Download citation
Download citation
link to html
Polycrystalline diamond synthesized using the chemical vapour deposition (CVD) technique can be used to fabricate new types of photodetectors for the characterization of X-ray light in synchrotron beamlines. Since diamond exhibits a low absorption to low-energy photons, such devices allow beam-position monitoring with very little beam attenuation at photon energies as low as 2 keV up to 15-20 keV. Here it is shown how diamond-based devices can simply be processed as ionization chambers for advanced semi-transparent position monitoring with high position resolution (<2 µm). Other configurations using the same principle can also enable in-line field profiling. It is also shown what can be expected from these devices in terms of performances, signal-to-noise ratios and reliability, together with their inherent limitations caused by the presence of defects in polycrystalline materials. In particular, diamond devices with extremely low carrier lifetimes, owing to quenched transport properties, could also be of particular interest for the characterization of the temporal structure of synchrotron light. Interest in these devices lies in the permanent insertion into beamlines and withstanding high levels of radiation for continuous beam monitoring.

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds