Download citation
Download citation
link to html
The structures of five complexes of fluorine-containing bidentate salicyl­idene­amine Schiff base ligands are reported. These are the bis-ligand copper(II) complexes of the Schiff bases derived from salicyl­aldehyde and 4-fluoro-, [Cu(C13H9FNO)2], 3-fluoro-4-methyl-, [Cu(C14H11FNO)2], 3,5-bis­(tri­fluoro­methyl)-, [Cu(C15H8F6NO)2], and 4-tri­fluoro­methoxy­anilines, [Cu(C14H9F3NO2)2], and the bis-ligand oxovanadium(IV) complex of the Schiff base derived from salicyl­aldehyde and 4-tri­fluoro­methoxy­aniline, [VO(C14H9­F3NO2)2]. Three of the copper complexes have square-planar coordination at the metal, imposed by the virtue of symmetry, but the immediate coordination environment of the copper in the 3,5-bis(tri­fluoro­methyl) complex is intermediate between square planar and tetrahedral. The coordination environment at the metal of the vanadium complex can be described as distorted square pyramidal.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100020059/gg1032sup1.cif
Contains datablocks I, II, III, IV, V, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100020059/gg1032Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100020059/gg1032IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100020059/gg1032IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100020059/gg1032IVsup5.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100020059/gg1032Vsup6.hkl
Contains datablock V

CCDC references: 162559; 162560; 162561; 162562; 162563

Comment top

Bidentate Schiff-base ligands of various types and their metal complexes have been extensively studied for many decades. Of the various classes of Schiff base which can be generated by condensation of different types of amines and carbonyl compounds, one of the most popular has been that of the salicylidene-amines, potential O,N-donors derived from (substituted) salicylaldehydes and primary amines. If the amine is aromatic, then a great variety of ligands can be prepared from the great range of substituted anilines which are available. We are interested in the synthesis of fluoro-substituted ligands and metal complexes, in particular in relation to the consequences of fluorine-for-hydrogen replacement on solvation and on reactivity. Here we combine our specific interest in fluoro-derivatized complexes with our general interest in Schiff-base complexes, reporting the preparations and structures of bis-ligand copper(II) complexes of the Schiff bases derived from salicylaldehyde and 4-fluoro-, (I), 3-fluoro-4-methyl-, (II), 3,5-bis-(trifluoromethyl)-, (III), and 4-trifluoromethoxy-anilines, (IV), and the bis-ligand oxovanadium(IV) complex of the Schiff base derived from salicylaldehyde and 4-trifluoromethoxyaniline, (V). \sch

For the copper complexes (I), (II) and (IV), the copper atom and the four ligand donor atoms are coplanar as expected. However, the 3,5-CF3 substituted complex (III) has a distorted coordination at the Cu atom, intermediate between square-planar and tetrahedral, with an interplanar angle (Cu1—O1—N1 to Cu1—O1'-N1') of 37.8 (1)°. Such distortion may be compared with that engendered by the attachment of relatively bulky groups to the nitrogen donor atoms. This distortion has been of considerable interest to kineticists (Voss et al., 1979). It has been tracked through X-ray diffraction structure determination of e.g. the N-tert-butyl derivative where the angle between the mean planes of the chelate rings is 61.9° (Cheeseman et al., 1966a) and through electronic spectroscopy (Cheeseman et al., 1966b; Voss et al., 1974). For all the Cu complexes the substituted amine ring of each ligand is rotated about the N1—C8 bond from the salicylaldehyde plane. The interplanar angle between these rings are in the range 31.7 (2)° in (II) to 64.3 (1)° in (III). There is no apparent correlation between these angles and the bulk of the respective substituents on the amine-derived moieties of the Schiff-base ligands.

Complexes (II), (III) and (IV) all exhibit disorder at the F atom sites. The F atom of complex (II) was found to be disordered (50:50) between the sites resulting from the possible rotation configurations at the C—N bond. For both complexes (III) and (IV), the F atoms of the CF3 groups were found to be disordered (50:50) between the two sites staggered by rotation about respectively the C—C or the C—O bond. In both cases, the disordered F atoms have high displacement parameters consistent with further unresolved disorder.

Metal-ligand donor atom bond distances for the copper(II) complexes are summarized in Table 1, which also includes the results of an early structure determination of the parent unsubstituted complex (Baker et al., 1966). Complex (I) has two unique molecules in the triclinic unit cell, for both the molecules the Cu atom is located on a centre of symmetry. The Cu—O bond distances in three of our complexes are the same within experimental uncertainty, but is significantly less in the 3,5-bis(trifluoromethyl) complex. The same can be said of the Cu—N distances. These bond shortenings presumably reflect a small but significant increase in overall bond strength caused by the strongly electron-withdrawing –CF3 groups. Metal-ligand bond distances in the four substituted complexes appear to be marginally shorter (Cu—O) or marginally longer (Cu—N) than in the unsubstituted complex, though the low precision of the structure of the latter makes comparisons risky.

The Cu—O distances in the salicylideneaniline complexes are similar to those in other O-donor complexes of copper(II). However they are slightly but significantly shorter than those to coordinated oxalate in, for example, the [Cu(ox)2]2- anion [Cu—O = 1.933 (5), 1.939 (5) Å; Bloomquist et al., 1981] or in the uncharged ternary complexes [Cu(bipy)(ox)] [Cu—O = 1.984 (4), 1.992 (3) Å; Fitzgerald et al., 1982] or [Cu(N,N-dimethylethane-1,2-diamine-N-oxide)(ox)(H2O)] [Cu—Oox = 1.960 (4), 1.965 (5) Å; Pajunen & Nasakkala, 1980], or to the closest water molecules in Cu2+(aq) in various crystal hydrates and in aqueous solution (Cu—O = 1.93 to 2.00 Å; Mani & Rasasershan, 1961; Richens, 1997; Burgess, 1999). Cu—N distances are probably marginally shorter than in various ternary copper ammines containing also coordinated halide or water (Cu—N = 2.03 to 2.05 Å; Colquhoun et al., 1981; Hathaway & Billing, 1970).

The coordination environment at the metal of the vanadium complex (V) could be described as distorted square pyramidal or distorted trigonal bipyramid. In the square pyramidal case, the atoms O1, O1A, N1 and N1A form a plane (maximum deviation 0.186 Å, O1A) with the V atom 0.59 Å above this plane and the terminal O3 atom axial. In the trigonal bipyramid the equatorial plane atoms are V1, O1, O1A and O3 (maximum deviation 0.0235 Å, V1) with N1 and N1A approximately axial (N1—V1—N1A 157.4°). The V—O and V—N distances in the vanadyl complex are V—Oax = 1.589 (2), V—Oeq = 1.891 (2), 1.904 (2), and V—N = 2.111 (2), 2.121 (3) Å. These V—O distances may be compared with those in the penta- and hexa-hydrates of vanadyl sulfate, V—Oax = 1.586 (2) and 1.591 (5) Å and V—Oeq = 2.004 (4) to 2.048 (5) Å (Ballhausen et al., 1968; Tachez & Théobald, 1980).

Intra-ligand bond distances for the chelate rings of the copper and oxovanadium complexes of the 4-OCF3-substituted ligand are compared with their equivalents in the free ligand in Table 2. This shows that the C—O bond contracts significantly on complexation, consistent with a slight increase in double-bond character. However there is no significant shortening of the extra-cyclic C—C bond, as is sometimes observed on chelation (it is already considerably closer to C—C in an aromatic ring than to an aliphatic C—C single bond). On the other hand, the C—N bond joining the aniline-derived nitrogen to its phenyl ring lengthens by a small but significant extent on complexation.

Related literature top

For related literature, see: Baker et al. (1966); Ballhausen et al. (1968); Bloomquist et al. (1981); Burgess (1999); Cheeseman et al. (1966a, 1966b); Colquhoun et al. (1981); Fitzgerald et al. (1982); Hathaway & Billing (1970); Pajunen & Nasakkala (1980); Richens (1997); Tachez & Théobald (1980); Voss et al. (1974, 1979).

Experimental top

For the copper complexes, a solution of copper acetate (1 mmol) in a 50% ethanol-water mixture (10 cm3) was added to a hot solution of salicylaldehyde (1 mmol) and the appropriate aniline (1 mmol) in ethanol (20 cm3). Precipitation occurred immediately. Reaction mixtures were cooled, filtered and washed with ethanol and recrystallized from CHCl3. The procedure for the vanadium complex was identical except for starting with vanadyl sulfate (1 mmol).

Computing details top

For all compounds, data collection: XSCANS (Fait, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular structure of one of the unique molecules of (I) showing the atom-numbering scheme and 30% displacement ellipsoids. H atoms are drawn as spheres of arbitary radius. [Symmetry code: (i) -x, -y, -z.]
[Figure 2] Fig. 2. Molecular structure of (II) showing the atom-numbering scheme and 30% displacement ellipsoids. Open bonds indicate disordered F atom sites. [Symmetry code: (i) -x, -y, -z.].
[Figure 3] Fig. 3. Molecular structure of (III) showing the atom-numbering scheme and 30% displacement ellipsoids. Open bonds indicate disordered F atom sites. [Symmetry code: (i) -x, y, 1/2 - z].
[Figure 4] Fig. 4. Molecular structure of (IV) showing the atom-numbering scheme and 30% displacement ellipsoids. Open bonds indicate disordered F atom sites. [Symmetry code: (i) -x, 1 - y, -z].
[Figure 5] Fig. 5. Molecular structure of (V) showing the atom-numbering scheme and 30% displacement ellipsoids.
(I) top
Crystal data top
[Cu(C13H9FNO)2]Z = 2
Mr = 491.96F(000) = 502
Triclinic, P1Dx = 1.542 Mg m3
a = 9.995 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.462 (2) ÅCell parameters from 38 reflections
c = 10.569 (2) Åθ = 5.3–13.0°
α = 95.13 (2)°µ = 1.08 mm1
β = 92.48 (2)°T = 190 K
γ = 105.23 (2)°Block, red
V = 1059.5 (4) Å30.48 × 0.24 × 0.23 mm
Data collection top
Bruker P4
diffractometer
2994 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.0°, θmin = 2.5°
ω scansh = 111
Absorption correction: analytical
(XPREP; SHELXL97)
k = 1211
Tmin = 0.766, Tmax = 0.810l = 1212
4119 measured reflections3 standard reflections every 100 reflections
3722 independent reflections intensity decay: <1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0489P)2 + 1.4057P]
where P = (Fo2 + 2Fc2)/3
3722 reflections(Δ/σ)max = 0.005
301 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cu(C13H9FNO)2]γ = 105.23 (2)°
Mr = 491.96V = 1059.5 (4) Å3
Triclinic, P1Z = 2
a = 9.995 (2) ÅMo Kα radiation
b = 10.462 (2) ŵ = 1.08 mm1
c = 10.569 (2) ÅT = 190 K
α = 95.13 (2)°0.48 × 0.24 × 0.23 mm
β = 92.48 (2)°
Data collection top
Bruker P4
diffractometer
2994 reflections with I > 2σ(I)
Absorption correction: analytical
(XPREP; SHELXL97)
Rint = 0.027
Tmin = 0.766, Tmax = 0.8103 standard reflections every 100 reflections
4119 measured reflections intensity decay: <1%
3722 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.10Δρmax = 0.43 e Å3
3722 reflectionsΔρmin = 0.32 e Å3
301 parameters
Special details top

Experimental. Two unique molecules were found in the triclinic unit cell. For both molecules the Cu atom is located on a centre of symmetry.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.00000.00000.03180 (18)
F10.5403 (2)0.3450 (2)0.4132 (2)0.0608 (7)
O10.1121 (3)0.1765 (2)0.0208 (2)0.0401 (6)
N10.0790 (3)0.0260 (3)0.1708 (3)0.0322 (6)
C10.1585 (4)0.3167 (4)0.2835 (4)0.0434 (9)
H1A0.11970.30060.36690.052*
C20.2672 (4)0.4260 (4)0.2502 (4)0.0501 (10)
H2A0.30260.48330.31040.060*
C30.3246 (4)0.4512 (4)0.1257 (4)0.0480 (10)
H3A0.39880.52580.10260.058*
C40.2725 (4)0.3664 (4)0.0350 (4)0.0430 (9)
H4A0.31200.38490.04810.052*
C50.1606 (4)0.2529 (3)0.0677 (3)0.0342 (8)
C60.1034 (3)0.2277 (3)0.1951 (3)0.0324 (7)
C70.0166 (4)0.1195 (4)0.2368 (3)0.0347 (8)
H7A0.05320.11650.31980.042*
C80.1982 (4)0.0714 (3)0.2344 (3)0.0329 (8)
C90.3243 (4)0.0975 (4)0.1780 (4)0.0414 (9)
H9A0.33080.05300.09930.050*
C100.4403 (4)0.1893 (4)0.2384 (4)0.0461 (10)
H10A0.52530.20650.20190.055*
C110.4264 (4)0.2541 (4)0.3529 (4)0.0441 (9)
C120.3046 (4)0.2317 (4)0.4109 (3)0.0418 (9)
H12A0.29920.27760.48920.050*
C130.1888 (4)0.1391 (4)0.3508 (3)0.0375 (8)
H13A0.10460.12230.38880.045*
Cu1A0.00000.50000.50000.03200 (18)
F1A0.4334 (3)0.7889 (3)0.0701 (2)0.0647 (7)
O1A0.1101 (3)0.3268 (2)0.5174 (2)0.0442 (7)
N1A0.0465 (3)0.4422 (3)0.3255 (3)0.0317 (6)
C1A0.1974 (4)0.1181 (4)0.2119 (4)0.0384 (8)
H1AA0.17260.11730.12810.046*
C2A0.2975 (4)0.0130 (4)0.2464 (4)0.0437 (9)
H2AA0.34110.05820.18670.052*
C3A0.3334 (4)0.0139 (4)0.3719 (4)0.0458 (9)
H3AA0.40110.05760.39590.055*
C4A0.2703 (4)0.1190 (4)0.4617 (4)0.0432 (9)
H4AA0.29570.11670.54530.052*
C5A0.1685 (4)0.2292 (3)0.4290 (3)0.0346 (8)
C6A0.1304 (3)0.2285 (3)0.3013 (3)0.0318 (7)
C7A0.0223 (3)0.3314 (3)0.2597 (3)0.0326 (8)
H7AA0.00160.31800.17650.039*
C8A0.1475 (3)0.5310 (3)0.2590 (3)0.0321 (7)
C9A0.2861 (4)0.5714 (4)0.3047 (4)0.0412 (9)
H9AA0.31400.54040.37840.049*
C10A0.3830 (4)0.6577 (4)0.2407 (4)0.0466 (10)
H10B0.47620.68410.27000.056*
C11A0.3388 (4)0.7032 (4)0.1336 (4)0.0439 (9)
C12A0.2026 (4)0.6665 (4)0.0866 (3)0.0417 (9)
H12B0.17560.69950.01370.050*
C13A0.1063 (4)0.5790 (3)0.1502 (3)0.0355 (8)
H13B0.01350.55240.11950.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0380 (4)0.0290 (3)0.0256 (3)0.0054 (3)0.0018 (2)0.0007 (2)
F10.0491 (14)0.0592 (15)0.0560 (15)0.0145 (12)0.0131 (11)0.0064 (12)
O10.0530 (16)0.0311 (13)0.0295 (12)0.0020 (11)0.0038 (11)0.0005 (10)
N10.0337 (16)0.0311 (15)0.0290 (14)0.0042 (12)0.0014 (12)0.0028 (12)
C10.042 (2)0.047 (2)0.041 (2)0.0081 (18)0.0062 (17)0.0122 (17)
C20.048 (2)0.046 (2)0.054 (2)0.0047 (19)0.016 (2)0.0165 (19)
C30.040 (2)0.037 (2)0.060 (3)0.0007 (17)0.0105 (19)0.0012 (18)
C40.043 (2)0.036 (2)0.045 (2)0.0047 (17)0.0028 (17)0.0023 (16)
C50.0346 (19)0.0292 (18)0.0384 (19)0.0098 (15)0.0029 (15)0.0020 (15)
C60.0331 (18)0.0311 (18)0.0336 (18)0.0087 (15)0.0038 (14)0.0047 (14)
C70.0337 (19)0.040 (2)0.0290 (17)0.0100 (16)0.0023 (14)0.0011 (15)
C80.0320 (18)0.0357 (19)0.0301 (17)0.0079 (15)0.0053 (14)0.0055 (14)
C90.039 (2)0.046 (2)0.038 (2)0.0099 (17)0.0022 (16)0.0037 (17)
C100.033 (2)0.055 (2)0.047 (2)0.0064 (19)0.0003 (17)0.0127 (19)
C110.041 (2)0.042 (2)0.043 (2)0.0002 (17)0.0120 (17)0.0118 (17)
C120.048 (2)0.040 (2)0.0324 (18)0.0028 (17)0.0008 (16)0.0044 (16)
C130.036 (2)0.042 (2)0.0323 (18)0.0061 (16)0.0011 (15)0.0064 (15)
Cu1A0.0387 (4)0.0285 (3)0.0234 (3)0.0026 (3)0.0059 (2)0.0027 (2)
F1A0.0565 (15)0.0587 (16)0.0606 (15)0.0166 (12)0.0116 (12)0.0020 (12)
O1A0.0601 (17)0.0340 (14)0.0280 (13)0.0028 (12)0.0037 (12)0.0038 (11)
N1A0.0342 (16)0.0299 (15)0.0277 (14)0.0053 (12)0.0037 (12)0.0025 (12)
C1A0.037 (2)0.036 (2)0.038 (2)0.0082 (16)0.0038 (16)0.0085 (15)
C2A0.042 (2)0.032 (2)0.049 (2)0.0042 (17)0.0113 (17)0.0127 (17)
C3A0.043 (2)0.0301 (19)0.057 (3)0.0003 (16)0.0053 (19)0.0034 (17)
C4A0.046 (2)0.040 (2)0.039 (2)0.0033 (17)0.0027 (17)0.0066 (16)
C5A0.039 (2)0.0281 (18)0.0339 (18)0.0063 (15)0.0090 (15)0.0005 (14)
C6A0.0312 (18)0.0279 (17)0.0335 (18)0.0066 (14)0.0055 (14)0.0039 (14)
C7A0.0316 (18)0.0364 (19)0.0274 (17)0.0088 (15)0.0053 (14)0.0060 (14)
C8A0.0323 (18)0.0291 (17)0.0301 (17)0.0032 (14)0.0007 (14)0.0063 (14)
C9A0.038 (2)0.042 (2)0.038 (2)0.0052 (17)0.0093 (16)0.0036 (16)
C10A0.031 (2)0.048 (2)0.051 (2)0.0015 (17)0.0050 (17)0.0093 (18)
C11A0.045 (2)0.034 (2)0.042 (2)0.0040 (17)0.0081 (17)0.0039 (16)
C12A0.051 (2)0.037 (2)0.0329 (19)0.0056 (17)0.0001 (17)0.0003 (15)
C13A0.0357 (19)0.0350 (19)0.0296 (17)0.0032 (15)0.0043 (15)0.0069 (14)
Geometric parameters (Å, º) top
Cu1—O11.880 (2)Cu1A—O1A1.886 (3)
Cu1—N12.009 (3)Cu1A—N1A2.002 (3)
F1—C111.367 (4)F1A—C11A1.366 (4)
O1—C51.311 (4)O1A—C5A1.314 (4)
N1—C71.292 (4)N1A—C7A1.302 (4)
N1—C81.442 (4)N1A—C8A1.435 (4)
C1—C21.362 (5)C1A—C2A1.367 (5)
C1—C61.406 (5)C1A—C6A1.421 (5)
C2—C31.387 (6)C2A—C3A1.388 (6)
C3—C41.388 (6)C3A—C4A1.380 (5)
C4—C51.405 (5)C4A—C5A1.403 (5)
C5—C61.414 (5)C5A—C6A1.419 (5)
C6—C71.437 (5)C6A—C7A1.426 (5)
C8—C131.383 (5)C8A—C13A1.385 (5)
C8—C91.390 (5)C8A—C9A1.389 (5)
C9—C101.384 (5)C9A—C10A1.384 (5)
C10—C111.364 (6)C10A—C11A1.366 (6)
C11—C121.361 (5)C11A—C12A1.371 (5)
C12—C131.385 (5)C12A—C13A1.385 (5)
O1—Cu1—N191.35 (11)O1A—Cu1A—N1Aii88.64 (11)
O1i—Cu1—N188.65 (11)O1A—Cu1A—N1A91.36 (11)
C5—O1—Cu1128.2 (2)N1Aii—Cu1A—N1A180.0
C7—N1—C8116.2 (3)C5A—O1A—Cu1A129.4 (2)
C7—N1—Cu1122.4 (2)C7A—N1A—C8A115.8 (3)
C8—N1—Cu1120.9 (2)C7A—N1A—Cu1A123.1 (2)
C2—C1—C6121.6 (4)C8A—N1A—Cu1A120.5 (2)
C1—C2—C3119.4 (4)C2A—C1A—C6A121.4 (3)
C2—C3—C4120.8 (4)C1A—C2A—C3A119.1 (3)
C3—C4—C5120.6 (4)C4A—C3A—C2A121.2 (4)
O1—C5—C4119.0 (3)C3A—C4A—C5A121.1 (4)
O1—C5—C6122.8 (3)O1A—C5A—C4A119.3 (3)
C4—C5—C6118.2 (3)O1A—C5A—C6A122.6 (3)
C1—C6—C5119.4 (3)C4A—C5A—C6A118.1 (3)
C1—C6—C7117.8 (3)C5A—C6A—C1A119.1 (3)
C5—C6—C7122.7 (3)C5A—C6A—C7A122.6 (3)
N1—C7—C6126.7 (3)C1A—C6A—C7A118.2 (3)
C13—C8—C9119.6 (3)N1A—C7A—C6A127.2 (3)
C13—C8—N1120.9 (3)C13A—C8A—C9A119.6 (3)
C9—C8—N1119.6 (3)C13A—C8A—N1A120.0 (3)
C10—C9—C8120.4 (4)C9A—C8A—N1A120.4 (3)
C11—C10—C9118.2 (4)C10A—C9A—C8A120.2 (4)
C12—C11—C10123.2 (4)C11A—C10A—C9A118.6 (4)
C12—C11—F1118.2 (4)F1A—C11A—C10A119.1 (4)
C10—C11—F1118.6 (4)F1A—C11A—C12A118.2 (4)
C11—C12—C13118.6 (4)C10A—C11A—C12A122.7 (4)
C8—C13—C12120.1 (3)C11A—C12A—C13A118.4 (4)
O1A—Cu1A—O1Aii180.0C8A—C13A—C12A120.4 (3)
Symmetry codes: (i) x, y, z; (ii) x, y+1, z+1.
(II) top
Crystal data top
[Cu(C14H11FNO)2]F(000) = 1068
Mr = 520.02Dx = 1.486 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 44 reflections
a = 10.752 (1) Åθ = 4.7–12.4°
b = 7.893 (1) ŵ = 0.99 mm1
c = 27.391 (3) ÅT = 150 K
V = 2324.6 (4) Å3Block, red-brown
Z = 40.58 × 0.43 × 0.34 mm
Data collection top
Bruker P4
diffractometer
1452 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 25.0°, θmin = 3.0°
ω scansh = 112
Absorption correction: analytical
(XPREP; SHELXL97)
k = 19
Tmin = 0.656, Tmax = 0.777l = 321
2677 measured reflections3 standard reflections every 100 reflections
2026 independent reflections intensity decay: <1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0598P)2 + 4.1273P]
where P = (Fo2 + 2Fc2)/3
2026 reflections(Δ/σ)max = 0.008
169 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Cu(C14H11FNO)2]V = 2324.6 (4) Å3
Mr = 520.02Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 10.752 (1) ŵ = 0.99 mm1
b = 7.893 (1) ÅT = 150 K
c = 27.391 (3) Å0.58 × 0.43 × 0.34 mm
Data collection top
Bruker P4
diffractometer
1452 reflections with I > 2σ(I)
Absorption correction: analytical
(XPREP; SHELXL97)
Rint = 0.035
Tmin = 0.656, Tmax = 0.7773 standard reflections every 100 reflections
2677 measured reflections intensity decay: <1%
2026 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.01Δρmax = 0.61 e Å3
2026 reflectionsΔρmin = 0.50 e Å3
169 parameters
Special details top

Experimental. The F atom was found to be disordered (50:50) between the 3- and 5- sites resulting from the possible rotation configurations of the ring at the C—N bond.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.00000.00000.00000.0204 (2)
O10.0376 (2)0.1657 (3)0.04724 (8)0.0269 (6)
N10.0710 (2)0.1776 (4)0.04505 (9)0.0210 (6)
C10.1806 (3)0.5187 (4)0.03389 (12)0.0234 (7)
H1A0.22820.57190.01000.028*
C20.1807 (3)0.5831 (5)0.08040 (12)0.0263 (8)
H2A0.22880.67710.08830.032*
C30.1069 (3)0.5045 (5)0.11568 (12)0.0258 (8)
H3A0.10650.54650.14740.031*
C40.0347 (3)0.3663 (5)0.10444 (12)0.0247 (8)
H4A0.01430.31720.12860.030*
C50.0338 (3)0.2973 (4)0.05667 (12)0.0216 (7)
C60.1109 (3)0.3751 (4)0.02129 (11)0.0206 (7)
C70.1146 (3)0.3194 (4)0.02853 (11)0.0209 (7)
H7A0.15160.39180.05100.025*
C80.0860 (3)0.1486 (4)0.09677 (11)0.0230 (7)
C90.1957 (4)0.1862 (5)0.12066 (12)0.0305 (8)
H9A0.26340.22900.10350.037*
C100.2033 (4)0.1595 (6)0.17005 (13)0.0425 (11)
H100.28020.18520.18630.051*0.50
F10.3055 (5)0.1893 (9)0.19426 (18)0.0716 (18)0.50
C110.1064 (4)0.0959 (6)0.19763 (13)0.0397 (10)
C120.0013 (4)0.0587 (6)0.17221 (14)0.0371 (10)
H120.07130.01530.19000.044*0.50
F1'0.0930 (4)0.0047 (6)0.19738 (14)0.0378 (11)0.50
C130.0135 (3)0.0828 (5)0.12257 (12)0.0275 (8)
H13A0.08730.05530.10670.033*
C140.1177 (5)0.0645 (7)0.25228 (14)0.0585 (14)
H14D0.19890.09790.26320.088*
H14A0.10540.05380.25890.088*
H14B0.05580.12950.26920.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0207 (3)0.0248 (3)0.0158 (3)0.0025 (2)0.0029 (2)0.0002 (2)
O10.0279 (13)0.0312 (14)0.0217 (12)0.0054 (11)0.0055 (11)0.0034 (11)
N10.0197 (14)0.0293 (16)0.0139 (13)0.0044 (13)0.0003 (11)0.0014 (12)
C10.0165 (16)0.0264 (18)0.0274 (17)0.0008 (15)0.0014 (13)0.0022 (14)
C20.0218 (17)0.0280 (19)0.0290 (18)0.0004 (16)0.0025 (15)0.0030 (15)
C30.0261 (18)0.0315 (19)0.0199 (16)0.0054 (16)0.0033 (14)0.0039 (15)
C40.0237 (17)0.0307 (19)0.0198 (17)0.0038 (15)0.0012 (15)0.0026 (15)
C50.0194 (16)0.0235 (18)0.0221 (17)0.0026 (14)0.0009 (14)0.0004 (14)
C60.0183 (17)0.0244 (17)0.0192 (16)0.0032 (14)0.0007 (13)0.0024 (14)
C70.0184 (17)0.0246 (18)0.0197 (16)0.0012 (14)0.0010 (13)0.0058 (14)
C80.0259 (17)0.0259 (18)0.0172 (16)0.0017 (15)0.0017 (14)0.0025 (14)
C90.0289 (19)0.040 (2)0.0227 (18)0.0019 (18)0.0034 (15)0.0014 (16)
C100.040 (2)0.062 (3)0.025 (2)0.005 (2)0.0124 (18)0.004 (2)
F10.059 (3)0.114 (5)0.042 (3)0.017 (4)0.019 (3)0.007 (3)
C110.051 (3)0.050 (3)0.0182 (17)0.007 (2)0.0030 (18)0.0006 (18)
C120.043 (2)0.043 (2)0.0249 (19)0.006 (2)0.0049 (18)0.0037 (17)
F1'0.034 (2)0.060 (3)0.0197 (19)0.008 (2)0.0132 (18)0.013 (2)
C130.031 (2)0.031 (2)0.0205 (17)0.0008 (17)0.0004 (15)0.0015 (15)
C140.068 (3)0.087 (4)0.0207 (19)0.003 (3)0.002 (2)0.003 (2)
Geometric parameters (Å, º) top
Cu1—O11.884 (2)C5—C61.415 (5)
Cu1—O1i1.884 (2)C6—C71.434 (4)
Cu1—N12.017 (3)C8—C131.384 (5)
Cu1—N1i2.017 (3)C8—C91.381 (5)
O1—C51.317 (4)C9—C101.372 (5)
N1—C71.295 (4)C10—F11.305 (6)
N1—C81.444 (4)C10—C111.381 (6)
C1—C21.372 (5)C11—C121.383 (6)
C1—C61.402 (5)C11—C141.522 (5)
C2—C31.396 (5)C12—F1'1.303 (6)
C3—C41.373 (5)C12—C131.379 (5)
C4—C51.417 (4)
O1—Cu1—O1i180.0 (2)C1—C6—C7117.8 (3)
O1—Cu1—N191.09 (10)C5—C6—C7122.3 (3)
O1i—Cu1—N188.91 (10)N1—C7—C6126.0 (3)
O1—Cu1—N1i88.91 (10)C13—C8—C9119.9 (3)
O1i—Cu1—N1i91.09 (10)C13—C8—N1118.3 (3)
N1—Cu1—N1i180.00 (11)C9—C8—N1121.8 (3)
C5—O1—Cu1123.8 (2)C10—C9—C8119.0 (4)
C7—N1—C8116.1 (3)F1—C10—C9121.6 (5)
C7—N1—Cu1121.6 (2)F1—C10—C11115.0 (4)
C8—N1—Cu1122.2 (2)C9—C10—C11123.4 (4)
C2—C1—C6121.9 (3)C10—C11—C12115.7 (3)
C1—C2—C3118.6 (3)C10—C11—C14122.5 (4)
C4—C3—C2121.3 (3)C12—C11—C14121.8 (4)
C3—C4—C5121.1 (3)F1'—C12—C13120.2 (4)
O1—C5—C6123.3 (3)F1'—C12—C11116.7 (4)
O1—C5—C4119.2 (3)C13—C12—C11123.2 (4)
C6—C5—C4117.4 (3)C12—C13—C8118.8 (4)
C1—C6—C5119.7 (3)
Symmetry code: (i) x, y, z.
(III) top
Crystal data top
[Cu(C15H8F6NO)2]F(000) = 1452
Mr = 727.98Dx = 1.662 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 14.607 (2) ÅCell parameters from 39 reflections
b = 7.423 (1) Åθ = 5.4–12.6°
c = 27.109 (2) ŵ = 0.86 mm1
β = 98.07 (1)°T = 290 K
V = 2910.3 (6) Å3Block, red-brown
Z = 40.47 × 0.36 × 0.33 mm
Data collection top
Bruker P4
diffractometer
2013 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 25.0°, θmin = 2.8°
ω scansh = 117
Absorption correction: ψ scan
# semi-empirical (using intensity measurements) based on 223 ψ scan data (XEMP; SHELXL97)
k = 18
Tmin = 0.761, Tmax = 0.838l = 3231
3159 measured reflections3 standard reflections every 100 reflections
2566 independent reflections intensity decay: <2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0496P)2 + 1.4869P]
where P = (Fo2 + 2Fc2)/3
2566 reflections(Δ/σ)max = 0.003
267 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Cu(C15H8F6NO)2]V = 2910.3 (6) Å3
Mr = 727.98Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.607 (2) ŵ = 0.86 mm1
b = 7.423 (1) ÅT = 290 K
c = 27.109 (2) Å0.47 × 0.36 × 0.33 mm
β = 98.07 (1)°
Data collection top
Bruker P4
diffractometer
2013 reflections with I > 2σ(I)
Absorption correction: ψ scan
# semi-empirical (using intensity measurements) based on 223 ψ scan data (XEMP; SHELXL97)
Rint = 0.015
Tmin = 0.761, Tmax = 0.8383 standard reflections every 100 reflections
3159 measured reflections intensity decay: <2%
2566 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.04Δρmax = 0.18 e Å3
2566 reflectionsΔρmin = 0.29 e Å3
267 parameters
Special details top

Experimental. The F atoms of the CF3 group were found to be disordered (50:50) between two sites staggered by rotation around the C—C bond. The disordered F atoms have high displacement parameters that are consistent with further unresolved disorder about the C—C bond.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.00000.04523 (7)0.25000.04873 (18)
O10.07155 (14)0.0100 (3)0.20003 (6)0.0644 (6)
N10.10804 (14)0.1119 (3)0.29840 (7)0.0428 (5)
F10.2457 (6)0.0477 (15)0.4946 (4)0.141 (5)0.68
F20.1175 (6)0.008 (2)0.5179 (3)0.166 (5)0.68
F30.1671 (11)0.1715 (10)0.4693 (3)0.173 (4)0.68
F1'0.1640 (14)0.107 (2)0.5225 (4)0.121 (6)0.32
F2'0.1169 (11)0.133 (3)0.4888 (7)0.125 (6)0.32
F3'0.2422 (11)0.036 (4)0.4795 (8)0.134 (9)0.32
F40.1141 (9)0.5085 (19)0.3699 (4)0.135 (5)0.60
F50.0082 (6)0.6369 (12)0.4171 (8)0.158 (4)0.60
F60.0968 (11)0.462 (2)0.4450 (5)0.155 (5)0.60
F4'0.0423 (19)0.621 (2)0.3779 (9)0.162 (8)0.40
F5'0.1383 (8)0.440 (4)0.3940 (12)0.181 (9)0.40
F6'0.0524 (15)0.548 (3)0.4493 (4)0.124 (6)0.40
C10.3113 (2)0.1352 (4)0.23410 (13)0.0676 (9)
H1A0.35220.17190.26170.081*
C20.3413 (3)0.1227 (5)0.18828 (16)0.0841 (12)
H2A0.40190.15220.18470.101*
C30.2805 (3)0.0657 (6)0.14766 (15)0.0870 (12)
H3A0.30080.05730.11670.104*
C40.1915 (3)0.0216 (5)0.15185 (11)0.0775 (11)
H4A0.15240.01740.12380.093*
C50.1572 (2)0.0342 (4)0.19826 (10)0.0555 (7)
C60.21893 (19)0.0931 (4)0.23969 (10)0.0527 (7)
C70.19147 (18)0.1230 (4)0.28766 (10)0.0494 (7)
H7A0.23780.15300.31350.059*
C80.09357 (16)0.1553 (4)0.34829 (9)0.0416 (6)
C90.13664 (17)0.0633 (4)0.38885 (9)0.0493 (6)
H9A0.17840.02840.38490.059*
C100.11714 (19)0.1089 (4)0.43604 (9)0.0547 (7)
C110.05585 (19)0.2440 (4)0.44253 (10)0.0586 (8)
H11A0.04350.27370.47430.070*
C120.01275 (17)0.3356 (4)0.40126 (9)0.0506 (7)
C130.02999 (17)0.2892 (4)0.35440 (9)0.0459 (6)
H13A0.00110.34780.32670.055*
C140.1618 (3)0.0015 (7)0.48027 (13)0.0826 (12)
C150.0527 (3)0.4862 (6)0.40737 (14)0.0764 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0526 (3)0.0581 (3)0.0356 (2)0.0000.00683 (18)0.000
O10.0607 (13)0.0915 (17)0.0407 (10)0.0219 (11)0.0059 (9)0.0081 (10)
N10.0478 (12)0.0451 (13)0.0365 (10)0.0029 (10)0.0099 (9)0.0012 (9)
F10.105 (6)0.175 (8)0.120 (6)0.001 (5)0.061 (5)0.036 (5)
F20.144 (6)0.285 (15)0.076 (5)0.077 (7)0.044 (5)0.089 (7)
F30.305 (13)0.092 (4)0.098 (4)0.041 (7)0.054 (6)0.033 (4)
F1'0.179 (16)0.141 (11)0.035 (4)0.055 (9)0.013 (7)0.002 (5)
F2'0.137 (10)0.125 (14)0.111 (12)0.040 (10)0.013 (7)0.065 (10)
F3'0.080 (11)0.22 (2)0.112 (12)0.074 (12)0.039 (10)0.101 (15)
F40.121 (9)0.183 (12)0.091 (4)0.105 (9)0.022 (4)0.026 (5)
F50.129 (5)0.073 (4)0.277 (12)0.010 (3)0.045 (9)0.056 (7)
F60.169 (10)0.174 (11)0.149 (10)0.089 (7)0.113 (9)0.035 (7)
F4'0.23 (2)0.104 (10)0.179 (12)0.105 (11)0.129 (13)0.060 (10)
F5'0.053 (4)0.205 (17)0.28 (2)0.034 (7)0.005 (10)0.140 (17)
F6'0.151 (13)0.137 (13)0.078 (7)0.057 (8)0.005 (7)0.066 (9)
C10.070 (2)0.0483 (18)0.092 (2)0.0023 (15)0.0360 (18)0.0063 (17)
C20.089 (3)0.059 (2)0.119 (3)0.009 (2)0.068 (3)0.004 (2)
C30.113 (3)0.081 (3)0.078 (2)0.037 (2)0.055 (2)0.018 (2)
C40.097 (3)0.090 (3)0.0512 (17)0.040 (2)0.0274 (17)0.0098 (17)
C50.069 (2)0.0529 (17)0.0472 (15)0.0237 (16)0.0178 (13)0.0061 (14)
C60.0620 (17)0.0404 (16)0.0610 (17)0.0073 (13)0.0275 (14)0.0012 (13)
C70.0520 (16)0.0434 (16)0.0537 (15)0.0039 (13)0.0110 (12)0.0017 (13)
C80.0394 (13)0.0460 (15)0.0394 (12)0.0006 (12)0.0055 (10)0.0030 (12)
C90.0429 (14)0.0576 (18)0.0472 (14)0.0066 (14)0.0060 (11)0.0022 (14)
C100.0506 (16)0.071 (2)0.0414 (14)0.0005 (15)0.0024 (12)0.0063 (13)
C110.0571 (17)0.082 (2)0.0385 (14)0.0010 (16)0.0117 (12)0.0066 (14)
C120.0455 (15)0.0581 (18)0.0487 (15)0.0047 (13)0.0090 (12)0.0077 (14)
C130.0458 (14)0.0489 (16)0.0420 (13)0.0003 (13)0.0032 (11)0.0005 (12)
C140.083 (3)0.112 (4)0.052 (2)0.013 (3)0.0061 (19)0.018 (2)
C150.078 (3)0.087 (3)0.067 (2)0.022 (2)0.020 (2)0.008 (2)
Geometric parameters (Å, º) top
Cu1—O1i1.8688 (18)F5'—C151.297 (13)
Cu1—O11.8688 (18)F6'—C151.226 (9)
Cu1—N11.969 (2)C1—C21.377 (4)
Cu1—N1i1.969 (2)C1—C61.413 (4)
O1—C51.300 (4)C2—C31.381 (5)
N1—C71.295 (3)C3—C41.360 (5)
N1—C81.435 (3)C4—C51.421 (4)
F1—C141.279 (9)C5—C61.408 (4)
F2—C141.285 (8)C6—C71.431 (3)
F3—C141.323 (8)C8—C91.370 (3)
F1'—C141.381 (13)C8—C131.386 (3)
F2'—C141.234 (13)C9—C101.391 (4)
F3'—C141.210 (15)C10—C111.372 (4)
F4—C151.268 (8)C10—C141.510 (4)
F5—C151.302 (8)C11—C121.383 (4)
F6—C151.292 (8)C12—C131.373 (3)
F4'—C151.300 (11)C12—C151.496 (4)
O1i—Cu1—O1154.66 (15)F1—C14—F2108.4 (7)
O1i—Cu1—N192.84 (8)F3'—C14—F371.7 (13)
O1—Cu1—N193.48 (8)F2'—C14—F346.2 (8)
O1i—Cu1—N1i93.48 (8)F1—C14—F3104.2 (7)
O1—Cu1—N1i92.84 (8)F2—C14—F3105.5 (7)
N1—Cu1—N1i150.87 (13)F3'—C14—F1'103.5 (13)
C5—O1—Cu1127.60 (19)F2'—C14—F1'104.6 (10)
C7—N1—C8117.8 (2)F1—C14—F1'71.7 (8)
C7—N1—Cu1123.90 (18)F2—C14—F1'43.7 (6)
C8—N1—Cu1118.32 (15)F3—C14—F1'137.7 (7)
C2—C1—C6120.8 (3)F3'—C14—C10114.9 (7)
C1—C2—C3119.3 (3)F2'—C14—C10113.2 (7)
C4—C3—C2121.5 (3)F1—C14—C10112.9 (6)
C3—C4—C5121.2 (4)F2—C14—C10113.7 (5)
O1—C5—C6124.1 (2)F3—C14—C10111.5 (4)
O1—C5—C4118.5 (3)F1'—C14—C10108.5 (7)
C6—C5—C4117.4 (3)F6'—C15—F4127.2 (7)
C5—C6—C1119.8 (3)F6'—C15—F641.9 (7)
C5—C6—C7122.9 (2)F4—C15—F6106.0 (7)
C1—C6—C7117.2 (3)F6'—C15—F5'103.5 (9)
N1—C7—C6126.0 (3)F4—C15—F5'42.8 (12)
C9—C8—C13120.1 (2)F6—C15—F5'67.4 (10)
C9—C8—N1122.2 (2)F6'—C15—F4'107.3 (9)
C13—C8—N1117.6 (2)F4—C15—F4'62.5 (11)
C8—C9—C10119.1 (3)F6—C15—F4'134.8 (7)
C11—C10—C9121.2 (3)F5'—C15—F4'102.9 (11)
C11—C10—C14120.1 (3)F6'—C15—F563.6 (7)
C9—C10—C14118.7 (3)F4—C15—F5109.1 (8)
C10—C11—C12119.1 (2)F6—C15—F5104.4 (7)
C13—C12—C11120.2 (3)F5'—C15—F5135.8 (11)
C13—C12—C15119.6 (3)F4'—C15—F550.7 (9)
C11—C12—C15120.2 (3)F6'—C15—C12117.6 (7)
C12—C13—C8120.2 (2)F4—C15—C12113.6 (5)
F3'—C14—F2'111.2 (13)F6—C15—C12112.4 (6)
F3'—C14—F134.6 (16)F5'—C15—C12112.3 (9)
F2'—C14—F1132.2 (8)F4'—C15—C12112.0 (5)
F3'—C14—F2128.4 (9)F5—C15—C12110.8 (4)
F2'—C14—F262.5 (8)
Symmetry code: (i) x, y, z+1/2.
(IV) top
Crystal data top
[Cu(C14H9F3NO2)2]F(000) = 630
Mr = 623.98Dx = 1.590 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.768 (1) ÅCell parameters from 38 reflections
b = 10.663 (1) Åθ = 5.4–13.0°
c = 8.320 (1) ŵ = 0.92 mm1
β = 95.87 (1)°T = 290 K
V = 1303.3 (2) Å3Plate, red
Z = 20.59 × 0.49 × 0.18 mm
Data collection top
Bruker P4
diffractometer
1877 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 26.5°, θmin = 2.8°
ω scansh = 1818
Absorption correction: ψ scan
# based on 596 ψ scan data (XEMP; SHELXL97)
k = 131
Tmin = 0.678, Tmax = 0.880l = 110
3579 measured reflections3 standard reflections every 100 reflections
2684 independent reflections intensity decay: <1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0808P)2 + 0.2587P]
where P = (Fo2 + 2Fc2)/3
2684 reflections(Δ/σ)max = 0.034
214 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Cu(C14H9F3NO2)2]V = 1303.3 (2) Å3
Mr = 623.98Z = 2
Monoclinic, P21/cMo Kα radiation
a = 14.768 (1) ŵ = 0.92 mm1
b = 10.663 (1) ÅT = 290 K
c = 8.320 (1) Å0.59 × 0.49 × 0.18 mm
β = 95.87 (1)°
Data collection top
Bruker P4
diffractometer
1877 reflections with I > 2σ(I)
Absorption correction: ψ scan
# based on 596 ψ scan data (XEMP; SHELXL97)
Rint = 0.031
Tmin = 0.678, Tmax = 0.8803 standard reflections every 100 reflections
3579 measured reflections intensity decay: <1%
2684 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.03Δρmax = 0.43 e Å3
2684 reflectionsΔρmin = 0.28 e Å3
214 parameters
Special details top

Experimental. The F atoms of the OCF3 group were refined as disordered (50:50) between two sites involving a rotation about the O—C bond. The disorderd F atoms have high displacement parameters that are consistent with further unresolved disorder about the O—C bond.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.00000.50000.00000.0504 (2)
O10.09046 (16)0.4715 (2)0.1386 (3)0.0605 (6)
O20.45468 (18)0.6337 (4)0.1211 (4)0.1034 (11)
N10.08397 (16)0.5702 (2)0.1848 (3)0.0481 (6)
C10.0597 (2)0.6744 (3)0.4934 (4)0.0583 (8)
H1A0.01430.71880.55480.070*
C20.1451 (3)0.6743 (3)0.5395 (4)0.0638 (9)
H2A0.15820.71920.63010.077*
C30.2129 (2)0.6063 (3)0.4498 (4)0.0627 (9)
H3A0.27170.60590.48060.075*
C40.1938 (2)0.5399 (3)0.3165 (4)0.0568 (8)
H4A0.24010.49460.25850.068*
C50.1058 (2)0.5383 (3)0.2650 (4)0.0498 (7)
C60.0376 (2)0.6093 (3)0.3555 (4)0.0472 (7)
C70.0541 (2)0.6128 (3)0.3147 (4)0.0505 (7)
H7A0.09680.64970.38990.061*
C80.1794 (2)0.5868 (3)0.1727 (4)0.0534 (8)
C90.2315 (3)0.4859 (3)0.1331 (4)0.0610 (9)
H9A0.20420.40810.11350.073*
C100.3230 (3)0.4991 (4)0.1222 (5)0.0712 (10)
H10A0.35830.43050.09910.085*
C110.3612 (2)0.6149 (5)0.1459 (5)0.0764 (11)
C120.3113 (2)0.7176 (4)0.1843 (6)0.0870 (14)
H12A0.33890.79550.20160.104*
C130.2195 (2)0.7025 (3)0.1967 (5)0.0733 (11)
H13A0.18450.77110.22130.088*
C140.5165 (3)0.6233 (10)0.2400 (10)0.120 (2)
F10.5929 (6)0.6707 (9)0.1966 (18)0.142 (3)0.67
F20.4999 (6)0.6715 (19)0.3717 (14)0.171 (8)0.67
F30.5278 (9)0.5022 (14)0.2734 (18)0.186 (5)0.67
F1'0.5956 (14)0.592 (3)0.217 (4)0.187 (15)0.33
F2'0.5135 (18)0.743 (3)0.303 (5)0.28 (2)0.33
F3'0.5016 (19)0.569 (4)0.360 (4)0.222 (19)0.33
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0541 (3)0.0448 (3)0.0503 (3)0.0076 (2)0.0041 (2)0.0045 (3)
O10.0639 (14)0.0628 (15)0.0542 (14)0.0193 (11)0.0039 (11)0.0109 (10)
O20.0549 (16)0.152 (3)0.103 (2)0.0002 (17)0.0064 (16)0.011 (2)
N10.0493 (14)0.0395 (13)0.0534 (15)0.0003 (11)0.0052 (11)0.0010 (12)
C10.079 (2)0.0372 (16)0.0565 (19)0.0013 (15)0.0041 (17)0.0025 (14)
C20.086 (2)0.0457 (18)0.061 (2)0.0084 (18)0.0150 (18)0.0011 (16)
C30.066 (2)0.0512 (19)0.073 (2)0.0095 (16)0.0129 (18)0.0073 (17)
C40.0592 (19)0.0530 (18)0.057 (2)0.0047 (15)0.0007 (15)0.0052 (15)
C50.0587 (18)0.0407 (15)0.0477 (18)0.0004 (13)0.0052 (14)0.0056 (13)
C60.0577 (18)0.0340 (14)0.0477 (16)0.0030 (13)0.0058 (13)0.0040 (13)
C70.0568 (18)0.0376 (15)0.0530 (17)0.0003 (13)0.0140 (14)0.0013 (14)
C80.0488 (17)0.0479 (17)0.0602 (19)0.0004 (14)0.0096 (14)0.0039 (15)
C90.068 (2)0.053 (2)0.061 (2)0.0051 (16)0.0002 (16)0.0037 (16)
C100.065 (2)0.080 (3)0.068 (2)0.022 (2)0.0039 (17)0.007 (2)
C110.0466 (19)0.105 (3)0.076 (3)0.004 (2)0.0034 (17)0.005 (2)
C120.053 (2)0.068 (2)0.137 (4)0.0102 (19)0.006 (2)0.012 (3)
C130.0541 (19)0.053 (2)0.111 (3)0.0005 (16)0.003 (2)0.010 (2)
C140.055 (3)0.188 (8)0.113 (5)0.013 (4)0.002 (3)0.036 (6)
F10.048 (4)0.179 (8)0.199 (7)0.003 (5)0.007 (4)0.026 (7)
F20.085 (5)0.30 (2)0.121 (7)0.019 (10)0.009 (5)0.107 (11)
F30.131 (8)0.182 (9)0.232 (13)0.075 (6)0.039 (8)0.000 (7)
F1'0.057 (9)0.31 (4)0.184 (19)0.08 (2)0.019 (10)0.10 (3)
F2'0.145 (16)0.29 (3)0.39 (5)0.104 (18)0.06 (2)0.21 (3)
F3'0.15 (2)0.32 (5)0.19 (3)0.00 (3)0.06 (2)0.11 (3)
Geometric parameters (Å, º) top
Cu1—O11.877 (2)C5—C61.414 (4)
Cu1—O1i1.877 (2)C6—C71.430 (4)
Cu1—N1i2.018 (2)C8—C131.374 (5)
Cu1—N12.018 (2)C8—C91.382 (5)
O1—C51.309 (4)C9—C101.370 (6)
O2—C141.280 (7)C10—C111.364 (6)
O2—C111.430 (4)C11—C121.376 (6)
N1—C71.291 (4)C12—C131.380 (5)
N1—C81.434 (4)C14—F3'1.19 (3)
C1—C21.355 (5)C14—F1'1.25 (2)
C1—C61.407 (4)C14—F21.257 (12)
C2—C31.390 (5)C14—F11.321 (13)
C3—C41.370 (5)C14—F31.328 (18)
C4—C51.409 (5)C14—F2'1.38 (3)
O1—Cu1—O1i180.0C10—C11—C12122.0 (3)
O1—Cu1—N1i89.27 (10)C10—C11—O2119.9 (4)
O1i—Cu1—N1i90.73 (10)C12—C11—O2118.0 (4)
O1—Cu1—N190.73 (10)C11—C12—C13118.6 (4)
O1i—Cu1—N189.27 (10)C8—C13—C12120.4 (4)
N1i—Cu1—N1180.0F3'—C14—F1'105 (2)
C5—O1—Cu1126.7 (2)F3'—C14—F252.9 (19)
C14—O2—C11119.9 (5)F1'—C14—F2120.8 (13)
C7—N1—C8116.0 (3)F3'—C14—O2120.8 (14)
C7—N1—Cu1122.1 (2)F1'—C14—O2120.6 (14)
C8—N1—Cu1121.6 (2)F2—C14—O2116.8 (8)
C2—C1—C6122.0 (3)F3'—C14—F1130.5 (15)
C1—C2—C3119.3 (3)F1'—C14—F138.7 (16)
C4—C3—C2120.5 (3)F2—C14—F1109.3 (11)
C3—C4—C5121.7 (3)O2—C14—F1108.5 (10)
O1—C5—C4119.4 (3)F3'—C14—F352 (3)
O1—C5—C6123.1 (3)F1'—C14—F371.0 (16)
C4—C5—C6117.4 (3)F2—C14—F3104.3 (15)
C1—C6—C5119.1 (3)O2—C14—F3108.1 (9)
C1—C6—C7119.0 (3)F1—C14—F3109.7 (9)
C5—C6—C7121.8 (3)F3'—C14—F2'96 (2)
N1—C7—C6127.1 (3)F1'—C14—F2'111.7 (18)
C13—C8—C9119.5 (3)F2—C14—F2'43.6 (14)
C13—C8—N1120.8 (3)O2—C14—F2'99.5 (17)
C9—C8—N1119.7 (3)F1—C14—F2'79.1 (14)
C10—C9—C8120.8 (3)F3—C14—F2'146 (2)
C11—C10—C9118.7 (3)
Symmetry code: (i) x, y+1, z.
(V) top
Crystal data top
[V(C14H9F3NO2)2O]F(000) = 1268
Mr = 627.38Dx = 1.574 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 27.392 (3) ÅCell parameters from 39 reflections
b = 10.048 (2) Åθ = 4.8–12.5°
c = 9.654 (1) ŵ = 0.46 mm1
β = 94.84 (1)°T = 190 K
V = 2647.6 (7) Å3Block, orange
Z = 40.56 × 0.28 × 0.22 mm
Data collection top
Bruker P4
diffractometer
Rint = 0.028
Radiation source: fine-focus sealed tubeθmax = 24.0°, θmin = 2.5°
Graphite monochromatorh = 3131
ω scansk = 111
5407 measured reflectionsl = 110
3996 independent reflections3 standard reflections every 100 reflections
3138 reflections with I > 2σ(I) intensity decay: <1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0466P)2 + 1.4703P]
where P = (Fo2 + 2Fc2)/3
3995 reflections(Δ/σ)max < 0.001
379 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[V(C14H9F3NO2)2O]V = 2647.6 (7) Å3
Mr = 627.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 27.392 (3) ŵ = 0.46 mm1
b = 10.048 (2) ÅT = 190 K
c = 9.654 (1) Å0.56 × 0.28 × 0.22 mm
β = 94.84 (1)°
Data collection top
Bruker P4
diffractometer
Rint = 0.028
5407 measured reflectionsθmax = 24.0°
3996 independent reflections3 standard reflections every 100 reflections
3138 reflections with I > 2σ(I) intensity decay: <1%
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.03Δρmax = 0.37 e Å3
3995 reflectionsΔρmin = 0.34 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.242777 (17)0.37345 (5)0.35089 (5)0.02800 (16)
O30.23278 (8)0.4155 (2)0.1924 (2)0.0401 (5)
O10.19193 (7)0.42688 (19)0.4617 (2)0.0359 (5)
O20.48046 (7)0.5916 (2)0.3351 (3)0.0457 (6)
N10.28262 (8)0.5400 (2)0.4313 (2)0.0272 (6)
C10.20601 (11)0.7516 (3)0.6311 (3)0.0359 (7)
H1A0.22970.81660.65110.043*
C20.16018 (12)0.7683 (3)0.6755 (4)0.0429 (8)
H2A0.15270.84370.72560.051*
C30.12500 (12)0.6702 (3)0.6444 (4)0.0431 (8)
H3B0.09370.68100.67330.052*
C40.13569 (11)0.5577 (3)0.5718 (3)0.0357 (7)
H4A0.11160.49370.55240.043*
C50.18248 (10)0.5381 (3)0.5265 (3)0.0290 (7)
C60.21778 (10)0.6387 (3)0.5560 (3)0.0275 (6)
C70.26649 (10)0.6288 (3)0.5133 (3)0.0289 (7)
H7A0.28880.69270.54810.035*
C80.33364 (10)0.5504 (3)0.4067 (3)0.0271 (7)
C90.34750 (11)0.5533 (3)0.2731 (3)0.0343 (7)
H9A0.32400.54480.19820.041*
C100.39641 (11)0.5690 (3)0.2503 (3)0.0401 (8)
H10A0.40610.57290.16030.048*
C110.43039 (10)0.5786 (3)0.3631 (3)0.0336 (7)
C120.41766 (11)0.5694 (3)0.4954 (3)0.0366 (8)
H12A0.44150.57230.56980.044*
C130.36895 (11)0.5557 (3)0.5183 (3)0.0351 (7)
H13A0.35970.55000.60860.042*
C140.50091 (11)0.7098 (4)0.3568 (4)0.0460 (9)
F10.50558 (9)0.7444 (3)0.4880 (3)0.0880 (9)
F20.47591 (8)0.8061 (2)0.2910 (3)0.0795 (8)
F30.54492 (7)0.7084 (3)0.3128 (3)0.0721 (7)
O1A0.30372 (7)0.28880 (19)0.3958 (3)0.0424 (6)
O2A0.00732 (7)0.1315 (2)0.3282 (2)0.0452 (6)
N1A0.21137 (8)0.1805 (2)0.3503 (2)0.0286 (6)
C1A0.30864 (11)0.0715 (3)0.3644 (3)0.0318 (7)
H1AA0.28790.14460.35190.038*
C2A0.35828 (11)0.0913 (3)0.3790 (3)0.0356 (7)
H2AA0.37120.17690.37710.043*
C3A0.38914 (11)0.0183 (3)0.3967 (3)0.0357 (7)
H3AA0.42290.00550.40550.043*
C4A0.37078 (11)0.1444 (3)0.4012 (3)0.0376 (8)
H4AA0.39210.21630.41310.045*
C5A0.31979 (11)0.1667 (3)0.3881 (3)0.0327 (7)
C6A0.28835 (10)0.0566 (3)0.3680 (3)0.0284 (7)
C7A0.23610 (11)0.0702 (3)0.3559 (3)0.0296 (7)
H7AA0.21800.00820.35150.036*
C8A0.15896 (10)0.1670 (3)0.3452 (3)0.0287 (7)
C9A0.13016 (11)0.2461 (3)0.2540 (3)0.0365 (7)
H9AA0.14470.30720.19800.044*
C10A0.07986 (11)0.2345 (3)0.2460 (3)0.0397 (8)
H10B0.06020.28810.18570.048*
C11A0.05929 (10)0.1427 (3)0.3282 (3)0.0356 (7)
C12A0.08689 (11)0.0632 (3)0.4204 (3)0.0380 (8)
H12B0.07210.00190.47560.046*
C13A0.13730 (11)0.0767 (3)0.4291 (3)0.0337 (7)
H13B0.15670.02480.49160.040*
C14A0.01696 (12)0.0865 (4)0.2138 (4)0.0491 (9)
F1A0.01826 (10)0.1692 (4)0.1105 (3)0.1131 (12)
F2A0.00147 (8)0.0241 (3)0.1692 (3)0.1000 (11)
F3A0.06253 (6)0.0622 (2)0.2406 (2)0.0602 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0296 (3)0.0194 (3)0.0338 (3)0.0010 (2)0.0039 (2)0.0010 (2)
O30.0471 (13)0.0334 (12)0.0384 (13)0.0092 (10)0.0054 (10)0.0008 (10)
O10.0326 (11)0.0249 (11)0.0503 (14)0.0043 (9)0.0048 (10)0.0057 (10)
O20.0263 (11)0.0480 (14)0.0630 (16)0.0065 (10)0.0051 (10)0.0079 (12)
N10.0278 (12)0.0208 (12)0.0324 (14)0.0005 (10)0.0023 (10)0.0005 (11)
C10.0378 (17)0.0281 (17)0.0409 (19)0.0002 (13)0.0012 (14)0.0035 (15)
C20.047 (2)0.0326 (18)0.049 (2)0.0078 (15)0.0061 (16)0.0082 (16)
C30.0363 (17)0.0389 (19)0.055 (2)0.0071 (15)0.0097 (16)0.0013 (17)
C40.0327 (16)0.0311 (17)0.043 (2)0.0035 (13)0.0030 (14)0.0041 (15)
C50.0297 (15)0.0263 (16)0.0302 (17)0.0017 (12)0.0031 (12)0.0032 (13)
C60.0326 (15)0.0229 (15)0.0261 (16)0.0005 (12)0.0027 (12)0.0010 (13)
C70.0341 (15)0.0206 (14)0.0309 (17)0.0035 (13)0.0031 (13)0.0012 (14)
C80.0329 (15)0.0179 (14)0.0298 (18)0.0018 (12)0.0011 (13)0.0021 (13)
C90.0324 (16)0.0364 (18)0.0328 (19)0.0010 (14)0.0056 (13)0.0045 (15)
C100.0407 (18)0.048 (2)0.0330 (19)0.0002 (16)0.0078 (14)0.0084 (16)
C110.0261 (15)0.0316 (16)0.043 (2)0.0070 (13)0.0004 (14)0.0037 (15)
C120.0312 (16)0.0396 (18)0.037 (2)0.0011 (14)0.0096 (14)0.0023 (15)
C130.0365 (17)0.0372 (18)0.0310 (18)0.0003 (14)0.0001 (14)0.0029 (15)
C140.0317 (18)0.057 (2)0.050 (2)0.0021 (17)0.0078 (16)0.0073 (19)
F10.0890 (18)0.119 (2)0.0569 (15)0.0580 (17)0.0132 (13)0.0208 (15)
F20.0541 (13)0.0643 (15)0.121 (2)0.0095 (12)0.0106 (13)0.0380 (15)
F30.0348 (11)0.0877 (17)0.0963 (18)0.0021 (11)0.0205 (11)0.0069 (15)
O1A0.0301 (11)0.0211 (11)0.0738 (17)0.0003 (9)0.0093 (11)0.0048 (11)
O2A0.0295 (11)0.0583 (15)0.0485 (15)0.0006 (11)0.0060 (10)0.0112 (13)
N1A0.0310 (13)0.0239 (13)0.0298 (14)0.0029 (11)0.0040 (10)0.0002 (11)
C1A0.0414 (17)0.0246 (15)0.0291 (17)0.0001 (13)0.0008 (13)0.0024 (13)
C2A0.0490 (19)0.0250 (16)0.0324 (18)0.0093 (14)0.0017 (14)0.0024 (14)
C3A0.0376 (17)0.0336 (17)0.0352 (18)0.0077 (14)0.0013 (14)0.0033 (15)
C4A0.0323 (16)0.0319 (17)0.047 (2)0.0006 (14)0.0050 (14)0.0005 (15)
C5A0.0379 (17)0.0220 (16)0.0369 (18)0.0010 (13)0.0047 (14)0.0010 (14)
C6A0.0330 (15)0.0230 (15)0.0285 (17)0.0014 (13)0.0015 (12)0.0001 (13)
C7A0.0403 (17)0.0223 (15)0.0255 (17)0.0051 (14)0.0010 (13)0.0011 (13)
C8A0.0307 (15)0.0234 (15)0.0309 (17)0.0023 (12)0.0038 (13)0.0066 (13)
C9A0.0346 (17)0.0296 (17)0.0443 (19)0.0050 (13)0.0025 (14)0.0040 (15)
C10A0.0349 (17)0.0341 (17)0.048 (2)0.0022 (14)0.0067 (15)0.0025 (16)
C11A0.0299 (15)0.0391 (18)0.0378 (19)0.0022 (14)0.0029 (14)0.0078 (16)
C12A0.0413 (18)0.0390 (18)0.0344 (19)0.0047 (15)0.0060 (14)0.0021 (15)
C13A0.0396 (17)0.0328 (16)0.0280 (17)0.0003 (14)0.0015 (13)0.0013 (14)
C14A0.0356 (19)0.054 (2)0.058 (3)0.0079 (17)0.0070 (17)0.003 (2)
F1A0.0808 (19)0.167 (3)0.085 (2)0.061 (2)0.0303 (15)0.049 (2)
F2A0.0482 (13)0.108 (2)0.145 (3)0.0075 (14)0.0133 (15)0.082 (2)
F3A0.0298 (10)0.0668 (14)0.0841 (16)0.0058 (10)0.0048 (10)0.0090 (12)
Geometric parameters (Å, º) top
V1—O31.589 (2)C14—F31.312 (4)
V1—O1A1.891 (2)C14—F21.317 (4)
V1—O11.904 (2)O1A—C5A1.308 (3)
V1—N12.110 (2)O2A—C14A1.320 (4)
V1—N1A2.121 (2)O2A—C11A1.428 (3)
O1—C51.317 (3)N1A—C7A1.297 (4)
O2—C141.322 (4)N1A—C8A1.439 (4)
O2—C111.426 (3)C1A—C2A1.370 (4)
N1—C71.295 (4)C1A—C6A1.404 (4)
N1—C81.441 (3)C2A—C3A1.390 (4)
C1—C21.371 (4)C3A—C4A1.366 (4)
C1—C61.399 (4)C4A—C5A1.409 (4)
C2—C31.394 (5)C5A—C6A1.405 (4)
C3—C41.374 (5)C6A—C7A1.433 (4)
C4—C51.403 (4)C8A—C13A1.383 (4)
C5—C61.411 (4)C8A—C9A1.383 (4)
C6—C71.433 (4)C9A—C10A1.378 (4)
C8—C91.374 (4)C10A—C11A1.368 (4)
C8—C131.387 (4)C11A—C12A1.374 (4)
C9—C101.385 (4)C12A—C13A1.383 (4)
C10—C111.375 (4)C14A—F1A1.297 (5)
C11—C121.355 (4)C14A—F2A1.308 (4)
C12—C131.378 (4)C14A—F3A1.319 (4)
C14—F11.310 (4)
O3—V1—O1A114.69 (11)F1—C14—F2106.0 (3)
O3—V1—O1113.04 (11)F3—C14—F2107.8 (3)
O1A—V1—O1132.17 (10)F1—C14—O2113.4 (3)
O3—V1—N1100.66 (10)F3—C14—O2109.1 (3)
O1A—V1—N181.55 (9)F2—C14—O2112.8 (3)
O1—V1—N187.12 (9)C5A—O1A—V1134.73 (19)
O3—V1—N1A101.76 (10)C14A—O2A—C11A117.3 (3)
O1A—V1—N1A86.53 (9)C7A—N1A—C8A115.9 (2)
O1—V1—N1A86.77 (9)C7A—N1A—V1124.78 (19)
N1—V1—N1A157.40 (9)C8A—N1A—V1119.29 (18)
C5—O1—V1133.51 (18)C2A—C1A—C6A121.5 (3)
C14—O2—C11117.0 (2)C1A—C2A—C3A119.1 (3)
C7—N1—C8115.9 (2)C4A—C3A—C2A121.2 (3)
C7—N1—V1125.36 (19)C3A—C4A—C5A120.6 (3)
C8—N1—V1118.39 (17)O1A—C5A—C6A122.7 (3)
C2—C1—C6121.2 (3)O1A—C5A—C4A118.7 (3)
C1—C2—C3118.7 (3)C6A—C5A—C4A118.6 (3)
C4—C3—C2121.2 (3)C1A—C6A—C5A119.1 (3)
C3—C4—C5120.9 (3)C1A—C6A—C7A118.7 (3)
O1—C5—C4119.2 (3)C5A—C6A—C7A122.2 (3)
O1—C5—C6123.0 (3)N1A—C7A—C6A126.8 (3)
C4—C5—C6117.7 (3)C13A—C8A—C9A120.0 (3)
C1—C6—C5120.1 (3)C13A—C8A—N1A121.2 (3)
C1—C6—C7117.8 (3)C9A—C8A—N1A118.8 (3)
C5—C6—C7122.1 (3)C10A—C9A—C8A120.1 (3)
N1—C7—C6126.7 (3)C11A—C10A—C9A118.9 (3)
C9—C8—C13119.9 (3)C10A—C11A—C12A122.4 (3)
C9—C8—N1120.3 (3)C10A—C11A—O2A120.8 (3)
C13—C8—N1119.8 (3)C12A—C11A—O2A116.6 (3)
C8—C9—C10119.9 (3)C11A—C12A—C13A118.3 (3)
C11—C10—C9118.8 (3)C8A—C13A—C12A120.3 (3)
C12—C11—C10122.1 (3)F1A—C14A—F2A106.1 (4)
C12—C11—O2120.8 (3)F1A—C14A—F3A107.7 (3)
C10—C11—O2117.0 (3)F2A—C14A—F3A107.8 (3)
C11—C12—C13119.2 (3)F1A—C14A—O2A113.8 (3)
C12—C13—C8120.0 (3)F2A—C14A—O2A112.6 (3)
F1—C14—F3107.4 (3)F3A—C14A—O2A108.6 (3)

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formula[Cu(C13H9FNO)2][Cu(C14H11FNO)2][Cu(C15H8F6NO)2][Cu(C14H9F3NO2)2]
Mr491.96520.02727.98623.98
Crystal system, space groupTriclinic, P1Orthorhombic, PbcaMonoclinic, C2/cMonoclinic, P21/c
Temperature (K)190150290290
a, b, c (Å)9.995 (2), 10.462 (2), 10.569 (2)10.752 (1), 7.893 (1), 27.391 (3)14.607 (2), 7.423 (1), 27.109 (2)14.768 (1), 10.663 (1), 8.320 (1)
α, β, γ (°)95.13 (2), 92.48 (2), 105.23 (2)90, 90, 9090, 98.07 (1), 9090, 95.87 (1), 90
V3)1059.5 (4)2324.6 (4)2910.3 (6)1303.3 (2)
Z2442
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)1.080.990.860.92
Crystal size (mm)0.48 × 0.24 × 0.230.58 × 0.43 × 0.340.47 × 0.36 × 0.330.59 × 0.49 × 0.18
Data collection
DiffractometerBruker P4
diffractometer
Bruker P4
diffractometer
Bruker P4
diffractometer
Bruker P4
diffractometer
Absorption correctionAnalytical
(XPREP; SHELXL97)
Analytical
(XPREP; SHELXL97)
ψ scan
# semi-empirical (using intensity measurements) based on 223 ψ scan data (XEMP; SHELXL97)
ψ scan
# based on 596 ψ scan data (XEMP; SHELXL97)
Tmin, Tmax0.766, 0.8100.656, 0.7770.761, 0.8380.678, 0.880
No. of measured, independent and
observed [I > 2σ(I)] reflections
4119, 3722, 2994 2677, 2026, 1452 3159, 2566, 2013 3579, 2684, 1877
Rint0.0270.0350.0150.031
θmax (°)25.025.025.026.5
(sin θ/λ)max1)0.5950.5950.5950.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.115, 1.10 0.043, 0.121, 1.01 0.039, 0.096, 1.04 0.049, 0.140, 1.03
No. of reflections3722202625662684
No. of parameters301169267214
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.320.61, 0.500.18, 0.290.43, 0.28


(V)
Crystal data
Chemical formula[V(C14H9F3NO2)2O]
Mr627.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)190
a, b, c (Å)27.392 (3), 10.048 (2), 9.654 (1)
α, β, γ (°)90, 94.84 (1), 90
V3)2647.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.56 × 0.28 × 0.22
Data collection
DiffractometerBruker P4
diffractometer
Absorption correction
Tmin, Tmax
No. of measured, independent and
observed [I > 2σ(I)] reflections
5407, 3996, 3138
Rint0.028
θmax (°)24.0
(sin θ/λ)max1)0.572
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.108, 1.03
No. of reflections3995
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.34

Computer programs: XSCANS (Fait, 1991), XSCANS, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXL97.

Cu-O and Cu-N bond lengths (Å) in copper(II) complexes of (substituted) salicylideneanilines. top
substituentCu-OCu-N
4-F1.880 (2)1.886 (3)2.009 (3)2.009 (3)
3-F,4-CH31.884 (2)2.017 (3)
3,5-(CF3)1.869 (2)1.969 (2)
4-OCF31.877 (2)2.018 (2)
unsubstituted1.911.90
Selected intra-ligand bond distances in the 4-OCF3 ligand and its complexes top
BONDO1—C5C5—C6C6—C7C7—N1N1—C8
Ligand1.350 (8)1.403 (8)1.440 (8)1.289 (7)1.415 (7)
Cu2+ complex1.309 (4)1.414 (4)1.430 (4)1.291 (4)1.434 (4)
VO2+ complex1.317 (3)1.411 (4)1.433 (4)1.295 (4)1.441 (3)
1.308 (3)1.405 (4)1.433 (4)1.297 (4)1.439 (4)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds