Download citation
Download citation
link to html
The structures of two potential anti-human immunodeficiency virus type 1 (HIV-1) non-nucleoside reverse transcriptase inhibitors (NNRTI), namely 1-(2-chloro­benzoyl)-2-phenyl­pyrrol­idine-2-carbox­amide, C18H17ClN2O2, and 1-(2-furoyl)-2-phenyl­pyrrolidine-2-carbox­amide, C16H16N2O3, have been investigated by X-ray diffraction and the butterfly-like conformation established in each case. The pyrrolidine ring has the same half-chair conformation in both structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102008636/gg1113sup1.cif
Contains datablocks global, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102008636/gg1113IIsup2.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102008636/gg1113IIIsup3.hkl
Contains datablock III

CCDC references: 192969; 192970

Comment top

The compounds under current investigation belong to the family of non-nucleoside reverse transcriptase inhibitors (NNRTIs). Formally, the structures of such compounds may be considered as derivatives from Loviride (Pauvels et al., 1993), with a common structural feature being the butterfly-like conformation (De Clercq, 1996). A new method for the synthesis of 1,2-substituted derivatives of 1-(alkyl/arylcarbonyl)-2-phenylpyrrolidine-2-carboxamide, (I), has been developed by Martirosyan et al. (2000), and thus 1-(2-chlorobenzoyl)-2-phenylpyrrolidine-2-carboxamide, (II), and 1-(2-furoyl)-2-phenylpyrrolidine-2-carboxamide, (III), have been synthesized as racemic mixtures. The crystal structures of these two compounds are presented here. \sch

Views of molecules (II) and (III) with the atomic numbering schemes are shown in Figs. 1 and 2, respectively. In the crystal structures of both molecules, two neighbouring asymmetric molecules, related by inversion centres, are connected into a dimeric unit with double hydrogen bonding through the amide groups (Figs. 3 and 4). However, only one of the amide H atoms of each molecule [H15A in (II) and H14A in (III)] takes part in the dimer formed through intermolecular interactions. The other H atoms (H15B and H14B, respectively) of the amide form intramolecular hydrogen bonds with the carbonyl O atoms at O7.

The interatomic distances and angles for the hydrogen bonds in (II) and (III) are listed in Tables 1 and 2, respectively. The formation of intramolecular hydrogen bonds in (II) and (III) could bring additional rigidity to the molecular conformation relative to 1-benzyl-2-phenyl-5-oxopyrrolidine-2-carboxamide (Karapetyan et al., 2002), in which the corresponding H atoms take part in intermolecular bonding.

The dihedral angles between the aryl groups (`wing' planes W1 and W2 in the Scheme) and the pyrrolidine ring (part of the `body' - plane B in the Scheme), describing the orientation relations between the `wings' and `bodies' of these butterfly-like structures, for planes W1/W2, B/W1 and B/W2, are 40.05 (12), 72.02 (10) and 86.69 (10)°, respectively, for (II), and 89.99 (7), 76.69 (6) and 29.04 (10)°, respectively, for (III). The differences in these dihedral angles are caused by the reorientation of plane W2. Probably, in this reorientation, the essential role played by the Cl atom in the o-position of phenyl ring is prominent. In both structures, the pyrrolidine ring has the same half-chair conformation.

Table 1. Short N—H···O contacts (Å, °) for compound (II)

Table 2. Short N—H···O contacts (Å, °) for compound (III)

Experimental top

The title compounds, (II) and (III), were synthesized as described by Martirosyan et al. (2000). Recrystallization from ethanol afforded colourless crystals suitable for X-ray analysis.

Refinement top

Both molecules (II) and (III) crystallized in the monoclinic system, space group P21/c as determined from the systematic absences. H atoms were constrained, with C—H = 0.93–9.97 Å and N—H = 0.86 Å. Are these the correct constraints?

Computing details top

For both compounds, data collection: CAD-4 Software (Enraf-Nonius, 1988); cell refinement: SETANG in CAD-4 Software; data reduction: local program; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of (II) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of (III) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The connection of molecules of (II) into dimers [symmetry code: (i) 2 - x, 1 - y, 2 - z].
[Figure 4] Fig. 4. The connection of molecules of (III) into dimers [symmetry code: (i) 1 - x, 2 - y, 2 - z].
(II) 1-(2-chlorobenzoyl)-2-phenylpyrrolidine-2-carboxamide top
Crystal data top
C18H17ClN2O2F(000) = 688
Mr = 328.79Dx = 1.280 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 22 reflections
a = 10.661 (2) Åθ = 13.9–20.0°
b = 11.690 (2) ŵ = 0.23 mm1
c = 20.698 (4) ÅT = 293 K
β = 138.60 (3)°Prism, colourless
V = 1706.1 (11) Å30.20 × 0.13 × 0.10 mm
Z = 4
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.022
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.1°
Graphite monochromatorh = 1211
ω/2θ scansk = 013
3296 measured reflectionsl = 1124
2948 independent reflections3 standard reflections every 60 min
1928 reflections with I > 2σ(I) intensity decay: variation +1.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.4186P]
where P = (Fo2 + 2Fc2)/3
2948 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.27 e Å3
0 constraints
Crystal data top
C18H17ClN2O2V = 1706.1 (11) Å3
Mr = 328.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.661 (2) ŵ = 0.23 mm1
b = 11.690 (2) ÅT = 293 K
c = 20.698 (4) Å0.20 × 0.13 × 0.10 mm
β = 138.60 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.022
3296 measured reflections3 standard reflections every 60 min
2948 independent reflections intensity decay: variation +1.0%
1928 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 0.95Δρmax = 0.17 e Å3
2948 reflectionsΔρmin = 0.27 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

Mean-plane data from final SHELXL refinement run:- Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 7.3815(0.0092)x + 8.0424(0.0105)y + 7.7720(0.0222)z = 3.5064(0.0121)

* -0.0006 (0.0017) C17 * 0.0042 (0.0017) C18 * -0.0037 (0.0020) C19 * -0.0004 (0.0022) C20 * 0.0040 (0.0024) C21 * -0.0035 (0.0022) C22

Rms deviation of fitted atoms = 0.0032

1.6738 (0.0116)x - 8.7969(0.0087)y + 6.3182(0.0225)z = 2.8236(0.0163)

Angle to previous plane (with approximate e.s.d.) = 40.05 (0.12)

* 0.0050 (0.0016) C8 * -0.0069 (0.0018) C9 * 0.0029 (0.0020) C10 * 0.0029 (0.0021) C11 * -0.0046 (0.0020) C12 * 0.0007 (0.0017) C13

Rms deviation of fitted atoms = 0.0043

- 1.2833(0.0131)x + 6.8014(0.0113)y + 12.8802(0.0202)z = 11.4644(0.0085)

Angle to previous plane (with approximate e.s.d.) = 86.69 (0.10)

* 0.1488 (0.0013) C1 * -0.0121 (0.0014) N2 * -0.1301 (0.0015) C3 * 0.2353 (0.0016) C4 * -0.2418 (0.0014) C5

Rms deviation of fitted atoms = 0.1749

- 7.3815(0.0092)x + 8.0424(0.0105)y + 7.7720(0.0222)z = 3.5064(0.0121)

Angle to previous plane (with approximate e.s.d.) = 72.02 (0.10)

* -0.0006 (0.0017) C17 * 0.0042 (0.0017) C18 * -0.0037 (0.0020) C19 * -0.0004 (0.0022) C20 * 0.0040 (0.0024) C21 * -0.0035 (0.0022) C22

Rms deviation of fitted atoms = 0.0032

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.38166 (9)0.39708 (8)0.89412 (5)0.1006 (3)
C10.7034 (2)0.27365 (16)0.82721 (13)0.0492 (5)
N20.54952 (18)0.24601 (13)0.81398 (10)0.0468 (4)
C30.5887 (3)0.13935 (18)0.86505 (15)0.0598 (6)
H3A0.50560.07810.81890.072*
H3B0.57280.15060.90500.072*
C40.7932 (3)0.11314 (19)0.92763 (15)0.0657 (6)
H4A0.87930.15120.99050.079*
H4B0.81730.03150.93800.079*
C50.8132 (3)0.15965 (18)0.86803 (15)0.0617 (6)
H5A0.75850.10760.81550.074*
H5B0.94550.17220.90840.074*
C60.3931 (2)0.30874 (17)0.76166 (12)0.0481 (5)
O70.36799 (17)0.40254 (13)0.72605 (10)0.0643 (4)
C80.2414 (2)0.26030 (17)0.74616 (13)0.0504 (5)
C90.2215 (3)0.2977 (2)0.80155 (15)0.0643 (6)
C100.0791 (3)0.2580 (3)0.78564 (17)0.0836 (8)
H10A0.06920.28320.82430.100*
C110.0484 (3)0.1809 (3)0.71209 (19)0.0868 (8)
H11A0.14560.15370.70070.104*
C120.0343 (3)0.1436 (3)0.65522 (19)0.0818 (8)
H12A0.12220.09180.60500.098*
C130.1115 (3)0.1833 (2)0.67266 (15)0.0653 (6)
H13A0.12150.15740.63410.078*
C140.8327 (3)0.36954 (18)0.90327 (14)0.0554 (5)
N150.7537 (2)0.45281 (16)0.90496 (13)0.0702 (5)
H15A0.82220.50780.94620.084*
H15B0.63320.45270.86490.084*
O161.00387 (19)0.36549 (15)0.95883 (12)0.0816 (6)
C170.6261 (2)0.30452 (18)0.73065 (13)0.0536 (5)
C180.7097 (3)0.38739 (19)0.72489 (15)0.0626 (5)
H18A0.81210.42880.78040.075*
C190.6427 (3)0.4094 (2)0.63752 (18)0.0822 (7)
H19A0.70120.46480.63470.099*
C200.4912 (3)0.3501 (3)0.55536 (18)0.0923 (9)
H20B0.44590.36530.49660.111*
C210.4058 (4)0.2681 (3)0.55967 (18)0.1004 (10)
H21A0.30200.22790.50370.120*
C220.4731 (3)0.2453 (3)0.64620 (16)0.0805 (7)
H22A0.41500.18890.64850.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0938 (3)0.1270 (6)0.0864 (3)0.0225 (4)0.0692 (2)0.0389 (4)
C10.0447 (6)0.0371 (10)0.0613 (8)0.0065 (7)0.0385 (6)0.0074 (7)
N20.0467 (5)0.0363 (8)0.0534 (6)0.0006 (6)0.0364 (5)0.0016 (6)
C30.0611 (8)0.0419 (11)0.0704 (10)0.0077 (9)0.0476 (7)0.0142 (9)
C40.0575 (9)0.0440 (12)0.0708 (11)0.0074 (9)0.0409 (8)0.0088 (9)
C50.0513 (7)0.0428 (11)0.0805 (11)0.0018 (8)0.0463 (7)0.0077 (9)
C60.0503 (7)0.0414 (11)0.0473 (8)0.0045 (8)0.0350 (6)0.0032 (7)
O70.0657 (6)0.0481 (8)0.0733 (7)0.0113 (6)0.0505 (5)0.0162 (6)
C80.0445 (7)0.0473 (11)0.0539 (8)0.0083 (8)0.0353 (6)0.0084 (8)
C90.0520 (8)0.0764 (16)0.0595 (9)0.0073 (10)0.0404 (7)0.0054 (10)
C100.0649 (9)0.115 (2)0.0802 (11)0.0079 (13)0.0572 (8)0.0028 (13)
C110.0585 (8)0.107 (2)0.1024 (13)0.0039 (13)0.0624 (9)0.0099 (14)
C120.0514 (9)0.0802 (18)0.0886 (14)0.0082 (12)0.0451 (10)0.0091 (13)
C130.0580 (8)0.0607 (14)0.0741 (10)0.0004 (10)0.0487 (8)0.0033 (10)
C140.0566 (8)0.0419 (11)0.0625 (9)0.0050 (9)0.0431 (7)0.0032 (8)
N150.0596 (7)0.0466 (10)0.0862 (10)0.0114 (8)0.0494 (7)0.0224 (8)
O160.0517 (6)0.0610 (10)0.0937 (9)0.0136 (7)0.0433 (6)0.0282 (8)
C170.0543 (7)0.0482 (12)0.0642 (9)0.0052 (8)0.0462 (6)0.0075 (8)
C180.0722 (8)0.0471 (12)0.0844 (10)0.0006 (9)0.0633 (7)0.0007 (9)
C190.1090 (10)0.0654 (16)0.1142 (13)0.0068 (12)0.0959 (9)0.0124 (11)
C200.1021 (11)0.113 (2)0.0818 (11)0.0165 (16)0.0748 (9)0.0153 (13)
C210.0927 (12)0.141 (3)0.0726 (12)0.0289 (17)0.0635 (10)0.0227 (15)
C220.0844 (9)0.0936 (19)0.0757 (11)0.0385 (12)0.0636 (8)0.0278 (11)
Geometric parameters (Å, º) top
Cl—C91.741 (2)C10—H10A0.9300
C1—N21.482 (3)C11—C121.366 (4)
C1—C171.528 (3)C11—H11A0.9300
C1—C141.543 (3)C12—C131.385 (3)
C1—C51.542 (3)C12—H12A0.9300
N2—C61.335 (2)C13—H13A0.9300
N2—C31.478 (3)C14—O161.227 (2)
C3—C41.513 (3)C14—N151.305 (3)
C3—H3A0.9700N15—H15A0.8600
C3—H3B0.9700N15—H15B0.8600
C4—C51.502 (4)C17—C181.381 (3)
C4—H4A0.9700C17—C221.385 (3)
C4—H4B0.9700C18—C191.382 (3)
C5—H5A0.9700C18—H18A0.9300
C5—H5B0.9700C19—C201.364 (4)
C6—O71.234 (2)C19—H19A0.9300
C6—C81.504 (3)C20—C211.370 (4)
C8—C131.372 (3)C20—H20B0.9300
C8—C91.384 (3)C21—C221.366 (4)
C9—C101.371 (3)C21—H21A0.9300
C10—C111.369 (4)C22—H22A0.9300
N2—C1—C17111.95 (13)C11—C10—C9119.1 (3)
N2—C1—C14111.40 (17)C11—C10—H10A120.4
C17—C1—C14110.84 (17)C9—C10—H10A120.4
N2—C1—C5101.13 (16)C10—C11—C12120.6 (2)
C17—C1—C5111.34 (18)C10—C11—H11A119.7
C14—C1—C5109.81 (14)C12—C11—H11A119.7
C6—N2—C3123.68 (17)C11—C12—C13119.8 (2)
C6—N2—C1124.50 (16)C11—C12—H12A120.1
C3—N2—C1111.82 (14)C13—C12—H12A120.1
N2—C3—C4103.66 (17)C8—C13—C12120.7 (2)
N2—C3—H3A111.0C8—C13—H13A119.7
C4—C3—H3A111.0C12—C13—H13A119.7
N2—C3—H3B111.0O16—C14—N15122.65 (19)
C4—C3—H3B111.0O16—C14—C1119.38 (19)
H3A—C3—H3B109.0N15—C14—C1117.96 (16)
C5—C4—C3102.97 (17)C14—N15—H15A120.0
C5—C4—H4A111.2C14—N15—H15B120.0
C3—C4—H4A111.2H15A—N15—H15B120.0
C5—C4—H4B111.2C18—C17—C22117.8 (2)
C3—C4—H4B111.2C18—C17—C1121.94 (17)
H4A—C4—H4B109.1C22—C17—C1120.1 (2)
C4—C5—C1104.23 (18)C17—C18—C19120.7 (2)
C4—C5—H5A110.9C17—C18—H18A119.7
C1—C5—H5A110.9C19—C18—H18A119.7
C4—C5—H5B110.9C20—C19—C18120.2 (3)
C1—C5—H5B110.9C20—C19—H19A119.9
H5A—C5—H5B108.9C18—C19—H19A119.9
O7—C6—N2123.49 (19)C19—C20—C21119.8 (3)
O7—C6—C8119.40 (16)C19—C20—H20B120.1
N2—C6—C8117.11 (17)C21—C20—H20B120.1
C13—C8—C9118.2 (2)C20—C21—C22120.0 (3)
C13—C8—C6120.9 (2)C20—C21—H21A120.0
C9—C8—C6120.86 (18)C22—C21—H21A120.0
C10—C9—C8121.6 (2)C21—C22—C17121.4 (3)
C10—C9—Cl119.1 (2)C21—C22—H22A119.3
C8—C9—Cl119.30 (17)C17—C22—H22A119.3
C17—C1—N2—C646.9 (2)Cl—C9—C10—C11179.2 (2)
C14—C1—N2—C677.8 (2)C9—C10—C11—C120.1 (4)
C5—C1—N2—C6165.53 (17)C10—C11—C12—C130.6 (4)
C17—C1—N2—C3132.51 (17)C9—C8—C13—C120.5 (3)
C14—C1—N2—C3102.75 (18)C6—C8—C13—C12176.4 (2)
C5—C1—N2—C313.9 (2)C11—C12—C13—C80.4 (4)
C6—N2—C3—C4169.88 (18)N2—C1—C14—O16142.9 (2)
C1—N2—C3—C410.7 (2)C17—C1—C14—O1691.7 (2)
N2—C3—C4—C531.5 (2)C5—C1—C14—O1631.7 (3)
C3—C4—C5—C140.9 (2)N2—C1—C14—N1537.7 (3)
N2—C1—C5—C433.44 (18)C17—C1—C14—N1587.7 (2)
C17—C1—C5—C4152.51 (16)C5—C1—C14—N15148.9 (2)
C14—C1—C5—C484.3 (2)N2—C1—C17—C18143.89 (19)
C3—N2—C6—O7173.63 (19)C14—C1—C17—C1818.8 (3)
C1—N2—C6—O77.0 (3)C5—C1—C17—C18103.7 (2)
C3—N2—C6—C86.6 (3)N2—C1—C17—C2239.1 (3)
C1—N2—C6—C8172.76 (16)C14—C1—C17—C22164.2 (2)
O7—C6—C8—C1396.3 (2)C5—C1—C17—C2273.3 (2)
N2—C6—C8—C1383.5 (2)C22—C17—C18—C190.5 (3)
O7—C6—C8—C979.5 (2)C1—C17—C18—C19176.6 (2)
N2—C6—C8—C9100.7 (2)C17—C18—C19—C200.8 (4)
C13—C8—C9—C101.2 (3)C18—C19—C20—C210.3 (4)
C6—C8—C9—C10177.2 (2)C19—C20—C21—C220.4 (5)
C13—C8—C9—Cl178.99 (17)C20—C21—C22—C170.7 (5)
C6—C8—C9—Cl3.0 (3)C18—C17—C22—C210.3 (4)
C8—C9—C10—C111.1 (4)C1—C17—C22—C21177.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N15—H15B···O70.862.102.851 (2)146
N15—H15A···O16i0.862.012.865 (2)175
Symmetry code: (i) x+2, y+1, z+2.
(III) 1-(2-furoyl)-2-phenylpyrrolidine-2-carboxamide top
Crystal data top
C16H16N2O3F(000) = 600
Mr = 284.31Dx = 1.307 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 22 reflections
a = 12.665 (3) Åθ = 17.7–23.2°
b = 12.214 (2) ŵ = 0.09 mm1
c = 9.3453 (19) ÅT = 293 K
β = 91.98 (3)°Prism, colourless
V = 1444.8 (5) Å30.26 × 0.16 × 0.14 mm
Z = 4
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.012
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.6°
Graphite monochromatorh = 015
ω/2θ scansk = 140
2652 measured reflectionsl = 1111
2533 independent reflections3 standard reflections every 60 min
2185 reflections with I > 2σ(I) intensity decay: variation +1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.4186P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2533 reflectionsΔρmax = 0.20 e Å3
191 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.081 (6)
Primary atom site location: structure-invariant direct methods
Crystal data top
C16H16N2O3V = 1444.8 (5) Å3
Mr = 284.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.665 (3) ŵ = 0.09 mm1
b = 12.214 (2) ÅT = 293 K
c = 9.3453 (19) Å0.26 × 0.16 × 0.14 mm
β = 91.98 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.012
2652 measured reflections3 standard reflections every 60 min
2533 independent reflections intensity decay: variation +1.0%
2185 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.01Δρmax = 0.20 e Å3
2533 reflectionsΔρmin = 0.19 e Å3
191 parameters
Special details top

Geometry. Mean-plane data from final SHELXL refinement run:-

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 9.9829(0.0081)x + 0.3869(0.0091)y + 5.9938(0.0065)z = 0.9670(0.0115)

* -0.0044 (0.0011) C16 * 0.0002 (0.0014) C17 * 0.0022 (0.0016) C18 * -0.0004 (0.0015) C19 * -0.0038 (0.0013) C20 * 0.0062 (0.0011) C21

Rms deviation of fitted atoms = 0.0036

6.6224(0.0112)x - 6.0077(0.0115)y + 6.3336(0.0080)z = 0.9889(0.0116)

Angle to previous plane (with approximate e.s.d.) = 89.99 (0.07)

* -0.0018 (0.0011) C8 * 0.0012 (0.0011) O9 * -0.0003 (0.0013) C10 * -0.0007 (0.0013) C11 * 0.0015 (0.0012) C12

Rms deviation of fitted atoms = 0.0012

5.2477(0.0099)x - 0.6201(0.0102)y + 8.3535(0.0056)z = 6.7555(0.0097)

Angle to previous plane (with approximate e.s.d.) = 29.04 (0.10)

* 0.1418 (0.0009) C1 * 0.0032 (0.0009) N2 * -0.1499 (0.0011) C3 * 0.2513 (0.0012) C4 * -0.2463 (0.0011) C5

Rms deviation of fitted atoms = 0.1824

- 9.9829(0.0081)x + 0.3869(0.0091)y + 5.9938(0.0065)z = 0.9670(0.0115)

Angle to previous plane (with approximate e.s.d.) = 76.69 (0.06)

* -0.0044 (0.0011) C16 * 0.0002 (0.0014) C17 * 0.0022 (0.0016) C18 * -0.0004 (0.0015) C19 * -0.0038 (0.0013) C20 * 0.0062 (0.0011) C21

Rms deviation of fitted atoms = 0.0036

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.35795 (10)0.92974 (11)0.66983 (14)0.0370 (3)
N20.28449 (9)0.83592 (9)0.69242 (12)0.0393 (3)
C30.32912 (13)0.73216 (12)0.63835 (19)0.0528 (4)
H3A0.29410.71030.54890.063*
H3B0.32270.67370.70770.063*
C40.44323 (13)0.76008 (13)0.6168 (2)0.0579 (5)
H4A0.47300.71420.54370.070*
H4B0.48500.75220.70510.070*
C50.43776 (12)0.87852 (13)0.56942 (16)0.0469 (4)
H5A0.41330.88430.47020.056*
H5B0.50630.91360.58060.056*
C60.18955 (11)0.84671 (11)0.75226 (15)0.0407 (3)
O70.16134 (8)0.93179 (8)0.81089 (11)0.0483 (3)
C80.11512 (12)0.75375 (12)0.75045 (16)0.0467 (4)
O90.12379 (11)0.66701 (11)0.65957 (15)0.0722 (4)
C100.03949 (17)0.60068 (17)0.6846 (3)0.0778 (6)
H10A0.02560.53510.63690.093*
C110.01849 (16)0.64090 (19)0.7833 (3)0.0774 (6)
H11A0.07980.61030.81810.093*
C120.02967 (14)0.74068 (17)0.8279 (2)0.0677 (5)
H12A0.00610.78800.89790.081*
C130.41766 (11)0.96223 (11)0.81232 (14)0.0400 (3)
N140.35976 (10)0.98565 (11)0.92272 (12)0.0461 (3)
H14A0.38971.00491.00280.055*
H14B0.29200.98170.91470.055*
O150.51443 (8)0.96638 (12)0.81726 (12)0.0629 (4)
C160.30340 (11)1.02866 (11)0.59953 (14)0.0392 (3)
C170.23334 (15)1.01476 (15)0.48449 (17)0.0613 (5)
H17A0.21340.94450.45610.074*
C180.19252 (18)1.10448 (19)0.4111 (2)0.0811 (6)
H18A0.14541.09400.33380.097*
C190.22095 (17)1.20915 (17)0.4512 (2)0.0752 (6)
H19A0.19341.26930.40160.090*
C200.28994 (15)1.22343 (14)0.5646 (2)0.0632 (5)
H20A0.31011.29380.59210.076*
C210.33032 (12)1.13408 (12)0.63933 (17)0.0484 (4)
H21A0.37641.14530.71760.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0385 (7)0.0333 (7)0.0393 (7)0.0012 (5)0.0003 (5)0.0004 (5)
N20.0412 (6)0.0305 (6)0.0461 (6)0.0016 (5)0.0001 (5)0.0024 (5)
C30.0564 (9)0.0337 (8)0.0683 (10)0.0034 (7)0.0030 (8)0.0083 (7)
C40.0532 (9)0.0448 (9)0.0761 (11)0.0104 (7)0.0060 (8)0.0100 (8)
C50.0463 (8)0.0472 (9)0.0476 (8)0.0014 (7)0.0049 (6)0.0055 (6)
C60.0409 (7)0.0382 (7)0.0425 (7)0.0006 (6)0.0049 (6)0.0031 (6)
O70.0438 (6)0.0414 (6)0.0598 (6)0.0023 (4)0.0042 (5)0.0046 (5)
C80.0457 (8)0.0428 (8)0.0510 (8)0.0058 (6)0.0079 (7)0.0024 (6)
O90.0738 (8)0.0615 (8)0.0810 (9)0.0211 (7)0.0014 (7)0.0176 (7)
C100.0730 (13)0.0552 (11)0.1033 (16)0.0256 (10)0.0251 (12)0.0007 (11)
C110.0582 (11)0.0750 (14)0.0984 (16)0.0272 (10)0.0058 (11)0.0167 (12)
C120.0527 (10)0.0725 (12)0.0783 (12)0.0119 (9)0.0088 (9)0.0042 (10)
C130.0426 (8)0.0343 (7)0.0428 (7)0.0010 (6)0.0041 (6)0.0010 (6)
N140.0463 (7)0.0509 (8)0.0407 (6)0.0036 (6)0.0043 (5)0.0051 (5)
O150.0413 (6)0.0906 (9)0.0564 (7)0.0028 (6)0.0056 (5)0.0134 (6)
C160.0411 (7)0.0372 (8)0.0395 (7)0.0007 (6)0.0028 (6)0.0029 (6)
C170.0772 (12)0.0539 (10)0.0514 (9)0.0010 (8)0.0178 (8)0.0005 (7)
C180.0972 (16)0.0805 (15)0.0634 (11)0.0144 (12)0.0279 (11)0.0126 (10)
C190.0894 (14)0.0636 (13)0.0724 (12)0.0182 (11)0.0002 (11)0.0282 (10)
C200.0715 (11)0.0400 (9)0.0785 (12)0.0008 (8)0.0086 (9)0.0151 (8)
C210.0513 (8)0.0378 (8)0.0561 (9)0.0030 (6)0.0004 (7)0.0043 (6)
Geometric parameters (Å, º) top
C1—N21.4956 (18)C10—H10A0.9300
C1—C161.5288 (19)C11—C121.419 (3)
C1—C51.5359 (19)C11—H11A0.9300
C1—C131.5599 (19)C12—H12A0.9300
N2—C61.3498 (19)C13—O151.2260 (18)
N2—C31.4834 (18)C13—N141.3175 (19)
C3—C41.505 (2)N14—H14A0.8600
C3—H3A0.9700N14—H14B0.8600
C3—H3B0.9700C16—C211.380 (2)
C4—C51.514 (2)C16—C171.381 (2)
C4—H4A0.9700C17—C181.384 (3)
C4—H4B0.9700C17—H17A0.9300
C5—H5A0.9700C18—C191.377 (3)
C5—H5B0.9700C18—H18A0.9300
C6—O71.2335 (18)C19—C201.361 (3)
C6—C81.475 (2)C19—H19A0.9300
C8—C121.332 (2)C20—C211.384 (2)
C8—O91.365 (2)C20—H20A0.9300
O9—C101.367 (2)C21—H21A0.9300
C10—C111.296 (3)
N2—C1—C16113.09 (11)C11—C10—O9111.23 (18)
N2—C1—C5101.53 (11)C11—C10—H10A124.4
C16—C1—C5110.89 (11)O9—C10—H10A124.4
N2—C1—C13111.10 (10)C10—C11—C12106.65 (18)
C16—C1—C13111.36 (11)C10—C11—H11A126.7
C5—C1—C13108.38 (11)C12—C11—H11A126.7
C6—N2—C3125.44 (12)C8—C12—C11106.99 (18)
C6—N2—C1123.44 (11)C8—C12—H12A126.5
C3—N2—C1111.12 (11)C11—C12—H12A126.5
N2—C3—C4103.35 (12)O15—C13—N14122.97 (13)
N2—C3—H3A111.1O15—C13—C1119.82 (13)
C4—C3—H3A111.1N14—C13—C1117.21 (12)
N2—C3—H3B111.1C13—N14—H14A120.0
C4—C3—H3B111.1C13—N14—H14B120.0
H3A—C3—H3B109.1H14A—N14—H14B120.0
C3—C4—C5102.78 (13)C21—C16—C17118.09 (14)
C3—C4—H4A111.2C21—C16—C1121.19 (13)
C5—C4—H4A111.2C17—C16—C1120.41 (13)
C3—C4—H4B111.2C16—C17—C18120.52 (17)
C5—C4—H4B111.2C16—C17—H17A119.7
H4A—C4—H4B109.1C18—C17—H17A119.7
C4—C5—C1103.60 (12)C19—C18—C17120.70 (18)
C4—C5—H5A111.0C19—C18—H18A119.7
C1—C5—H5A111.0C17—C18—H18A119.7
C4—C5—H5B111.0C20—C19—C18119.07 (17)
C1—C5—H5B111.0C20—C19—H19A120.5
H5A—C5—H5B109.0C18—C19—H19A120.5
O7—C6—N2122.82 (13)C19—C20—C21120.52 (17)
O7—C6—C8117.30 (13)C19—C20—H20A119.7
N2—C6—C8119.87 (13)C21—C20—H20A119.7
C12—C8—O9109.24 (15)C16—C21—C20121.08 (16)
C12—C8—C6128.08 (15)C16—C21—H21A119.5
O9—C8—C6122.64 (14)C20—C21—H21A119.5
C8—O9—C10105.89 (16)
C16—C1—N2—C648.28 (16)O9—C10—C11—C120.0 (3)
C5—C1—N2—C6167.13 (12)O9—C8—C12—C110.3 (2)
C13—C1—N2—C677.81 (15)C6—C8—C12—C11177.31 (16)
C16—C1—N2—C3130.68 (13)C10—C11—C12—C80.2 (2)
C5—C1—N2—C311.83 (14)N2—C1—C13—O15125.78 (14)
C13—C1—N2—C3103.23 (13)C16—C1—C13—O15107.19 (15)
C6—N2—C3—C4167.03 (14)C5—C1—C13—O1515.05 (18)
C1—N2—C3—C414.03 (17)N2—C1—C13—N1455.12 (16)
N2—C3—C4—C534.48 (17)C16—C1—C13—N1471.92 (16)
C3—C4—C5—C142.69 (16)C5—C1—C13—N14165.85 (12)
N2—C1—C5—C433.07 (14)N2—C1—C16—C21142.35 (13)
C16—C1—C5—C4153.48 (12)C5—C1—C16—C21104.37 (15)
C13—C1—C5—C484.00 (14)C13—C1—C16—C2116.40 (18)
C3—N2—C6—O7171.10 (14)N2—C1—C16—C1744.18 (18)
C1—N2—C6—O710.1 (2)C5—C1—C16—C1769.10 (18)
C3—N2—C6—C88.2 (2)C13—C1—C16—C17170.12 (13)
C1—N2—C6—C8170.57 (12)C21—C16—C17—C180.6 (3)
O7—C6—C8—C1214.8 (2)C1—C16—C17—C18173.06 (17)
N2—C6—C8—C12164.61 (16)C16—C17—C18—C190.0 (3)
O7—C6—C8—O9162.59 (14)C17—C18—C19—C200.1 (3)
N2—C6—C8—O918.0 (2)C18—C19—C20—C210.5 (3)
C12—C8—O9—C100.30 (19)C17—C16—C21—C201.2 (2)
C6—C8—O9—C10177.49 (15)C1—C16—C21—C20172.43 (14)
C8—O9—C10—C110.2 (2)C19—C20—C21—C161.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14A···O15i0.862.072.919 (2)169
N14—H14B···O70.861.992.768 (2)151
Symmetry code: (i) x+1, y+2, z+2.

Experimental details

(II)(III)
Crystal data
Chemical formulaC18H17ClN2O2C16H16N2O3
Mr328.79284.31
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)293293
a, b, c (Å)10.661 (2), 11.690 (2), 20.698 (4)12.665 (3), 12.214 (2), 9.3453 (19)
β (°) 138.60 (3) 91.98 (3)
V3)1706.1 (11)1444.8 (5)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.230.09
Crystal size (mm)0.20 × 0.13 × 0.100.26 × 0.16 × 0.14
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3296, 2948, 1928 2652, 2533, 2185
Rint0.0220.012
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.148, 0.95 0.037, 0.125, 1.01
No. of reflections29482533
No. of parameters208191
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.270.20, 0.19

Computer programs: CAD-4 Software (Enraf-Nonius, 1988), SETANG in CAD-4 Software, local program, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N15—H15B···O70.862.0992.851 (2)146
N15—H15A···O16i0.862.0072.865 (2)175
Symmetry code: (i) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N14—H14A···O15i0.862.0702.919 (2)169
N14—H14B···O70.861.9852.768 (2)151
Symmetry code: (i) x+1, y+2, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds