Download citation
Download citation
link to html
The crystal structure of the title compound, [Fe(C44H20F8N4)(CH3O)], has been determined. The Fe atom lies 0.485 (1) Å out of the plane of the four N atoms to which it is coordinated and from the inversion centre at the origin of the unit cell. The methoxy group is axially coordinated to the Fe atom with O-Fe-N angles of 106.3 (2) and 102.4 (2)°, a C-O-Fe angle of 128.3 (5)° and an Fe-O distance of 1.788 (5) Å. Di­fluoro­phenyl rings are tilted from the porphyrin (por) plane with torsion angles of -68.1 (6) and 77.7 (5)° across the two Cpor-­C-C-Car systems.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101003006/gg1037sup1.cif
Contains datablocks Fe(TDFPP)(OCH~3~), I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101003006/gg1037Isup2.hkl
Contains datablock I

CCDC reference: 164641

Comment top

The active site of heme-dependent enzymes is composed of an iron(III) ion coordinated in the equatorial plane to the four N atoms of protoporphyrin IX and two possible coordination sites of the metal ion in axial positions. The axial sites of electron-transfer enzymes are occupied by two amino acid residues while only one aminoacid is coordinated to the metal for peroxidase, catalase, and P-450 monooxygenase. The latter enzymes can have one labile position for coordination of substrates or oxidants (Andersson & Dawson, 1991). The most important difference among the various heme-dependent enzymes is the nature of their axial ligands. The coordinated atom in peroxidase, catalase and P-450 is the N of histidine (Chung & Van Wart, 1992), O- of tyrosine (Chung & Van Wart, 1992; Benecky et al., 1993), and S- of cysteine (Egawa et al., 1994), respectively. The specific chemical property of each enzyme may be due to its axial ligand. We have elucidated that the cysteinate ligand of P-450 plays an important role in the catalytic cycle of P-450. Also, we recently observed that the reactive oxygenating intermediates of iron(III) porphyrin complexes as model compounds of P-450 are altered by anionic axial ligands (Nam, Lim, Oh et al., 2000; Nam, Lim & Oh et al., 2000; Nam, Lim, Moon & Kim et al., 2000). During the study of the anionic acid ligand effect, we obtained the crystal of an iron(III) porphyrin complex with a methoxy ligand in the axial position. We now report the structure of an electron-deficient iron porphyrin complex, Fe(TDFPP)(OCH3) [TDFPP = meso-tetrakis(2,6-diflorophenyl)porphyrinato dianion], (I). \sch

In space group P21/n with Z = 2, the molecules lie on inversion centers as might be expected for some symmetrically substituted square-planar molecules. In the case of (I) the basic geometry of the molecule is square-pyramidal and the Fe atom lies 0.485 (1) Å out of the plane of the four N atoms to which it is coordinated and from the inversion center at the origin of the unit cell. The Fe atom (and the coordinated –OCH3 ligand) is thus disordered over two sites (50:50) by the inversion symmetry. There is additional conformational disorder in one of the substituted phenyl rings which is disordered over two sites with occupancies in ratio 0.69:0.31. Difluorophenyl rings are tilted from the porphyrinato plane with torsional angles of -68.1 (6) and 77.7 (5)° for C10—C1—C11—C12 and C7—C2—C21—C22, respectively. The Fe—N bond lengths of 2.051 (4) and 2.104 (4) Å are longer than those of low-spin complexes (average 1.986 Å). The –OCH3 group is axially coordinated to the Fe atom with angles of 106.3 (2) and 102.4 (2)° for O1—Fe1—N1 and O1—Fe1—N2, respectively. The Fe1—O1 distance is 1.788 (5) Å which is a little shorter than that of the methoxyiron(III)mesoporphyrin-IX complex (Fe—O 1.842 Å) (Hoard et al., 1965).

Related literature top

For related literature, see: Andersson & Dawson (1991); Benecky et al. (1993); Chung & Van Wart (1992); Egawa et al. (1994); Hoard et al. (1965); Nam, Lim & Oh (2000); Nam, Lim, Moon & Kim (2000); Nam, Lim, Oh, Lee, Woo, Kim & Shin (2000).

Experimental top

To a solution of Fe(TDFPP)Cl (4.0 mg, 0.0042 mmol) in CH2Cl2 (0.5 ml) was added sodium 2-methyl-2-propane thiolate (52 mg, 0.042 mmol) at room temperature. After the reaction mixture was stirred for 3 h and then filtered through a 0.45 filter, methanol (3 ml) was added to the filtered solution. The fitrate was allowed to stand at room temperature for two weeks and crystals of compound (I) were then obtained.

Refinement top

All H atoms except water molecule hydrogen atoms were inserted at calculated positions and treated as riding with isotropic displacement parameters.

Computing details top

Data collection: Kappa-CCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of the molecule showing the labelling scheme. Ellipsoids are drawn at the 30% probability level. All H atoms are omitted for clarity and only one component of disorder is shown. Atoms labelled with a hash are related by inversion symmetry.
(I) top
Crystal data top
[Fe(C44H20F8N4)(CH3O)]F(000) = 854
Mr = 843.3Dx = 1.542 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.4526 (4) ÅCell parameters from 11483 reflections
b = 12.6673 (5) Åθ = 3.0–25.0°
c = 12.6426 (5) ŵ = 0.50 mm1
β = 114.39 (3)°T = 150 K
V = 1816.31 (12) Å3Plate, dark brown
Z = 20.18 × 0.18 × 0.08 mm
Data collection top
Kappa-CCD
diffractometer
3198 independent reflections
Radiation source: fine-focus sealed tube2188 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.08
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 3.0°
ϕ scans ω scans with κ offsetsh = 1414
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
k = 1515
Tmin = 0.915, Tmax = 0.961l = 1513
11483 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.079H-atom parameters constrained
wR(F2) = 0.207 w = 1/[σ2(Fo2) + (0.0657P)2 + 4.6789P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3198 reflectionsΔρmax = 0.44 e Å3
251 parametersΔρmin = 0.48 e Å3
16 restraintsExtinction correction: SHELXL97 (Sheldrick, 1998), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (3)
Crystal data top
[Fe(C44H20F8N4)(CH3O)]V = 1816.31 (12) Å3
Mr = 843.3Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.4526 (4) ŵ = 0.50 mm1
b = 12.6673 (5) ÅT = 150 K
c = 12.6426 (5) Å0.18 × 0.18 × 0.08 mm
β = 114.39 (3)°
Data collection top
Kappa-CCD
diffractometer
3198 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
2188 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.961Rint = 0.08
11483 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07916 restraints
wR(F2) = 0.207H-atom parameters constrained
S = 1.07Δρmax = 0.44 e Å3
3198 reflectionsΔρmin = 0.48 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.01072 (12)0.01855 (11)0.03678 (11)0.0329 (4)0.50
N10.0667 (3)0.1312 (3)0.0954 (3)0.0353 (10)
N20.1636 (3)0.0414 (3)0.0154 (3)0.0347 (10)
C10.1154 (4)0.2070 (4)0.0976 (4)0.0363 (11)
C20.2776 (4)0.1028 (4)0.1423 (4)0.0367 (12)
C30.1940 (4)0.1285 (4)0.0321 (4)0.0351 (11)
C40.3189 (4)0.1278 (4)0.0023 (4)0.0383 (12)
H4A0.36160.17770.02600.046*
C50.3637 (4)0.0418 (4)0.0663 (4)0.0394 (12)
H5A0.44410.02080.10040.047*
C60.2669 (4)0.0115 (4)0.0776 (4)0.0345 (11)
C70.1840 (4)0.1588 (4)0.1486 (4)0.0374 (12)
C80.1959 (5)0.2571 (4)0.2114 (4)0.0412 (12)
H8A0.26710.29370.25500.049*
C90.0873 (5)0.2862 (4)0.1964 (4)0.0414 (12)
H9A0.06740.34820.22660.050*
C100.0064 (4)0.2077 (4)0.1267 (4)0.0369 (11)
F10.0696 (3)0.2351 (3)0.3330 (3)0.0594 (9)
F20.2682 (3)0.3636 (3)0.0456 (3)0.0692 (11)
C110.1632 (4)0.2964 (4)0.1427 (4)0.0404 (12)
C120.1373 (5)0.3101 (4)0.2590 (5)0.0452 (13)
C130.1764 (5)0.3938 (5)0.3030 (5)0.0544 (16)
H13A0.15500.40030.38410.065*
C140.2469 (6)0.4671 (5)0.2270 (6)0.0609 (17)
H14A0.27400.52580.25600.073*
C150.2802 (6)0.4579 (5)0.1079 (6)0.0640 (18)
H15A0.33030.50850.05510.077*
C160.2374 (5)0.3723 (4)0.0697 (5)0.0508 (14)
F30.3936 (5)0.0517 (4)0.3786 (5)0.0524 (16)*0.691 (10)
F40.4216 (4)0.2219 (4)0.0602 (3)0.0458 (15)*0.691 (10)
C210.4051 (4)0.1360 (4)0.2182 (5)0.040 (3)*0.691 (10)
C220.4550 (6)0.1090 (3)0.3352 (5)0.053 (5)*0.691 (10)
C230.5689 (6)0.1415 (4)0.4058 (3)0.049 (4)*0.691 (10)
H230.60310.12300.48570.059*0.691 (10)
C240.6328 (4)0.2012 (5)0.3594 (4)0.045 (2)*0.691 (10)
H240.71060.22340.40770.054*0.691 (10)
C250.5828 (4)0.2283 (4)0.2425 (4)0.0392 (19)*0.691 (10)
H250.62640.26900.21080.047*0.691 (10)
C260.4689 (4)0.1957 (4)0.1718 (3)0.0350 (17)*0.691 (10)
F3*0.4155 (10)0.0286 (7)0.3637 (10)0.043 (3)*0.309 (10)
F4*0.3854 (10)0.2759 (10)0.0730 (8)0.061 (4)*0.309 (10)
C21*0.3967 (7)0.1500 (8)0.2172 (9)0.032 (7)*0.309 (10)
C22*0.4597 (11)0.1094 (6)0.3279 (10)0.019 (6)*0.309 (10)
C23*0.5679 (11)0.1532 (9)0.3994 (7)0.044 (9)*0.309 (10)
H23*0.61100.12550.47500.053*0.309 (10)
C24*0.6129 (10)0.2375 (11)0.3602 (10)0.057 (6)*0.309 (10)
H24*0.68680.26750.40900.068*0.309 (10)
C25*0.5499 (11)0.2781 (10)0.2494 (10)0.069 (6)*0.309 (10)
H25*0.58070.33580.22260.083*0.309 (10)
C26*0.4418 (10)0.2344 (9)0.1780 (7)0.045 (5)*0.309 (10)
O10.0410 (5)0.0851 (4)0.1708 (4)0.0226 (12)0.50
C270.0773 (9)0.0412 (8)0.2826 (8)0.037 (2)0.50
H27A0.06680.09340.33480.055*0.50
H27B0.16060.02120.31210.055*0.50
H27C0.02970.02140.27880.055*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0303 (8)0.0368 (9)0.0290 (8)0.0065 (6)0.0097 (7)0.0035 (6)
N10.034 (2)0.038 (2)0.033 (2)0.0074 (18)0.0133 (19)0.0013 (18)
N20.034 (2)0.036 (2)0.031 (2)0.0045 (18)0.0101 (19)0.0038 (17)
C10.042 (3)0.037 (3)0.029 (3)0.003 (2)0.014 (2)0.001 (2)
C20.036 (3)0.042 (3)0.030 (3)0.009 (2)0.011 (2)0.001 (2)
C30.038 (3)0.037 (3)0.029 (3)0.001 (2)0.013 (2)0.001 (2)
C40.040 (3)0.037 (3)0.037 (3)0.000 (2)0.015 (2)0.001 (2)
C50.030 (3)0.045 (3)0.038 (3)0.000 (2)0.009 (2)0.004 (2)
C60.033 (3)0.041 (3)0.028 (2)0.002 (2)0.011 (2)0.004 (2)
C70.040 (3)0.042 (3)0.030 (3)0.010 (2)0.013 (2)0.003 (2)
C80.042 (3)0.047 (3)0.034 (3)0.012 (2)0.015 (2)0.010 (2)
C90.050 (3)0.040 (3)0.036 (3)0.008 (2)0.020 (3)0.012 (2)
C100.042 (3)0.040 (3)0.032 (3)0.006 (2)0.018 (2)0.006 (2)
F10.059 (2)0.079 (2)0.0378 (18)0.0013 (18)0.0179 (16)0.0048 (17)
F20.092 (3)0.062 (2)0.055 (2)0.016 (2)0.031 (2)0.0059 (17)
C110.038 (3)0.042 (3)0.042 (3)0.005 (2)0.017 (2)0.008 (2)
C120.038 (3)0.051 (3)0.050 (3)0.011 (3)0.022 (3)0.014 (3)
C130.049 (3)0.065 (4)0.056 (4)0.018 (3)0.028 (3)0.029 (3)
C140.058 (4)0.049 (4)0.085 (5)0.013 (3)0.039 (4)0.023 (4)
C150.068 (4)0.046 (4)0.084 (5)0.002 (3)0.037 (4)0.005 (3)
C160.057 (4)0.046 (3)0.055 (4)0.003 (3)0.028 (3)0.003 (3)
O10.027 (3)0.025 (3)0.012 (3)0.006 (2)0.005 (2)0.001 (2)
C270.051 (6)0.034 (5)0.024 (5)0.009 (5)0.014 (5)0.002 (4)
Geometric parameters (Å, º) top
Fe1—Fe1i0.976 (3)C7—C81.451 (7)
Fe1—O11.788 (5)C8—C91.337 (7)
Fe1—N22.051 (4)C9—C101.431 (7)
Fe1—N1i2.051 (4)F1—C121.356 (7)
Fe1—N12.104 (4)F2—C161.350 (7)
Fe1—N2i2.131 (4)C11—C121.381 (7)
N1—C71.378 (6)C11—C161.387 (8)
N1—C101.380 (6)C12—C131.376 (8)
N1—Fe1i2.051 (4)C13—C141.364 (9)
N2—C61.374 (6)C14—C151.391 (9)
N2—C31.382 (6)C15—C161.381 (8)
N2—Fe1i2.131 (4)F3—C221.327 (3)
C1—C31.401 (7)F4—C261.327 (3)
C1—C101.405 (7)C21—C221.3900
C1—C111.498 (7)C21—C261.3900
C2—C6i1.390 (7)C22—C231.3900
C2—C71.395 (7)C23—C241.3900
C2—C21*1.515 (9)C24—C251.3900
C2—C211.536 (6)C25—C261.3900
C3—C41.441 (7)F3*—C22*1.328 (3)
C4—C51.361 (7)F4*—C26*1.327 (3)
C5—C61.439 (7)O1—C271.409 (10)
C6—C2i1.390 (7)
Fe1i—Fe1—O1176.5 (3)C5—C4—C3106.6 (4)
Fe1i—Fe1—N281.1 (2)C4—C5—C6107.4 (4)
O1—Fe1—N2102.4 (2)N2—C6—C2i125.6 (4)
Fe1i—Fe1—N1i79.5 (2)N2—C6—C5109.8 (4)
O1—Fe1—N1i100.8 (2)C2i—C6—C5124.6 (4)
N2—Fe1—N1i89.02 (16)N1—C7—C2125.9 (4)
Fe1i—Fe1—N173.42 (19)N1—C7—C8109.4 (4)
O1—Fe1—N1106.3 (2)C2—C7—C8124.7 (4)
N2—Fe1—N186.86 (16)C9—C8—C7106.9 (4)
N1i—Fe1—N1152.88 (8)C8—C9—C10108.0 (5)
Fe1i—Fe1—N2i71.96 (19)N1—C10—C1125.2 (4)
O1—Fe1—N2i104.5 (2)N1—C10—C9109.7 (4)
N2—Fe1—N2i153.11 (8)C1—C10—C9125.1 (5)
N1i—Fe1—N2i86.14 (16)C12—C11—C16114.8 (5)
N1—Fe1—N2i85.53 (16)C12—C11—C1123.1 (5)
C7—N1—C10106.0 (4)C16—C11—C1122.1 (5)
C7—N1—Fe1i123.0 (3)F1—C12—C13118.9 (5)
C10—N1—Fe1i127.5 (3)F1—C12—C11116.9 (5)
C7—N1—Fe1127.3 (3)C13—C12—C11124.2 (6)
C10—N1—Fe1125.4 (3)C14—C13—C12118.1 (6)
Fe1i—N1—Fe127.12 (8)C13—C14—C15121.5 (6)
C6—N2—C3106.2 (4)C16—C15—C14117.4 (6)
C6—N2—Fe1123.8 (3)F2—C16—C15117.6 (6)
C3—N2—Fe1127.3 (3)F2—C16—C11118.5 (5)
C6—N2—Fe1i126.6 (3)C15—C16—C11123.9 (6)
C3—N2—Fe1i125.2 (3)C22—C21—C2119.4 (4)
Fe1—N2—Fe1i26.89 (8)C26—C21—C2120.6 (4)
C3—C1—C10125.1 (5)F3—C22—C23120.4 (5)
C3—C1—C11118.1 (4)F3—C22—C21119.6 (5)
C10—C1—C11116.8 (4)F4—C26—C25119.7 (4)
C6i—C2—C7125.3 (4)F4—C26—C21120.3 (4)
C6i—C2—C21*121.8 (5)C22*—C21*—C2118.9 (8)
C7—C2—C21*112.9 (5)C26*—C21*—C2121.0 (8)
C6i—C2—C21114.8 (4)F3*—C22*—C21*119.2 (10)
C7—C2—C21119.8 (4)F3*—C22*—C23*120.8 (10)
C21*—C2—C217.6 (4)F4*—C26*—C25*117.5 (10)
N2—C3—C1125.0 (4)F4*—C26*—C21*122.5 (10)
N2—C3—C4110.0 (4)C27—O1—Fe1128.3 (5)
C1—C3—C4125.0 (4)
Fe1i—Fe1—N1—C790.9 (4)C7—C8—C9—C100.9 (6)
O1—Fe1—N1—C785.5 (4)C7—N1—C10—C1175.8 (5)
N2—Fe1—N1—C7172.6 (4)Fe1i—N1—C10—C116.8 (7)
N1i—Fe1—N1—C790.9 (4)Fe1—N1—C10—C117.0 (7)
N2i—Fe1—N1—C718.4 (4)C7—N1—C10—C92.5 (5)
Fe1i—Fe1—N1—C10104.6 (4)Fe1i—N1—C10—C9161.5 (3)
O1—Fe1—N1—C1079.1 (4)Fe1—N1—C10—C9164.7 (3)
N2—Fe1—N1—C1022.9 (4)C3—C1—C10—N10.1 (8)
N1i—Fe1—N1—C10104.6 (4)C11—C1—C10—N1178.6 (4)
N2i—Fe1—N1—C10177.1 (4)C3—C1—C10—C9178.1 (5)
O1—Fe1—N1—Fe1i176.4 (3)C11—C1—C10—C90.6 (7)
N2—Fe1—N1—Fe1i81.69 (19)C8—C9—C10—N12.2 (6)
N2i—Fe1—N1—Fe1i72.50 (19)C8—C9—C10—C1176.1 (5)
Fe1i—Fe1—N2—C6105.4 (4)C3—C1—C11—C12110.7 (6)
O1—Fe1—N2—C674.8 (4)C10—C1—C11—C1268.1 (6)
N1i—Fe1—N2—C626.0 (4)C3—C1—C11—C1669.5 (7)
N1—Fe1—N2—C6179.1 (4)C10—C1—C11—C16111.8 (6)
N2i—Fe1—N2—C6105.4 (4)C16—C11—C12—F1177.0 (5)
Fe1i—Fe1—N2—C395.8 (4)C1—C11—C12—F13.1 (7)
O1—Fe1—N2—C383.9 (4)C16—C11—C12—C132.4 (8)
N1i—Fe1—N2—C3175.3 (4)C1—C11—C12—C13177.4 (5)
N1—Fe1—N2—C322.1 (4)F1—C12—C13—C14178.4 (5)
N2i—Fe1—N2—C395.8 (4)C11—C12—C13—C141.1 (8)
O1—Fe1—N2—Fe1i179.7 (3)C12—C13—C14—C150.8 (9)
N1i—Fe1—N2—Fe1i79.48 (19)C13—C14—C15—C161.0 (9)
N1—Fe1—N2—Fe1i73.70 (19)C14—C15—C16—F2179.2 (5)
C6—N2—C3—C1176.7 (5)C14—C15—C16—C110.5 (9)
Fe1—N2—C3—C115.0 (7)C12—C11—C16—F2179.2 (5)
Fe1i—N2—C3—C118.5 (7)C1—C11—C16—F21.0 (8)
C6—N2—C3—C42.1 (5)C12—C11—C16—C152.2 (8)
Fe1—N2—C3—C4163.8 (3)C1—C11—C16—C15177.7 (5)
Fe1i—N2—C3—C4162.7 (3)C6i—C2—C21—C2297.8 (4)
C10—C1—C3—N21.4 (8)C7—C2—C21—C2277.7 (5)
C11—C1—C3—N2179.9 (4)C6i—C2—C21—C2684.3 (5)
C10—C1—C3—C4180.0 (5)C7—C2—C21—C26100.1 (5)
C11—C1—C3—C41.3 (7)C21*—C2—C21—C2675 (4)
N2—C3—C4—C51.9 (5)C26—C21—C22—F3179.7 (3)
C1—C3—C4—C5176.9 (5)C2—C21—C22—F32.4 (4)
C3—C4—C5—C60.8 (5)C2—C21—C22—C23177.9 (4)
C3—N2—C6—C2i178.2 (4)F3—C22—C23—C24179.7 (3)
Fe1—N2—C6—C2i15.7 (7)C24—C25—C26—F4179.9 (3)
Fe1i—N2—C6—C2i17.2 (7)C22—C21—C26—F4179.9 (3)
C3—N2—C6—C51.6 (5)C2—C21—C26—F42.1 (4)
Fe1—N2—C6—C5164.1 (3)C2—C21—C26—C25177.8 (4)
Fe1i—N2—C6—C5163.0 (3)C6i—C2—C21*—C22*82.8 (7)
C4—C5—C6—N20.4 (6)C7—C2—C21*—C22*95.7 (6)
C4—C5—C6—C2i179.4 (5)C21—C2—C21*—C22*61 (4)
C10—N1—C7—C2179.0 (5)C6i—C2—C21*—C26*98.8 (7)
Fe1i—N1—C7—C218.9 (7)C7—C2—C21*—C26*82.6 (7)
Fe1—N1—C7—C214.0 (7)C26*—C21*—C22*—F3*179.7 (3)
C10—N1—C7—C81.9 (5)C2—C21*—C22*—F3*1.9 (7)
Fe1i—N1—C7—C8162.1 (3)C2—C21*—C22*—C23*178.4 (7)
Fe1—N1—C7—C8165.0 (3)F3*—C22*—C23*—C24*179.7 (3)
C6i—C2—C7—N12.4 (8)C24*—C25*—C26*—F4*179.8 (3)
C21*—C2—C7—N1176.1 (6)C22*—C21*—C26*—F4*179.8 (3)
C21—C2—C7—N1172.6 (4)C2—C21*—C26*—F4*1.9 (8)
C6i—C2—C7—C8176.5 (5)C2—C21*—C26*—C25*178.3 (8)
C21*—C2—C7—C85.0 (8)N2—Fe1—O1—C2799.4 (7)
C21—C2—C7—C88.5 (7)N1i—Fe1—O1—C278.0 (7)
N1—C7—C8—C90.6 (6)N1—Fe1—O1—C27170.3 (7)
C2—C7—C8—C9179.7 (5)N2i—Fe1—O1—C2780.7 (7)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Fe(C44H20F8N4)(CH3O)]
Mr843.3
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)12.4526 (4), 12.6673 (5), 12.6426 (5)
β (°) 114.39 (3)
V3)1816.31 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.18 × 0.18 × 0.08
Data collection
DiffractometerKappa-CCD
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.915, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
11483, 3198, 2188
Rint0.08
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.207, 1.07
No. of reflections3198
No. of parameters251
No. of restraints16
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.48

Computer programs: Kappa-CCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXTL (Sheldrick, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
Fe1—O11.788 (5)Fe1—N12.104 (4)
Fe1—N22.051 (4)Fe1—N2i2.131 (4)
Fe1—N1i2.051 (4)O1—C271.409 (10)
O1—Fe1—N2102.4 (2)O1—Fe1—N2i104.5 (2)
O1—Fe1—N1i100.8 (2)N2—Fe1—N2i153.11 (8)
N2—Fe1—N1i89.02 (16)N1i—Fe1—N2i86.14 (16)
O1—Fe1—N1106.3 (2)N1—Fe1—N2i85.53 (16)
N2—Fe1—N186.86 (16)C27—O1—Fe1128.3 (5)
N1i—Fe1—N1152.88 (8)
C10—C1—C11—C1268.1 (6)C7—C2—C21—C2277.7 (5)
Symmetry code: (i) x, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds