showing the Li+ coordination environment and the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (i) -x, 2 - y, 1 - z; (ii) 1 - x, 2 - y, 1 - z].
[Figure 2] Fig. 2. A view of the structure of (II) showing the Li+ coordination environment and the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The anion CF3 group containing atom C8 is disordered over three positions of equal occupancy (not shown) around the C—C bond [symmetry codes: (i) 3 - x, -y, 1 - z; (ii) 1 - x, y, z; (iii) 1 + x, y, z]. Please clarify - there is no code (iii) shown.
[Figure 3] Fig. 3. A view of the packing diagram for (I). C atoms are shown as half-shaded spheres, H atoms as open spheres, Li atoms as dotted spheres, O atoms as cross-hatched spheres, F atoms as small hatched spheres and S atoms as large hatched spheres.
[Figure 4] Fig. 4. A view of the packing diagram for (II); the atom-shading scheme is the same as that used in Fig. 3.
(I) poly[[[bis(2-methoxyethyl) ether]lithium(I)]-di-µ3-trifluoromethanesulfonato-lithium(I)] top
Crystal data top
[Li2(CF3SO)2(C6H14O3)]Z = 2
Mr = 446.19F(000) = 452
Triclinic, P1Dx = 1.528 Mg m3
Hall symbol: -P1Mo Kα radiation, λ = 0.71073 Å
a = 8.678 (3) ÅCell parameters from 1639 reflections
b = 10.815 (3) Åθ = 1.9–25.1°
c = 11.899 (4) ŵ = 0.37 mm1
α = 67.566 (5)°T = 173 K
β = 89.831 (5)°Plate, colourless
γ = 71.435 (5)°0.30 × 0.20 × 0.04 mm
V = 969.5 (5) Å3
Data collection top
Bruker CCD-platform area-detector
diffractometer
3402 independent reflections
Radiation source: fine-focus sealed tube2751 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Blessing, 1995; Sheldrick, 2000)
h = 1010
Tmin = 0.898, Tmax = 0.986k = 1112
7068 measured reflectionsl = 014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.5304P]
where P = (Fo2 + 2Fc2)/3
3402 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Li2(CF3SO)2(C6H14O3)]γ = 71.435 (5)°
Mr = 446.19V = 969.5 (5) Å3
Triclinic, P1Z = 2
a = 8.678 (3) ÅMo Kα radiation
b = 10.815 (3) ŵ = 0.37 mm1
c = 11.899 (4) ÅT = 173 K
α = 67.566 (5)°0.30 × 0.20 × 0.04 mm
β = 89.831 (5)°
Data collection top
Bruker CCD-platform area-detector
diffractometer
3402 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995; Sheldrick, 2000)
2751 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.986Rint = 0.038
7068 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.02Δρmax = 0.43 e Å3
3402 reflectionsΔρmin = 0.36 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.3023 (5)0.9632 (5)0.1689 (3)0.0321 (9)
Li20.2518 (5)0.9804 (5)0.5497 (3)0.0313 (9)
C10.0496 (5)1.2477 (4)0.0144 (3)0.0700 (10)
H1A0.06331.32550.08590.105*
H1B0.05441.26840.05860.105*
H1C0.05681.23880.02840.105*
O10.1770 (2)1.1183 (2)0.00348 (16)0.0446 (5)
C20.1622 (4)1.0705 (4)0.0909 (2)0.0514 (8)
H2A0.15411.14690.17240.062*
H2B0.06221.04460.08780.062*
C30.3098 (4)0.9447 (4)0.0705 (2)0.0521 (8)
H3A0.29430.89690.12380.063*
H3B0.40670.97430.09080.063*
O20.3341 (2)0.8499 (2)0.05505 (16)0.0426 (5)
C40.4852 (4)0.7332 (3)0.0901 (3)0.0516 (8)
H4A0.57270.76460.04730.062*
H4B0.47340.65660.06840.062*
C50.5276 (4)0.6803 (3)0.2255 (3)0.0451 (7)
H5A0.44530.64090.26880.054*
H5B0.63680.60450.25350.054*
O30.5283 (2)0.79872 (19)0.25000 (16)0.0364 (4)
C60.5890 (4)0.7592 (3)0.3750 (3)0.0467 (7)
H6A0.70070.68980.39510.070*
H6B0.51770.71680.42910.070*
H6C0.59030.84400.38650.070*
S10.38367 (7)1.15752 (6)0.30799 (5)0.02634 (18)
O40.3395 (2)1.11136 (19)0.21844 (15)0.0362 (4)
O50.3069 (2)1.1238 (2)0.41657 (16)0.0412 (4)
O60.5556 (2)1.1329 (2)0.32826 (16)0.0384 (4)
C70.2935 (4)1.3509 (3)0.2335 (3)0.0451 (7)
F10.1320 (2)1.3918 (2)0.2090 (2)0.0755 (6)
F20.3267 (3)1.4108 (2)0.30417 (18)0.0737 (6)
F30.3508 (3)1.4008 (2)0.12917 (17)0.0744 (6)
S20.08843 (7)0.85874 (6)0.39104 (5)0.02657 (17)
O70.1613 (2)0.88230 (19)0.28022 (15)0.0361 (4)
O80.1731 (2)0.8700 (2)0.48812 (16)0.0414 (5)
O90.0863 (2)0.92593 (19)0.37151 (15)0.0355 (4)
C80.1180 (3)0.6696 (3)0.4511 (3)0.0400 (6)
F40.2756 (2)0.59290 (18)0.47376 (18)0.0626 (5)
F50.0539 (3)0.6299 (2)0.55376 (18)0.0722 (6)
F60.0480 (2)0.63870 (19)0.37101 (19)0.0657 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.031 (2)0.044 (2)0.024 (2)0.0169 (19)0.0047 (16)0.0130 (18)
Li20.031 (2)0.043 (2)0.025 (2)0.0155 (18)0.0041 (16)0.0173 (18)
C10.067 (2)0.055 (2)0.072 (2)0.0057 (18)0.0257 (18)0.0203 (18)
O10.0504 (12)0.0512 (12)0.0301 (9)0.0169 (10)0.0092 (8)0.0143 (8)
C20.0586 (19)0.080 (2)0.0230 (13)0.0372 (18)0.0005 (12)0.0167 (14)
C30.067 (2)0.078 (2)0.0282 (14)0.0393 (19)0.0146 (13)0.0278 (15)
O20.0493 (12)0.0595 (13)0.0315 (10)0.0257 (10)0.0138 (8)0.0257 (9)
C40.059 (2)0.060 (2)0.0550 (18)0.0242 (16)0.0213 (15)0.0401 (16)
C50.0492 (17)0.0404 (16)0.0525 (17)0.0145 (13)0.0099 (13)0.0264 (14)
O30.0375 (10)0.0350 (10)0.0399 (10)0.0120 (8)0.0024 (8)0.0188 (8)
C60.0453 (16)0.0459 (17)0.0448 (16)0.0100 (13)0.0101 (13)0.0183 (14)
S10.0279 (3)0.0292 (3)0.0236 (3)0.0102 (2)0.0008 (2)0.0119 (2)
O40.0380 (10)0.0398 (10)0.0348 (9)0.0115 (8)0.0034 (7)0.0206 (8)
O50.0480 (11)0.0468 (11)0.0326 (10)0.0205 (9)0.0129 (8)0.0166 (8)
O60.0274 (9)0.0501 (11)0.0360 (10)0.0127 (8)0.0032 (7)0.0161 (8)
C70.0599 (19)0.0351 (15)0.0388 (15)0.0135 (14)0.0062 (13)0.0158 (13)
F10.0540 (12)0.0517 (12)0.0890 (15)0.0136 (9)0.0134 (10)0.0209 (10)
F20.1162 (18)0.0456 (11)0.0717 (13)0.0280 (11)0.0046 (12)0.0364 (10)
F30.1149 (18)0.0443 (11)0.0513 (11)0.0285 (11)0.0232 (11)0.0052 (9)
S20.0281 (3)0.0325 (3)0.0251 (3)0.0138 (3)0.0044 (2)0.0150 (3)
O70.0362 (10)0.0467 (11)0.0314 (9)0.0207 (8)0.0113 (7)0.0166 (8)
O80.0470 (11)0.0506 (12)0.0363 (10)0.0206 (9)0.0024 (8)0.0243 (9)
O90.0293 (9)0.0476 (11)0.0348 (9)0.0112 (8)0.0067 (7)0.0235 (8)
C80.0437 (16)0.0368 (15)0.0422 (15)0.0175 (13)0.0066 (12)0.0155 (13)
F40.0530 (11)0.0385 (10)0.0778 (13)0.0031 (8)0.0008 (9)0.0142 (9)
F50.0961 (16)0.0584 (12)0.0605 (12)0.0426 (12)0.0336 (11)0.0092 (10)
F60.0808 (14)0.0500 (11)0.0834 (14)0.0323 (10)0.0010 (10)0.0367 (10)
Geometric parameters (Å, º) top
Li1—O12.050 (4)C5—O31.420 (3)
Li1—O22.113 (4)C5—H5A0.9900
Li1—O32.103 (5)C5—H5B0.9900
Li1—O42.017 (4)O3—C61.431 (3)
Li1—O71.951 (4)C6—H6A0.9800
Li2—O51.933 (4)C6—H6B0.9800
Li2—O81.901 (4)C6—H6C0.9800
Li2—O6i1.938 (4)O9—Li2ii1.939 (4)
Li2—O9ii1.939 (4)O6—Li2i1.938 (4)
C1—O11.419 (4)S1—O41.4358 (17)
C1—H1A0.9800S1—O51.4270 (18)
C1—H1B0.9800S1—O61.4334 (18)
C1—H1C0.9800S1—C71.822 (3)
O1—C21.425 (3)S2—O71.4301 (18)
C2—C31.481 (5)S2—O81.4350 (17)
C2—H2A0.9900S2—O91.4329 (18)
C2—H2B0.9900S2—C81.820 (3)
C3—O21.422 (3)C7—F11.324 (3)
C3—H3A0.9900C7—F21.322 (3)
C3—H3B0.9900C7—F31.317 (3)
O2—C41.426 (4)C8—F41.319 (3)
C4—C51.491 (4)C8—F51.316 (3)
C4—H4A0.9900C8—F61.329 (3)
C4—H4B0.9900
O7—Li1—O4106.5 (2)O3—C5—C4106.8 (2)
O7—Li1—O1113.4 (2)O3—C5—H5A110.4
O4—Li1—O190.50 (19)C4—C5—H5A110.4
O7—Li1—O398.91 (19)O3—C5—H5B110.4
O4—Li1—O398.63 (17)C4—C5—H5B110.4
O1—Li1—O3142.4 (2)H5A—C5—H5B108.6
O7—Li1—O2101.47 (19)C5—O3—C6112.7 (2)
O4—Li1—O2152.0 (2)C5—O3—Li1107.80 (19)
O1—Li1—O277.50 (15)C6—O3—Li1120.03 (19)
O3—Li1—O277.61 (16)O3—C6—H6A109.5
O8—Li2—O5109.8 (2)O3—C6—H6B109.5
O8—Li2—O9ii110.7 (2)H6A—C6—H6B109.5
O5—Li2—O9ii108.7 (2)O3—C6—H6C109.5
O8—Li2—O6i113.0 (2)H6A—C6—H6C109.5
O5—Li2—O6i108.2 (2)H6B—C6—H6C109.5
O9ii—Li2—O6i106.37 (19)O5—S1—O6114.92 (11)
O1—C1—H1A109.5O5—S1—O4115.60 (11)
O1—C1—H1B109.5O6—S1—O4114.18 (11)
H1A—C1—H1B109.5O5—S1—C7103.05 (12)
O1—C1—H1C109.5O6—S1—C7103.32 (13)
H1A—C1—H1C109.5O4—S1—C7103.43 (12)
H1B—C1—H1C109.5S1—O4—Li1152.27 (16)
C2—O1—C1112.4 (2)S1—O5—Li2147.48 (18)
C2—O1—Li1115.7 (2)S1—O6—Li2i142.17 (17)
C1—O1—Li1126.1 (2)F3—C7—F1107.8 (2)
O1—C2—C3107.8 (2)F3—C7—F2107.8 (2)
O1—C2—H2A110.2F1—C7—F2108.1 (2)
C3—C2—H2A110.2F3—C7—S1111.14 (19)
O1—C2—H2B110.2F1—C7—S1110.9 (2)
C3—C2—H2B110.2F2—C7—S1111.0 (2)
H2A—C2—H2B108.5O7—S2—O9113.81 (10)
O2—C3—C2108.0 (2)O7—S2—O8115.78 (11)
O2—C3—H3A110.1O9—S2—O8115.33 (11)
C2—C3—H3A110.1O7—S2—C8103.19 (12)
O2—C3—H3B110.1O9—S2—C8103.71 (12)
C2—C3—H3B110.1O8—S2—C8102.60 (12)
H3A—C3—H3B108.4S2—O7—Li1151.12 (16)
C3—O2—C4113.3 (2)S2—O8—Li2150.01 (18)
C3—O2—Li1110.5 (2)S2—O9—Li2ii137.29 (15)
C4—O2—Li1112.91 (18)F5—C8—F4108.2 (2)
O2—C4—C5107.2 (2)F5—C8—F6108.0 (2)
O2—C4—H4A110.3F4—C8—F6107.6 (2)
C5—C4—H4A110.3F5—C8—S2111.18 (19)
O2—C4—H4B110.3F4—C8—S2110.70 (18)
C5—C4—H4B110.3F6—C8—S2110.98 (19)
H4A—C4—H4B108.5
O7—Li1—O1—C291.1 (3)O4—S1—O5—Li249.4 (3)
O4—Li1—O1—C2160.6 (2)C7—S1—O5—Li2161.5 (3)
O3—Li1—O1—C255.7 (4)O8—Li2—O5—S144.0 (4)
O2—Li1—O1—C26.1 (2)O9ii—Li2—O5—S1165.3 (2)
O7—Li1—O1—C159.9 (3)O6i—Li2—O5—S179.6 (3)
O4—Li1—O1—C148.4 (3)O5—S1—O6—Li2i25.2 (3)
O3—Li1—O1—C1153.3 (3)O4—S1—O6—Li2i111.8 (3)
O2—Li1—O1—C1157.1 (3)C7—S1—O6—Li2i136.6 (3)
C1—O1—C2—C3173.9 (3)O5—S1—C7—F3179.4 (2)
Li1—O1—C2—C331.1 (3)O6—S1—C7—F360.6 (2)
O1—C2—C3—O248.5 (3)O4—S1—C7—F358.7 (2)
C2—C3—O2—C4172.0 (2)O5—S1—C7—F159.6 (2)
C2—C3—O2—Li144.2 (3)O6—S1—C7—F1179.51 (19)
O7—Li1—O2—C3133.2 (2)O4—S1—C7—F161.2 (2)
O4—Li1—O2—C345.0 (5)O5—S1—C7—F260.6 (2)
O1—Li1—O2—C321.5 (2)O6—S1—C7—F259.3 (2)
O3—Li1—O2—C3130.0 (2)O4—S1—C7—F2178.6 (2)
O7—Li1—O2—C498.7 (2)O9—S2—O7—Li1114.0 (4)
O4—Li1—O2—C483.1 (5)O8—S2—O7—Li123.1 (4)
O1—Li1—O2—C4149.6 (2)C8—S2—O7—Li1134.3 (4)
O3—Li1—O2—C42.0 (2)O4—Li1—O7—S216.2 (5)
C3—O2—C4—C5156.8 (2)O1—Li1—O7—S2114.1 (3)
Li1—O2—C4—C530.3 (3)O3—Li1—O7—S285.6 (4)
O2—C4—C5—O355.0 (3)O2—Li1—O7—S2164.7 (3)
C4—C5—O3—C6172.0 (2)O7—S2—O8—Li262.8 (4)
C4—C5—O3—Li153.2 (3)O9—S2—O8—Li273.6 (4)
O7—Li1—O3—C571.5 (2)C8—S2—O8—Li2174.4 (3)
O4—Li1—O3—C5179.84 (19)O5—Li2—O8—S231.4 (5)
O1—Li1—O3—C578.0 (4)O9ii—Li2—O8—S288.7 (4)
O2—Li1—O3—C528.4 (2)O6i—Li2—O8—S2152.2 (3)
O7—Li1—O3—C659.3 (3)O7—S2—O9—Li2ii143.8 (2)
O4—Li1—O3—C649.0 (3)O8—S2—O9—Li2ii6.5 (3)
O1—Li1—O3—C6151.2 (3)C8—S2—O9—Li2ii104.8 (3)
O2—Li1—O3—C6159.2 (2)O7—S2—C8—F5178.76 (18)
O5—S1—O4—Li148.0 (4)O9—S2—C8—F559.8 (2)
O6—S1—O4—Li188.7 (4)O8—S2—C8—F560.6 (2)
C7—S1—O4—Li1159.8 (3)O7—S2—C8—F461.0 (2)
O7—Li1—O4—S150.0 (4)O9—S2—C8—F4179.91 (18)
O1—Li1—O4—S1164.6 (3)O8—S2—C8—F459.7 (2)
O3—Li1—O4—S152.0 (4)O7—S2—C8—F658.5 (2)
O2—Li1—O4—S1131.8 (4)O9—S2—C8—F660.4 (2)
O6—S1—O5—Li286.9 (3)O8—S2—C8—F6179.17 (19)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1.
(II) poly[[[bis(2-methoxyethyl) ether]lithium(I)]-di- µ-3-trifluoroacetato-dilithium(I)-µ3-trifluoroacatato] top
Crystal data top
[Li3(C2F3O2)3(C6H14O3)]F(000) = 992
Mr = 494.05Dx = 1.592 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 2819 reflections
a = 9.545 (4) Åθ = 2.9–24.8°
b = 13.871 (6) ŵ = 0.18 mm1
c = 15.589 (7) ÅT = 173 K
β = 92.974 (8)°Block, colourless
V = 2061.2 (15) Å30.36 × 0.32 × 0.24 mm
Z = 4
Data collection top
Siemens CCD area-detector
diffractometer
3657 independent reflections
Radiation source: fine-focus sealed tube3038 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SABABS; Blessing, 1995; Sheldrick, 2000)
h = 1111
Tmin = 0.878, Tmax = 0.937k = 1616
19973 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0309P)2 + 0.5588P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3657 reflectionsΔρmax = 0.17 e Å3
355 parametersΔρmin = 0.18 e Å3
144 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0022 (6)
Crystal data top
[Li3(C2F3O2)3(C6H14O3)]V = 2061.2 (15) Å3
Mr = 494.05Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.545 (4) ŵ = 0.18 mm1
b = 13.871 (6) ÅT = 173 K
c = 15.589 (7) Å0.36 × 0.32 × 0.24 mm
β = 92.974 (8)°
Data collection top
Siemens CCD area-detector
diffractometer
3657 independent reflections
Absorption correction: multi-scan
(SABABS; Blessing, 1995; Sheldrick, 2000)
3038 reflections with I > 2σ(I)
Tmin = 0.878, Tmax = 0.937Rint = 0.022
19973 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026144 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
3657 reflectionsΔρmin = 0.18 e Å3
355 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Li10.0141 (2)0.27923 (16)0.57748 (15)0.0296 (5)
Li20.1466 (2)0.06878 (15)0.54265 (14)0.0273 (5)
Li30.6215 (2)0.04229 (17)0.54066 (14)0.0294 (5)
C10.20271 (18)0.23962 (13)0.74019 (12)0.0512 (4)
H1A0.21330.24790.80260.077*
H1B0.28630.26440.71370.077*
H1C0.19130.17100.72660.077*
O10.08207 (10)0.29143 (7)0.70768 (6)0.0355 (2)
C20.09104 (16)0.39181 (11)0.72707 (10)0.0394 (4)
H2A0.17390.42060.70130.047*
H2B0.09970.40180.79000.047*
C30.04118 (16)0.43736 (11)0.69000 (10)0.0386 (4)
H3A0.12400.41040.71720.046*
H3B0.03920.50790.69940.046*
O20.04696 (9)0.41604 (7)0.60055 (6)0.0311 (2)
C40.17602 (15)0.44079 (11)0.55520 (11)0.0394 (4)
H4A0.18670.51170.55170.047*
H4B0.25660.41390.58480.047*
C50.16924 (16)0.39844 (11)0.46743 (10)0.0397 (4)
H5A0.26010.40720.43470.048*
H5B0.09520.43070.43580.048*
O30.13835 (10)0.29825 (7)0.47727 (6)0.0336 (2)
C60.1290 (2)0.25071 (13)0.39699 (10)0.0519 (4)
H6A0.21820.25730.36350.078*
H6B0.10870.18220.40680.078*
H6C0.05360.27980.36540.078*
O40.19297 (10)0.30100 (7)0.52567 (7)0.0380 (3)
O50.28602 (9)0.15753 (6)0.49780 (6)0.0310 (2)
C70.28675 (13)0.24706 (9)0.50349 (8)0.0258 (3)
C80.42327 (15)0.29795 (10)0.48049 (10)0.0382 (4)
F10.4607 (12)0.3662 (6)0.5374 (6)0.080 (3)0.33333
F20.4012 (15)0.3438 (7)0.4070 (5)0.079 (3)0.33333
F30.5310 (13)0.2403 (10)0.4737 (8)0.076 (4)0.33333
F1'0.3990 (14)0.3665 (5)0.4238 (5)0.048 (3)0.33333
F2'0.5151 (10)0.2390 (6)0.4479 (6)0.043 (2)0.33333
F3'0.4860 (10)0.3348 (5)0.5507 (5)0.051 (2)0.33333
F1''0.4103 (12)0.3876 (4)0.4536 (5)0.068 (3)0.33333
F2''0.4861 (10)0.2501 (7)0.4190 (5)0.089 (3)0.33333
F3''0.5119 (10)0.3000 (7)0.5481 (5)0.093 (3)0.33333
O60.23796 (9)0.00344 (7)0.64218 (6)0.0310 (2)
O70.43121 (9)0.02165 (7)0.57001 (6)0.0286 (2)
C90.36146 (13)0.02153 (9)0.63542 (8)0.0255 (3)
C100.43914 (14)0.05732 (11)0.71812 (9)0.0356 (3)
F40.43136 (12)0.00515 (9)0.78168 (6)0.0710 (3)
F50.38624 (10)0.14005 (7)0.74480 (6)0.0576 (3)
F60.57508 (8)0.07322 (8)0.70751 (6)0.0534 (3)
O80.81901 (9)0.01497 (6)0.55788 (6)0.0274 (2)
O90.97841 (9)0.13249 (6)0.57739 (6)0.0257 (2)
C110.86387 (12)0.09256 (9)0.58820 (8)0.0215 (3)
C120.76699 (13)0.14297 (9)0.65011 (9)0.0271 (3)
F70.78961 (11)0.10666 (7)0.72898 (5)0.0515 (3)
F80.63232 (8)0.12879 (7)0.62815 (6)0.0497 (3)
F90.78782 (8)0.23701 (5)0.65561 (6)0.0388 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.0254 (11)0.0266 (12)0.0372 (13)0.0010 (9)0.0044 (9)0.0031 (9)
Li20.0209 (10)0.0256 (11)0.0360 (12)0.0004 (8)0.0059 (9)0.0035 (9)
Li30.0208 (11)0.0355 (13)0.0324 (12)0.0018 (9)0.0051 (9)0.0008 (10)
C10.0519 (10)0.0489 (10)0.0509 (10)0.0055 (8)0.0162 (8)0.0036 (8)
O10.0381 (6)0.0308 (5)0.0370 (6)0.0031 (4)0.0042 (4)0.0053 (4)
C20.0441 (9)0.0351 (8)0.0387 (8)0.0080 (7)0.0008 (7)0.0123 (7)
C30.0394 (8)0.0309 (8)0.0465 (9)0.0038 (6)0.0121 (7)0.0134 (7)
O20.0251 (5)0.0279 (5)0.0408 (6)0.0006 (4)0.0048 (4)0.0044 (4)
C40.0265 (7)0.0281 (8)0.0636 (10)0.0050 (6)0.0020 (7)0.0022 (7)
C50.0340 (8)0.0345 (8)0.0498 (9)0.0009 (6)0.0046 (7)0.0121 (7)
O30.0365 (5)0.0316 (5)0.0324 (5)0.0014 (4)0.0013 (4)0.0025 (4)
C60.0699 (12)0.0527 (11)0.0326 (9)0.0017 (9)0.0027 (8)0.0025 (7)
O40.0281 (5)0.0278 (5)0.0594 (7)0.0008 (4)0.0147 (5)0.0022 (5)
O50.0270 (5)0.0232 (5)0.0435 (6)0.0020 (4)0.0083 (4)0.0015 (4)
C70.0226 (7)0.0265 (7)0.0282 (7)0.0013 (5)0.0012 (5)0.0005 (5)
C80.0289 (8)0.0287 (8)0.0578 (10)0.0018 (6)0.0091 (7)0.0021 (7)
F10.056 (6)0.075 (6)0.110 (5)0.036 (4)0.016 (3)0.037 (5)
F20.070 (5)0.090 (7)0.076 (4)0.028 (5)0.008 (3)0.042 (4)
F30.027 (3)0.058 (4)0.144 (10)0.001 (3)0.018 (5)0.018 (5)
F1'0.053 (4)0.015 (3)0.079 (5)0.002 (3)0.032 (4)0.014 (3)
F2'0.019 (4)0.027 (3)0.084 (6)0.006 (2)0.020 (4)0.003 (3)
F3'0.028 (4)0.039 (5)0.085 (4)0.009 (3)0.007 (2)0.020 (4)
F1''0.042 (3)0.029 (3)0.135 (7)0.000 (3)0.030 (5)0.023 (4)
F2''0.062 (5)0.080 (6)0.132 (6)0.019 (3)0.069 (5)0.031 (5)
F3''0.045 (4)0.107 (8)0.124 (6)0.032 (5)0.039 (4)0.036 (5)
O60.0227 (5)0.0382 (6)0.0328 (5)0.0051 (4)0.0086 (4)0.0035 (4)
O70.0212 (4)0.0357 (5)0.0297 (5)0.0019 (4)0.0082 (4)0.0017 (4)
C90.0221 (7)0.0241 (7)0.0306 (7)0.0021 (5)0.0056 (5)0.0004 (5)
C100.0279 (7)0.0441 (9)0.0352 (8)0.0000 (6)0.0044 (6)0.0046 (7)
F40.0866 (8)0.0873 (8)0.0374 (6)0.0185 (6)0.0141 (5)0.0168 (5)
F50.0464 (5)0.0644 (7)0.0618 (6)0.0078 (5)0.0002 (5)0.0364 (5)
F60.0248 (4)0.0775 (7)0.0573 (6)0.0053 (4)0.0020 (4)0.0238 (5)
O80.0246 (5)0.0250 (5)0.0326 (5)0.0022 (4)0.0033 (4)0.0062 (4)
O90.0194 (4)0.0242 (5)0.0337 (5)0.0001 (4)0.0036 (4)0.0022 (4)
C110.0205 (6)0.0221 (6)0.0216 (6)0.0016 (5)0.0018 (5)0.0015 (5)
C120.0250 (7)0.0239 (7)0.0325 (7)0.0022 (5)0.0029 (5)0.0019 (5)
F70.0786 (7)0.0488 (6)0.0285 (5)0.0125 (5)0.0163 (4)0.0032 (4)
F80.0220 (4)0.0574 (6)0.0708 (6)0.0037 (4)0.0115 (4)0.0241 (5)
F90.0388 (5)0.0241 (4)0.0550 (5)0.0012 (3)0.0178 (4)0.0092 (4)
Geometric parameters (Å, º) top
Li1—O12.105 (3)C5—H5B0.9900
Li1—O22.023 (2)O3—C61.4216 (19)
Li1—O32.096 (3)C6—H6A0.9800
Li1—O41.950 (2)C6—H6B0.9800
Li1—O9i2.064 (3)C6—H6C0.9800
Li1—F9i2.601 (2)O4—C71.2299 (16)
Li2—O51.967 (2)O5—C71.2450 (16)
Li2—O61.962 (2)O5—Li3ii1.936 (2)
Li2—O8ii1.991 (2)C7—C81.5405 (19)
Li2—O9i1.935 (2)C8—F1'1.311 (6)
Li2—C92.749 (3)C8—F31.311 (6)
Li3—O5ii1.936 (2)C8—F1''1.316 (6)
Li3—O71.917 (2)C8—F21.317 (6)
Li3—O7ii1.981 (3)C8—F3''1.317 (6)
Li3—O82.051 (2)C8—F2'1.320 (5)
Li1—Li23.238 (3)C8—F3'1.323 (5)
Li2—Li3ii2.649 (3)C8—F2''1.333 (6)
Li3—Li2ii2.649 (3)C8—F11.334 (6)
Li3—Li3ii2.838 (4)O6—C91.2384 (16)
C1—O11.4278 (19)O7—C91.2464 (16)
C1—H1A0.9800O7—Li3ii1.981 (3)
C1—H1B0.9800C9—C101.536 (2)
C1—H1C0.9800C10—F41.3212 (18)
O1—C21.4264 (18)C10—F51.3291 (18)
C2—C31.500 (2)C10—F61.3348 (17)
C2—H2A0.9900O8—C111.2426 (15)
C2—H2B0.9900O8—Li2ii1.991 (2)
C3—O21.4237 (19)O9—C111.2449 (15)
C3—H3A0.9900O9—Li2iii1.935 (2)
C3—H3B0.9900O9—Li1iii2.064 (3)
O2—C41.4300 (17)C11—C121.5389 (18)
C4—C51.494 (2)C12—F91.3215 (16)
C4—H4A0.9900C12—F81.3276 (16)
C4—H4B0.9900C12—F71.3359 (17)
C5—O31.4273 (18)F9—Li1iii2.601 (2)
C5—H5A0.9900
O4—Li1—O2101.25 (11)C6—O3—C5112.28 (12)
O4—Li1—O9i107.49 (11)C6—O3—Li1121.65 (11)
O2—Li1—O9i151.19 (12)C5—O3—Li1109.53 (10)
O4—Li1—O3105.12 (11)O3—C6—H6A109.5
O2—Li1—O379.57 (9)O3—C6—H6B109.5
O9i—Li1—O390.88 (9)H6A—C6—H6B109.5
O4—Li1—O198.88 (10)O3—C6—H6C109.5
O2—Li1—O180.24 (9)H6A—C6—H6C109.5
O9i—Li1—O197.04 (10)H6B—C6—H6C109.5
O3—Li1—O1151.14 (12)C7—O4—Li1133.47 (11)
O4—Li1—F9i174.37 (12)C7—O5—Li3ii147.62 (11)
O2—Li1—F9i82.76 (8)C7—O5—Li2126.89 (10)
O9i—Li1—F9i68.72 (7)Li3ii—O5—Li285.47 (10)
O3—Li1—F9i79.39 (8)O4—C7—O5128.70 (12)
O1—Li1—F9i77.79 (8)O4—C7—C8115.06 (12)
O4—Li1—Li273.27 (8)O5—C7—C8116.24 (11)
O2—Li1—Li2173.77 (11)F1'—C8—F3120.0 (9)
O9i—Li1—Li234.59 (6)F1'—C8—F1''24.4 (5)
O3—Li1—Li2104.52 (9)F3—C8—F1''127.7 (9)
O1—Li1—Li297.51 (9)F1'—C8—F218.0 (6)
F9i—Li1—Li2102.51 (8)F3—C8—F2108.3 (7)
O9i—Li2—O6109.32 (11)F1''—C8—F242.2 (7)
O9i—Li2—O5113.58 (11)F1'—C8—F3''127.4 (7)
O6—Li2—O5106.81 (11)F3—C8—F3''66.7 (7)
O9i—Li2—O8ii131.27 (12)F1''—C8—F3''106.3 (5)
O6—Li2—O8ii105.57 (11)F2—C8—F3''138.8 (8)
O5—Li2—O8ii86.75 (9)F1'—C8—F2'106.7 (6)
O9i—Li2—Li3ii158.01 (12)F3—C8—F2'18.5 (9)
O6—Li2—Li3ii88.59 (9)F1''—C8—F2'121.1 (7)
O5—Li2—Li3ii46.77 (7)F2—C8—F2'92.5 (7)
O8ii—Li2—Li3ii50.02 (7)F3''—C8—F2'84.8 (6)
O9i—Li2—C9131.92 (11)F1'—C8—F3'109.5 (5)
O6—Li2—C923.75 (4)F3—C8—F3'88.8 (7)
O5—Li2—C988.42 (9)F1''—C8—F3'86.0 (5)
O8ii—Li2—C989.97 (9)F2—C8—F3'125.3 (7)
Li3ii—Li2—C964.87 (8)F3''—C8—F3'23.8 (4)
O9i—Li2—Li137.27 (6)F2'—C8—F3'106.1 (5)
O6—Li2—Li1116.44 (10)F1'—C8—F2''87.0 (6)
O5—Li2—Li176.86 (8)F3—C8—F2''41.8 (8)
O8ii—Li2—Li1137.68 (11)F1''—C8—F2''106.2 (6)
Li3ii—Li2—Li1123.42 (10)F2—C8—F2''70.9 (6)
C9—Li2—Li1127.57 (9)F3''—C8—F2''106.9 (5)
O7—Li3—O5ii130.54 (13)F2'—C8—F2''23.4 (5)
O7—Li3—O7ii86.57 (9)F3'—C8—F2''125.8 (6)
O5ii—Li3—O7ii101.49 (11)F1'—C8—F188.0 (6)
O7—Li3—O8141.89 (13)F3—C8—F1107.6 (7)
O5ii—Li3—O885.94 (9)F1''—C8—F163.8 (6)
O7ii—Li3—O897.51 (10)F2—C8—F1105.2 (6)
O7—Li3—Li2ii164.48 (13)F3''—C8—F146.6 (5)
O5ii—Li3—Li2ii47.76 (7)F2'—C8—F1122.4 (7)
O7ii—Li3—Li2ii79.40 (9)F3'—C8—F123.2 (5)
O8—Li3—Li2ii48.09 (7)F2''—C8—F1135.7 (8)
O7—Li3—Li3ii44.17 (7)F1'—C8—C7111.6 (6)
O5ii—Li3—Li3ii125.32 (14)F3—C8—C7114.6 (8)
O7ii—Li3—Li3ii42.40 (7)F1''—C8—C7116.1 (5)
O8—Li3—Li3ii128.51 (15)F2—C8—C7108.9 (6)
Li2ii—Li3—Li3ii121.49 (13)F3''—C8—C7109.8 (5)
O1—C1—H1A109.5F2'—C8—C7113.1 (5)
O1—C1—H1B109.5F3'—C8—C7109.7 (5)
H1A—C1—H1B109.5F2''—C8—C7110.9 (5)
O1—C1—H1C109.5F1—C8—C7111.8 (6)
H1A—C1—H1C109.5C9—O6—Li2116.60 (10)
H1B—C1—H1C109.5C9—O7—Li3138.43 (11)
C2—O1—C1112.19 (11)C9—O7—Li3ii126.13 (11)
C2—O1—Li1107.15 (10)Li3—O7—Li3ii93.43 (9)
C1—O1—Li1120.27 (11)O6—C9—O7128.40 (13)
O1—C2—C3106.83 (11)O6—C9—C10116.05 (11)
O1—C2—H2A110.4O7—C9—C10115.54 (11)
C3—C2—H2A110.4O6—C9—Li239.65 (8)
O1—C2—H2B110.4O7—C9—Li289.18 (9)
C3—C2—H2B110.4C10—C9—Li2154.59 (10)
H2A—C2—H2B108.6F4—C10—F5107.13 (13)
O2—C3—C2106.20 (11)F4—C10—F6107.10 (12)
O2—C3—H3A110.5F5—C10—F6106.47 (12)
C2—C3—H3A110.5F4—C10—C9111.96 (12)
O2—C3—H3B110.5F5—C10—C9111.53 (12)
C2—C3—H3B110.5F6—C10—C9112.30 (11)
H3A—C3—H3B108.7C11—O8—Li2ii137.48 (10)
C3—O2—C4115.03 (11)C11—O8—Li3132.97 (10)
C3—O2—Li1111.84 (11)Li2ii—O8—Li381.89 (9)
C4—O2—Li1112.72 (10)C11—O9—Li2iii125.60 (11)
O2—C4—C5106.34 (12)C11—O9—Li1iii125.80 (10)
O2—C4—H4A110.5Li2iii—O9—Li1iii108.14 (10)
C5—C4—H4A110.5O8—C11—O9128.43 (12)
O2—C4—H4B110.5O8—C11—C12115.20 (11)
C5—C4—H4B110.5O9—C11—C12116.31 (11)
H4A—C4—H4B108.7F9—C12—F8107.66 (11)
O3—C5—C4107.64 (12)F9—C12—F7107.21 (11)
O3—C5—H5A110.2F8—C12—F7106.83 (11)
C4—C5—H5A110.2F9—C12—C11113.32 (10)
O3—C5—H5B110.2F8—C12—C11112.10 (11)
C4—C5—H5B110.2F7—C12—C11109.40 (11)
H5A—C5—H5B108.5C12—F9—Li1iii108.52 (8)
O4—Li1—Li2—O9i171.41 (14)Li2—O5—C7—C8167.26 (12)
O3—Li1—Li2—O9i69.66 (11)O4—C7—C8—F1'52.5 (4)
O1—Li1—Li2—O9i91.53 (12)O5—C7—C8—F1'128.0 (4)
F9i—Li1—Li2—O9i12.44 (8)O4—C7—C8—F3167.0 (6)
O4—Li1—Li2—O6101.07 (12)O5—C7—C8—F312.5 (7)
O9i—Li1—Li2—O687.52 (13)O4—C7—C8—F1''26.3 (5)
O3—Li1—Li2—O6157.19 (10)O5—C7—C8—F1''154.2 (4)
O1—Li1—Li2—O64.01 (13)O4—C7—C8—F271.4 (5)
F9i—Li1—Li2—O675.08 (12)O5—C7—C8—F2109.0 (5)
O4—Li1—Li2—O51.38 (8)O4—C7—C8—F3''94.4 (4)
O9i—Li1—Li2—O5170.02 (14)O5—C7—C8—F3''85.2 (4)
O3—Li1—Li2—O5100.36 (10)O4—C7—C8—F2'172.8 (5)
O1—Li1—Li2—O598.45 (10)O5—C7—C8—F2'7.6 (5)
F9i—Li1—Li2—O5177.53 (9)O4—C7—C8—F3'69.0 (4)
O4—Li1—Li2—O8ii71.34 (16)O5—C7—C8—F3'110.5 (3)
O9i—Li1—Li2—O8ii100.06 (17)O4—C7—C8—F2''147.6 (4)
O3—Li1—Li2—O8ii30.40 (18)O5—C7—C8—F2''32.8 (5)
O1—Li1—Li2—O8ii168.41 (13)O4—C7—C8—F144.3 (5)
F9i—Li1—Li2—O8ii112.51 (15)O5—C7—C8—F1135.3 (5)
O4—Li1—Li2—Li3ii6.09 (13)O9i—Li2—O6—C9163.97 (11)
O9i—Li1—Li2—Li3ii165.31 (16)O5—Li2—O6—C940.70 (15)
O3—Li1—Li2—Li3ii95.65 (13)O8ii—Li2—O6—C950.61 (14)
O1—Li1—Li2—Li3ii103.16 (13)Li3ii—Li2—O6—C92.98 (13)
F9i—Li1—Li2—Li3ii177.76 (10)Li1—Li2—O6—C9124.10 (11)
O4—Li1—Li2—C976.19 (12)O5ii—Li3—O7—C994.5 (2)
O9i—Li1—Li2—C9112.41 (14)O7ii—Li3—O7—C9163.31 (16)
O3—Li1—Li2—C9177.93 (9)O8—Li3—O7—C965.5 (3)
O1—Li1—Li2—C920.88 (13)Li2ii—Li3—O7—C9171.4 (4)
F9i—Li1—Li2—C999.96 (11)Li3ii—Li3—O7—C9163.31 (16)
O4—Li1—O1—C280.67 (12)O5ii—Li3—O7—Li3ii102.20 (18)
O2—Li1—O1—C219.32 (11)O7ii—Li3—O7—Li3ii0.0
O9i—Li1—O1—C2170.32 (10)O8—Li3—O7—Li3ii97.8 (2)
O3—Li1—O1—C265.5 (3)Li2ii—Li3—O7—Li3ii25.3 (4)
F9i—Li1—O1—C2103.95 (9)Li2—O6—C9—O79.8 (2)
Li2—Li1—O1—C2154.81 (9)Li2—O6—C9—C10170.34 (11)
O4—Li1—O1—C148.96 (15)Li3—O7—C9—O6172.08 (14)
O2—Li1—O1—C1148.95 (12)Li3ii—O7—C9—O612.9 (2)
O9i—Li1—O1—C160.06 (14)Li3—O7—C9—C108.1 (2)
O3—Li1—O1—C1164.9 (2)Li3ii—O7—C9—C10167.31 (12)
F9i—Li1—O1—C1126.43 (12)Li3—O7—C9—Li2165.82 (15)
Li2—Li1—O1—C125.18 (14)Li3ii—O7—C9—Li26.61 (13)
C1—O1—C2—C3179.79 (13)O9i—Li2—C9—O620.50 (14)
Li1—O1—C2—C346.13 (14)O5—Li2—C9—O6141.36 (14)
O1—C2—C3—O257.80 (14)O8ii—Li2—C9—O6131.89 (14)
C2—C3—O2—C4171.05 (11)Li3ii—Li2—C9—O6176.70 (14)
C2—C3—O2—Li140.78 (14)Li1—Li2—C9—O669.30 (14)
O4—Li1—O2—C3109.96 (12)O9i—Li2—C9—O7167.20 (14)
O9i—Li1—O2—C374.1 (3)O6—Li2—C9—O7172.30 (15)
O3—Li1—O2—C3146.52 (9)O5—Li2—C9—O746.34 (10)
O1—Li1—O2—C312.75 (11)O8ii—Li2—C9—O740.42 (10)
F9i—Li1—O2—C366.04 (10)Li3ii—Li2—C9—O74.40 (9)
O4—Li1—O2—C4118.60 (12)Li1—Li2—C9—O7118.40 (12)
O9i—Li1—O2—C457.3 (3)O9i—Li2—C9—C100.1 (3)
O3—Li1—O2—C415.08 (12)O6—Li2—C9—C1020.6 (2)
O1—Li1—O2—C4144.19 (10)O5—Li2—C9—C10120.8 (2)
F9i—Li1—O2—C465.41 (11)O8ii—Li2—C9—C10152.5 (2)
C3—O2—C4—C5170.93 (11)Li3ii—Li2—C9—C10162.7 (2)
Li1—O2—C4—C541.09 (15)Li1—Li2—C9—C1048.7 (3)
O2—C4—C5—O353.80 (14)O6—C9—C10—F452.92 (17)
C4—C5—O3—C6179.79 (12)O7—C9—C10—F4127.24 (13)
C4—C5—O3—Li141.44 (14)Li2—C9—C10—F438.5 (3)
O4—Li1—O3—C650.18 (16)O6—C9—C10—F567.11 (16)
O2—Li1—O3—C6149.14 (12)O7—C9—C10—F5112.73 (14)
O9i—Li1—O3—C658.22 (14)Li2—C9—C10—F581.6 (3)
O1—Li1—O3—C6164.6 (2)O6—C9—C10—F6173.46 (12)
F9i—Li1—O3—C6126.37 (12)O7—C9—C10—F66.69 (18)
Li2—Li1—O3—C626.05 (15)Li2—C9—C10—F6159.01 (19)
O4—Li1—O3—C583.56 (13)O7—Li3—O8—C1110.3 (3)
O2—Li1—O3—C515.40 (11)O5ii—Li3—O8—C11175.15 (11)
O9i—Li1—O3—C5168.05 (10)O7ii—Li3—O8—C1183.77 (15)
O1—Li1—O3—C561.7 (3)Li2ii—Li3—O8—C11152.20 (15)
F9i—Li1—O3—C599.89 (10)Li3ii—Li3—O8—C1151.7 (2)
Li2—Li1—O3—C5159.79 (10)O7—Li3—O8—Li2ii162.5 (2)
O2—Li1—O4—C7173.44 (13)O5ii—Li3—O8—Li2ii32.65 (9)
O9i—Li1—O4—C78.6 (2)O7ii—Li3—O8—Li2ii68.42 (11)
O3—Li1—O4—C7104.46 (16)Li3ii—Li3—O8—Li2ii100.53 (18)
O1—Li1—O4—C791.71 (16)Li2ii—O8—C11—O923.2 (2)
Li2—Li1—O4—C73.51 (15)Li3—O8—C11—O9160.09 (13)
O9i—Li2—O5—C713.10 (19)Li2ii—O8—C11—C12159.71 (13)
O6—Li2—O5—C7107.49 (14)Li3—O8—C11—C1222.80 (18)
O8ii—Li2—O5—C7147.22 (11)Li2iii—O9—C11—O822.3 (2)
Li3ii—Li2—O5—C7178.87 (15)Li1iii—O9—C11—O8148.99 (13)
C9—Li2—O5—C7122.73 (12)Li2iii—O9—C11—C12154.82 (11)
Li1—Li2—O5—C76.52 (13)Li1iii—O9—C11—C1233.92 (17)
O9i—Li2—O5—Li3ii168.03 (13)O8—C11—C12—F9155.94 (11)
O6—Li2—O5—Li3ii71.38 (11)O9—C11—C12—F926.58 (16)
O8ii—Li2—O5—Li3ii33.91 (9)O8—C11—C12—F833.82 (15)
C9—Li2—O5—Li3ii56.14 (9)O9—C11—C12—F8148.70 (11)
Li1—Li2—O5—Li3ii174.60 (9)O8—C11—C12—F784.50 (13)
Li1—O4—C7—O510.5 (2)O9—C11—C12—F792.98 (13)
Li1—O4—C7—C8169.04 (13)F8—C12—F9—Li1iii134.45 (10)
Li3ii—O5—C7—O4169.88 (17)F7—C12—F9—Li1iii110.92 (11)
Li2—O5—C7—O412.2 (2)C11—C12—F9—Li1iii9.89 (13)
Li3ii—O5—C7—C810.6 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1; (iii) x+1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Li2(CF3SO)2(C6H14O3)][Li3(C2F3O2)3(C6H14O3)]
Mr446.19494.05
Crystal system, space groupTriclinic, P1Monoclinic, P21/c
Temperature (K)173173
a, b, c (Å)8.678 (3), 10.815 (3), 11.899 (4)9.545 (4), 13.871 (6), 15.589 (7)
α, β, γ (°)67.566 (5), 89.831 (5), 71.435 (5)90, 92.974 (8), 90
V3)969.5 (5)2061.2 (15)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.370.18
Crystal size (mm)0.30 × 0.20 × 0.040.36 × 0.32 × 0.24
Data collection
DiffractometerBruker CCD-platform area-detector
diffractometer
Siemens CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Blessing, 1995; Sheldrick, 2000)
Multi-scan
(SABABS; Blessing, 1995; Sheldrick, 2000)
Tmin, Tmax0.898, 0.9860.878, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
7068, 3402, 2751 19973, 3657, 3038
Rint0.0380.022
(sin θ/λ)max1)0.5960.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.116, 1.02 0.026, 0.067, 1.03
No. of reflections34023657
No. of parameters246355
No. of restraints0144
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.360.17, 0.18

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1990), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Bruker, 1998), SHELXTL/PC and PLATON (Spek, 2001).

Selected geometric parameters (Å, º) for (I) top
Li1—O12.050 (4)Li2—O51.933 (4)
Li1—O22.113 (4)Li2—O81.901 (4)
Li1—O32.103 (5)Li2—O6i1.938 (4)
Li1—O42.017 (4)Li2—O9ii1.939 (4)
Li1—O71.951 (4)
C1—O1—C2—C3173.9 (3)C3—O2—C4—C5156.8 (2)
O1—C2—C3—O248.5 (3)O2—C4—C5—O355.0 (3)
C2—C3—O2—C4172.0 (2)C4—C5—O3—C6172.0 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1.
Selected geometric parameters (Å, º) for (II) top
Li1—O12.105 (3)Li2—O8ii1.991 (2)
Li1—O22.023 (2)Li2—O9i1.935 (2)
Li1—O32.096 (3)Li3—O5ii1.936 (2)
Li1—O41.950 (2)Li3—O71.917 (2)
Li1—O9i2.064 (3)Li3—O7ii1.981 (3)
Li2—O51.967 (2)Li3—O82.051 (2)
Li2—O61.962 (2)
C1—O1—C2—C3179.79 (13)C3—O2—C4—C5170.93 (11)
O1—C2—C3—O257.80 (14)O2—C4—C5—O353.80 (14)
C2—C3—O2—C4171.05 (11)C4—C5—O3—C6179.79 (12)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds