Download citation
Download citation
link to html
The influence of the substituent at the C2 position on the hydrogen-bonding patterns is compared for a series of five related compounds, namely (±)-3-exo,6-exo-dibromo-5-endo-hy­droxy-3-endo-nitro­bicyclo­[2.2.1]heptane-2-exo-carbonitrile, C8H8Br2N2O3, (II), (±)-3-exo,6-exo-dibromo-6-endo-nitro-5-exo-phenyl­bicyclo­[2.2.1]heptan-2-endo-ol, C13H13Br2NO3, (III), (±)-methyl 3-exo,6-exo-dibromo-5-endo-hy­droxy-3-endo-nitro­bicyclo­[2.2.1]heptane-2-exo-carboxyl­ate, C9H11Br2NO5, (IV), (±)-methyl 3-exo,6-exo-dibromo-7-diphenyl­methyl­idene-5-endo-hy­droxy-3-endo-nitro­bicyclo­[2.2.1]heptane-2-exo-car­box­yl­ate, C22H19Br2NO5, (V), and (±)-methyl 3-exo,6-exo-dibromo-5-endo-hy­droxy-3-endo-nitro-7-oxabicyclo­[2.2.1]hep­tane-2-exo-carboxyl­ate, C8H9Br2NO6, (VI). The hydrogen-bonding motif in all five compounds is a chain, formed by O—H...O hydrogen bonds in (III), (IV), (V) and (VI), and by O—H...N hydrogen bonds in (II). All compounds except (III) contain a number of Br...Br and Br...O halogen bonds that connect the chains to each other to form two-dimensional sheets or three-dimensional networks. None of the compounds features intra­molecular hydrogen bonding between the alcohol and nitro functional groups, as was found in the related com­pound (±)-methyl 3-exo,6-exo-dichloro-5-endo-hy­droxy-3-endo-nitro­bicyclo­[2.2.1]heptane-2-exo-carboxyl­ate, (I) [Boeyens, Denner & Michael (1984b). J. Chem. Soc. Perkin Trans. 2, pp. 767–770]. The crystal structure of (V) exhibits whole-mol­ecule disorder.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111024140/gd3390sup1.cif
Contains datablocks global, II, III, IV, V, VI

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111024140/gd3390IIsup2.hkl
Contains datablock II

mol

MDL mol file https://doi.org/10.1107/S0108270111024140/gd3390IIsup7.mol
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111024140/gd3390IIIsup3.hkl
Contains datablock III

mol

MDL mol file https://doi.org/10.1107/S0108270111024140/gd3390IIIsup8.mol
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111024140/gd3390IVsup4.hkl
Contains datablock IV

mol

MDL mol file https://doi.org/10.1107/S0108270111024140/gd3390IVsup9.mol
Supplementary material

mol

MDL mol file https://doi.org/10.1107/S0108270111024140/gd3390Vsup10.mol
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111024140/gd3390Vsup5.hkl
Contains datablock V

mol

MDL mol file https://doi.org/10.1107/S0108270111024140/gd3390VIsup11.mol
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111024140/gd3390VIsup6.hkl
Contains datablock VI

CCDC references: 842137; 842138; 842139; 842140; 842141

Comment top

Although hydrogen bonding between hydroxy and nitro groups is not uncommon (Desiraju, 2002), intramolecular hydrogen bonding between these groups is largely confined to systems in which they find themselves in enforced proximity, as in 2-nitrophenols (Baitinger et al., 1964; Heintz et al., 2007; Litwinienko et al., 2009). We have been interested in hydrogen bonding in nitronorbornanol systems for several years (Boeyens et al., 1984a; Michael et al., 1994). In particular, when both groups are constrained to occupy the endo cavity of the norbornane skeleton, the likelihood of intramolecular hydrogen bonding is high, as we have found, for example, in 3-exo,6-exo-dichloro-5-endo-hydroxy-3-endo-nitrobicyclo[2.2.1]heptane-2-exo-carbonitrile, (I) (Boeyens et al., 1984b). We previously determined the room-temperature crystal structure of the corresponding dibromo compound 3-exo,6-exo-dibromo-5-endo-hydroxy-3-endo-nitrobicyclo[2.2.1]heptane-2-exo-carbonitrile, (II) (Blom et al., 1980), but owing to the limitations of the techniques available at the time, we were unable to locate hydrogen atoms and to establish unambiguously whether or not the hydrogen bonding was intramolecular. Here we report a redetermination of the crystal structure of compound (II) at low temperature, as well as the structures of three analogous dibrominated endo-nitronorbornanols (III)–(V) and the related 7-oxanorbornanol, (VI), in order to elucidate their hydrogen-bonding patterns and to establish whether there is any intramolecular or intermolecular hydrogen bonding between the alcohol and nitro functionalities.

The distances and angles within the five compounds reported (Fig. 1) are generally as expected (Allen et al., 1987). In all five structures, hydrogen bonds play a part in controlling the supramolecular assembly of the molecules (Desiraju, 1996, 2002). All five compounds contain an alcohol group and a number of good hydrogen-bonding acceptor functional groups including nitro, ester and ether units as well as Br atoms. Furthermore, a number of halogen-type C—Br···A (A = Br or O; Metrangelo et al., 2005) interactions are also present (Fig. 2).

Compound (II) crystallizes in the polar space group Cc. The O1—H1···N2 hydrogen bond forms a C(8) (Bernstein et al., 1995) chain along the [010] direction. Adjacent chains of this type are connected by a Br2···O2 halogen interaction along the [001]direction (Fig. 3) and by a Br1···Br2 halogen interaction (Table 6) along the [100] direction to form a three-dimensional network.

In compound (III) the O1—H1···O2 hydrogen bond forms C(7) chains along the [010] direction, containing molecules related by the twofold screw axis along (0.5, y, 0.75) (Fig. 4). Compound (III) has no short Br···Br contacts and does not form a higher-dimensional network.

In the crystal structure of compound (IV), C(8) chains are formed along the [110] direction, utilizing the O1—H1···O4 hydrogen bond (Fig. 5a). Adjacent chains of this type are connected to form a three-dimensional network by Br2···Br2 interactions along the [001] direction and by Br1···O1 interactions along the [010] direction (Table 6) (Figs. 5a and 5b).

The entire molecule of compound (V) is disordered over two sets of atomic positions and the two parts, labelled A and B (Fig. 1), have equal site-occupancy factors. The only substantial conformational difference between the two disorder components is the orientations of the aromatic rings relative to the nitronorbornanol unit. Molecule A has torsion angles of -46.9 (15)° (C7A—C10A—C17A—C22A) and 120.9 (12)° (C7A—C10A—C11A—C16A), as compared to angles of -61.3 (14)° (C7B—C10B—C17B—C22B) and 139.4 (12)° (C7B—C10B—C11B—C16B) in molecule B. Nonetheless, the intermolecular hydrogen and halogen bonding is similar between the two molecules (Tables 4 and 6). The O1A—H1A···O3A hydrogen bond in molecule A forms C(7) chains from the alcohol O1A to the nitro oxygen O3A. The chains run along the [010] direction (Fig. 6), generated by the twofold screw axis in the space group P21/c. The molecules within the chains are further connected by Br2A···O3A halogen bonds (Table 6 and Fig. 6). (V) contains no Br···Br halogen bonds. The hydrogen bonding of molecule B is not shown in Fig. 6.

In the crystal structure of compound (VI) the O1—H1···O4 hydrogen bond forms C(8) chains along the [101] direction (Fig. 7a). Adjacent hydrogen-bonded chains are connected by Br1···O1 interactions along the [100] direction to form sheets (Fig. 7a). Two adjacent sheets are then connected by Br2···Br2 halogen bonds along [010] (Table 6) to form bilayers of sheets (Fig. 7b).

Compound (II), which is the dibromo analogue of (I), does not contain an intramolecular O—H···O(nitro) hydrogen bond as observed in (I). Instead, it forms a C(8) hydrogen-bonded chain with the nitrile N as acceptor atom on a neighbouring molecule. Nonetheless, the O atoms of the nitro group are utilized in intermolecular interactions, in this case halogen bonding with the bromine atoms to form two-dimensional sheets which are further linked into a three-dimensional network via Br···Br interactions. Compound (III) has the nitrile group replaced by a phenyl group, and this seems to have an influence on the lack of any halogen bonding observed in (III) due to the steric increase of the phenyl group next to one of the bromine atoms. The absence of any good hydrogen-bonding acceptor at the 2-position leaves only the nitro group or the alcohol O as candidates, and indeed, in (III) there is an intermolecular O—H···O(nitro) hydrogen bond forming C(7) chains. Similar chains are formed by (V), which at the same time uses the second O atom of the nitro group in halogen bonding to strengthen the chain motif. Compounds (IV) and (VI) have the same intermolecular hydrogen bonding from the alcohol to the ester carbonyl, and similar packing of the chains into larger architectures. (IV) has chains connected in three dimensions by the halogen-bond interactions, whereas (VI) has bilayers of hydrogenbonded sheets using similar Br···Br and Br···O interactions. The halogen bonds observed in these compounds all have X···A distances less than the van der Waals radii sum (3.70 Å for Br···Br contacts and 3.37 Å for Br···O contacts).

Related literature top

For related literature, see: Baitinger et al., 1964; Blom et al., 1980; Boeyens et al., 1984a; Boeyens et al., 1984b; Heintz et al., 2007; Litwinienko et al., 2009; Michael et al., 1991; Michael et al., 1994.

Experimental top

The syntheses and spectroscopic characterization of the five compounds (II)–(VI) by bromination of the corresponding endo-nitronorbonenes have been reported previously (Michael et al., 1991). In these syntheses, transannular neighbouring group participation by the nitro group during bromination of the alkene bond is responsible for the introduction of the endo hydroxyl group in a regiospecific and totally stereoselective manner. Crystals of (II) were grown from methanol, (III) from benzene, (IV) from benzene, (V) from 1:1 ethylacetate/hexane and (VI) from acetone, by slow evaporation.

Refinement top

The whole-molecule disorder of (V) was modelled by finding alternative positions for all the atoms in the molecule. The corresponding bonded distance and the one-angle non-bonded distances in the two disorder components were restrained to have the same values, subject to s.u.s of 0.005 and 0.01 Å, respectively. The atomic displacement parameters were restrained to be equal for each of the atom pairs C1A/C1B, C2A/C2B, C3A/C3B, C5A/C5B, O1A/O1B, C6A/C6B, C7A/C7B, C8A/C8B, C9A/C9B, O2A/O2B, O3A/O3B, C10A/C10B and C11A/C11B. Refinement of the site occupancies gave values of 0.501 (8) and 0.499 (8): the occupancies were thereafter both fixed at 0.50. For all compounds, all C—H atoms were refined using a riding model, with distances of 0.95 Å (aromatic), 1.00 Å (aliphatic CH) and 0.99 Å (CH2), 0.98 Å (CH3) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C). H atoms on O atoms which are involved in hydrogen-bonding interactions were located in difference maps for all compounds except (IV) and (V) (which where refined using a riding model) and their positions allowed to refine freely, with Uiso(H) = 1.5Ueq(O) for all compounds. The value of the Flack x parameter (Flack, 1983) for (II), 0.003 (19), confirms the correct orientation of the structure with respect to the two polar axis directions in space group Cc.

Computing details top

For all compounds, data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structures and atom-labelling schemes for (a) (II), (b) (III), (c) (IV), (d) and (e) respectively, for molecules A and B of (V), and (f) (VI). Displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms are drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The three types of halogen bonding observed in this study of nitronorbornanols.
[Figure 3] Fig. 3. The C(8) hydrogen-bonded chain of (II), showing the Br···O halogen-bonded interactions along the [001] direction. The Br···Br halogen bonds along the [100] direction are not shown. Atoms marked with the superscripts (i) and (ii) are at the symmetry positions (x - 1/2, y + 1/2, z) and (x + 1, -y + 1, z + 1/2), respectively. H atoms not involved in hydrogen-bonding interactions are omitted for clarity.
[Figure 4] Fig. 4. The C(7) hydrogen-bonded chain of (III). Atoms marked with the superscript (i) are at the symmetry position (-x + 1, y + 1/2, -z + 3/2). H atoms not involved in hydrogen-bonding interactions are omitted for clarity.
[Figure 5] Fig. 5. (a) The C(8) hydrogen-bonded chain of (IV) as well as the Br···O halogen bonds [resulting in the formation of?] to form a two-dimensional sheet. (b) The sheets are then connected to a three-dimensional network by Br···Br halogen bonds. Atoms marked with the superscripts (i), (ii) and (iii) are at the symmetry positions (x - 1, y + 1, z), (x, y - 1, z), (-x + 1, -y + 2, -z + 1), respectively. H atoms not involved in hydrogen-bonding interactions are omitted for clarity.
[Figure 6] Fig. 6. The C(7) hydrogen-bonded chain of (V). Note how the halogen bonding connects every second molecule involved in hydrogen-bonded interactions within the chain (by translation only). Only the hydrogen bonding of molecule A is shown. Molecule B has similar interactions but [these?] are not shown in the figure. Atoms marked with the superscripts (i) and (ii) are at the symmetry positions (-x + 1, y + 1/2, -z + 1/2) and (x, y + 1, z), respectively. H atoms not involved in hydrogen-bonding interactions are omitted for clarity.
[Figure 7] Fig. 7. (a) The C(8) hydrogen-bonded chains of (VI) connected by Br···O halogen bonds to form two-dimensional sheets. (b) The sheets form bilayers through further Br···Br halogen bonding. Atoms marked with the superscripts (i), (ii) and (iii) are at the symmetry positions (x - 1, y, z - 1), (x + 1, y, z) and (-x + 2, -y, -z + 2), respectively. H atoms not involved in hydrogenbonding interactions are omitted for clarity.
(II) (±)-3-exo,6-exo-dibromo-5-endo-hydroxy-3-endo- nitrobicyclo[2.2.1]heptane-2-exo-carbonitrile top
Crystal data top
C8H8Br2N2O3F(000) = 656
Mr = 339.98Dx = 2.149 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 850 reflections
a = 6.6517 (8) Åθ = 2.5–28.2°
b = 16.084 (2) ŵ = 7.70 mm1
c = 9.8254 (14) ÅT = 173 K
β = 91.825 (6)°Block, yellow
V = 1050.6 (2) Å30.6 × 0.2 × 0.2 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1945 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ω scansθmax = 28.0°, θmin = 2.5°
Absorption correction: integration
(XPREP; Bruker, 1999)
h = 88
Tmin = 0.075, Tmax = 0.301k = 2117
3346 measured reflectionsl = 1012
2038 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0914P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2038 reflectionsΔρmax = 1.20 e Å3
139 parametersΔρmin = 0.94 e Å3
2 restraintsAbsolute structure: Flack (1983), 765 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (19)
Crystal data top
C8H8Br2N2O3V = 1050.6 (2) Å3
Mr = 339.98Z = 4
Monoclinic, CcMo Kα radiation
a = 6.6517 (8) ŵ = 7.70 mm1
b = 16.084 (2) ÅT = 173 K
c = 9.8254 (14) Å0.6 × 0.2 × 0.2 mm
β = 91.825 (6)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2038 independent reflections
Absorption correction: integration
(XPREP; Bruker, 1999)
1945 reflections with I > 2σ(I)
Tmin = 0.075, Tmax = 0.301Rint = 0.067
3346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116Δρmax = 1.20 e Å3
S = 1.04Δρmin = 0.94 e Å3
2038 reflectionsAbsolute structure: Flack (1983), 765 Friedel pairs
139 parametersAbsolute structure parameter: 0.003 (19)
2 restraints
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 1999)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5593 (9)0.3530 (4)0.5982 (6)0.0187 (11)
H1A0.69520.33060.62470.022*
C20.4484 (9)0.3079 (4)0.4748 (6)0.0195 (11)
H20.4790.33850.38920.023*
C30.2221 (8)0.3221 (3)0.5061 (6)0.0176 (11)
C40.2295 (9)0.3867 (4)0.6192 (6)0.0197 (11)
H40.10010.39430.66660.024*
C50.3266 (10)0.4690 (4)0.5676 (7)0.0218 (11)
H50.31060.51430.63620.026*
C60.5531 (9)0.4451 (3)0.5579 (7)0.0212 (12)
H60.59680.45180.46210.025*
C70.4034 (8)0.3507 (4)0.7097 (6)0.0200 (11)
H7A0.43990.3870.7880.024*
H7B0.37570.29350.74160.024*
C80.5089 (10)0.2208 (4)0.4591 (7)0.0218 (12)
N10.0955 (8)0.3456 (3)0.3808 (6)0.0238 (11)
N20.5591 (10)0.1542 (4)0.4456 (7)0.0319 (13)
O10.2507 (9)0.4953 (3)0.4383 (6)0.0294 (11)
H10.185 (17)0.541 (7)0.449 (11)0.044*
O20.0749 (8)0.3697 (4)0.3984 (6)0.0370 (12)
O30.1674 (8)0.3368 (4)0.2676 (5)0.0363 (12)
Br10.08836 (7)0.22101 (4)0.56746 (6)0.02728 (18)
Br20.72707 (9)0.51130 (4)0.68145 (7)0.03009 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.022 (3)0.019 (2)0.015 (3)0.003 (2)0.001 (2)0.002 (2)
C20.021 (2)0.020 (3)0.018 (3)0.005 (2)0.003 (2)0.000 (2)
C30.019 (2)0.021 (2)0.013 (3)0.002 (2)0.003 (2)0.000 (2)
C40.023 (2)0.024 (3)0.012 (3)0.005 (2)0.005 (2)0.000 (2)
C50.028 (3)0.020 (2)0.018 (3)0.002 (2)0.003 (2)0.004 (2)
C60.025 (3)0.019 (2)0.020 (3)0.000 (2)0.005 (2)0.001 (2)
C70.023 (3)0.020 (3)0.017 (3)0.001 (2)0.000 (2)0.002 (2)
C80.024 (3)0.027 (3)0.015 (3)0.006 (2)0.003 (2)0.004 (2)
N10.027 (2)0.027 (3)0.018 (3)0.006 (2)0.004 (2)0.0000 (19)
N20.037 (3)0.025 (3)0.034 (4)0.007 (2)0.010 (3)0.002 (2)
O10.043 (3)0.025 (2)0.020 (2)0.012 (2)0.002 (2)0.0058 (17)
O20.023 (2)0.052 (3)0.036 (3)0.012 (2)0.002 (2)0.005 (2)
O30.042 (3)0.056 (3)0.011 (2)0.010 (3)0.000 (2)0.004 (2)
Br10.0276 (3)0.0262 (3)0.0282 (3)0.0045 (2)0.0032 (2)0.0022 (2)
Br20.0306 (3)0.0264 (3)0.0334 (4)0.0056 (3)0.0014 (2)0.0062 (3)
Geometric parameters (Å, º) top
C1—C61.533 (8)C4—H41
C1—C71.533 (8)C5—O11.416 (9)
C1—C21.576 (9)C5—C61.561 (8)
C1—H1A1C5—H51
C2—C81.468 (8)C6—Br21.964 (6)
C2—C31.562 (7)C6—H61
C2—H21C7—H7A0.99
C3—N11.516 (8)C7—H7B0.99
C3—C41.521 (8)C8—N21.131 (9)
C3—Br11.957 (6)N1—O21.215 (7)
C4—C71.548 (8)N1—O31.233 (7)
C4—C51.565 (9)O1—H10.86 (12)
C6—C1—C7101.3 (4)O1—C5—C6109.6 (5)
C6—C1—C2103.8 (5)O1—C5—C4113.8 (5)
C7—C1—C2103.2 (5)C6—C5—C4102.7 (5)
C6—C1—H1A115.6O1—C5—H5110.2
C7—C1—H1A115.6C6—C5—H5110.2
C2—C1—H1A115.6C4—C5—H5110.2
C8—C2—C3115.4 (5)C1—C6—C5103.9 (5)
C8—C2—C1113.4 (5)C1—C6—Br2110.7 (4)
C3—C2—C1102.2 (4)C5—C6—Br2112.3 (4)
C8—C2—H2108.5C1—C6—H6109.9
C3—C2—H2108.5C5—C6—H6109.9
C1—C2—H2108.5Br2—C6—H6109.9
N1—C3—C4115.3 (5)C1—C7—C495.2 (5)
N1—C3—C2113.0 (5)C1—C7—H7A112.7
C4—C3—C2103.6 (5)C4—C7—H7A112.7
N1—C3—Br1102.2 (4)C1—C7—H7B112.7
C4—C3—Br1110.3 (4)C4—C7—H7B112.7
C2—C3—Br1112.9 (4)H7A—C7—H7B110.2
C3—C4—C799.8 (5)N2—C8—C2178.5 (7)
C3—C4—C5110.2 (4)O2—N1—O3123.7 (6)
C7—C4—C5101.2 (5)O2—N1—C3117.4 (5)
C3—C4—H4114.6O3—N1—C3118.9 (5)
C7—C4—H4114.6C5—O1—H1108 (7)
C5—C4—H4114.6
C6—C1—C2—C8154.7 (5)C7—C4—C5—C632.8 (6)
C7—C1—C2—C8100.0 (5)C7—C1—C6—C536.9 (6)
C6—C1—C2—C380.4 (5)C2—C1—C6—C569.8 (6)
C7—C1—C2—C324.9 (5)C7—C1—C6—Br283.8 (5)
C8—C2—C3—N199.2 (6)C2—C1—C6—Br2169.5 (3)
C1—C2—C3—N1137.3 (5)O1—C5—C6—C1119.1 (6)
C8—C2—C3—C4135.5 (5)C4—C5—C6—C12.2 (6)
C1—C2—C3—C411.9 (5)O1—C5—C6—Br2121.2 (5)
C8—C2—C3—Br116.2 (7)C4—C5—C6—Br2117.5 (4)
C1—C2—C3—Br1107.4 (4)C6—C1—C7—C456.4 (5)
N1—C3—C4—C7168.0 (5)C2—C1—C7—C450.8 (5)
C2—C3—C4—C744.1 (5)C3—C4—C7—C158.4 (5)
Br1—C3—C4—C777.0 (5)C5—C4—C7—C154.6 (5)
N1—C3—C4—C562.1 (6)C4—C3—N1—O250.6 (8)
C2—C3—C4—C561.8 (6)C2—C3—N1—O2169.4 (6)
Br1—C3—C4—C5177.1 (4)Br1—C3—N1—O269.0 (6)
C3—C4—C5—O146.3 (6)C4—C3—N1—O3131.7 (6)
C7—C4—C5—O1151.2 (5)C2—C3—N1—O312.9 (8)
C3—C4—C5—C672.2 (6)Br1—C3—N1—O3108.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.86 (12)2.01 (12)2.858 (8)169 (10)
Symmetry code: (i) x1/2, y+1/2, z.
(III) (±)-3-exo,6-exo-dibromo-6-endo-nitro-5-exo- phenylbicyclo[2.2.1]heptan-2-endo-ol top
Crystal data top
C13H13Br2NO3F(000) = 768
Mr = 391.06Dx = 1.917 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1017 reflections
a = 15.945 (2) Åθ = 3.1–28.3°
b = 6.7578 (10) ŵ = 5.99 mm1
c = 13.194 (2) ÅT = 173 K
β = 107.655 (9)°Block, colourless
V = 1354.7 (4) Å30.4 × 0.3 × 0.14 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2786 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 28°, θmin = 2.7°
Absorption correction: integration
(XPREP; Bruker, 1999)
h = 2121
Tmin = 0.110, Tmax = 0.467k = 88
18725 measured reflectionsl = 1717
3256 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0279P)2 + 0.2753P]
where P = (Fo2 + 2Fc2)/3
3256 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
C13H13Br2NO3V = 1354.7 (4) Å3
Mr = 391.06Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.945 (2) ŵ = 5.99 mm1
b = 6.7578 (10) ÅT = 173 K
c = 13.194 (2) Å0.4 × 0.3 × 0.14 mm
β = 107.655 (9)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3256 independent reflections
Absorption correction: integration
(XPREP; Bruker, 1999)
2786 reflections with I > 2σ(I)
Tmin = 0.110, Tmax = 0.467Rint = 0.042
18725 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.34 e Å3
3256 reflectionsΔρmin = 0.64 e Å3
175 parameters
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 1999)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.27775 (12)0.6233 (3)0.57508 (14)0.0177 (4)
H1A0.24640.7520.55360.021*
C20.26315 (12)0.5247 (3)0.67562 (14)0.0162 (3)
H20.31260.56770.73870.019*
C30.27825 (12)0.3023 (3)0.65528 (14)0.0170 (4)
C40.31402 (12)0.3024 (3)0.55985 (14)0.0175 (4)
H40.31330.17050.52520.021*
C50.40313 (12)0.4131 (3)0.58711 (14)0.0184 (4)
H50.42870.39920.5270.022*
C60.37772 (12)0.6322 (3)0.59711 (15)0.0185 (4)
H60.40650.68070.67110.022*
C70.25286 (12)0.4594 (3)0.48955 (14)0.0190 (4)
H7A0.26940.49280.42510.023*
H7B0.18990.42230.470.023*
C80.17800 (12)0.5797 (3)0.69702 (15)0.0183 (4)
C90.10191 (13)0.6295 (3)0.61630 (16)0.0231 (4)
H90.10180.62430.54430.028*
C100.02572 (14)0.6869 (3)0.63967 (19)0.0300 (5)
H100.02540.72250.58370.036*
C110.02444 (15)0.6920 (3)0.7441 (2)0.0315 (5)
H110.02730.73180.76010.038*
C120.09923 (15)0.6388 (3)0.82525 (18)0.0311 (5)
H120.09820.63930.89690.037*
C130.17549 (14)0.5849 (3)0.80255 (16)0.0255 (4)
H130.22660.55110.8590.031*
N10.33908 (11)0.1948 (2)0.75250 (13)0.0215 (3)
O10.46362 (9)0.3399 (2)0.68204 (12)0.0265 (3)
H10.5070 (18)0.397 (4)0.697 (2)0.04*
O20.36379 (9)0.0287 (2)0.73598 (12)0.0284 (3)
O30.35737 (11)0.2750 (2)0.83909 (11)0.0316 (3)
Br10.171486 (13)0.13845 (3)0.624805 (16)0.02452 (6)
Br20.410813 (13)0.80248 (3)0.494432 (17)0.02799 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0166 (9)0.0155 (9)0.0211 (9)0.0021 (7)0.0060 (7)0.0008 (7)
C20.0148 (8)0.0156 (9)0.0178 (8)0.0002 (7)0.0044 (7)0.0019 (7)
C30.0152 (9)0.0161 (9)0.0183 (9)0.0003 (7)0.0028 (7)0.0001 (7)
C40.0176 (9)0.0168 (9)0.0179 (9)0.0015 (7)0.0051 (7)0.0032 (7)
C50.0162 (9)0.0201 (10)0.0192 (9)0.0037 (7)0.0058 (7)0.0019 (7)
C60.0180 (9)0.0195 (10)0.0195 (9)0.0004 (7)0.0080 (7)0.0013 (7)
C70.0180 (9)0.0212 (10)0.0162 (9)0.0017 (7)0.0029 (7)0.0005 (7)
C80.0188 (9)0.0133 (9)0.0240 (9)0.0006 (7)0.0082 (7)0.0017 (7)
C90.0210 (10)0.0241 (10)0.0255 (10)0.0024 (8)0.0092 (8)0.0032 (8)
C100.0192 (10)0.0283 (12)0.0426 (13)0.0042 (8)0.0093 (9)0.0061 (9)
C110.0256 (11)0.0255 (11)0.0518 (14)0.0016 (9)0.0243 (10)0.0019 (10)
C120.0334 (12)0.0353 (13)0.0308 (11)0.0033 (10)0.0188 (10)0.0080 (9)
C130.0240 (10)0.0276 (11)0.0252 (10)0.0011 (8)0.0078 (8)0.0056 (8)
N10.0187 (8)0.0223 (9)0.0239 (8)0.0019 (7)0.0072 (7)0.0052 (7)
O10.0144 (7)0.0310 (8)0.0290 (8)0.0004 (6)0.0011 (6)0.0094 (6)
O20.0258 (8)0.0197 (7)0.0380 (8)0.0073 (6)0.0071 (6)0.0047 (6)
O30.0399 (9)0.0345 (9)0.0175 (7)0.0037 (7)0.0041 (6)0.0018 (6)
Br10.01824 (10)0.01887 (11)0.03580 (12)0.00312 (7)0.00719 (8)0.00286 (8)
Br20.02564 (11)0.02399 (12)0.03997 (13)0.00349 (8)0.01839 (9)0.00903 (9)
Geometric parameters (Å, º) top
C1—C61.532 (2)C6—H61
C1—C71.545 (3)C7—H7A0.99
C1—C21.564 (2)C7—H7B0.99
C1—H1A1C8—C91.391 (3)
C2—C81.515 (2)C8—C131.405 (3)
C2—C31.558 (2)C9—C101.396 (3)
C2—H21C9—H90.95
C3—C41.532 (2)C10—C111.385 (3)
C3—N11.536 (2)C10—H100.95
C3—Br11.9676 (18)C11—C121.387 (3)
C4—C71.546 (3)C11—H110.95
C4—C51.549 (3)C12—C131.386 (3)
C4—H41C12—H120.95
C5—O11.418 (2)C13—H130.95
C5—C61.551 (3)N1—O31.217 (2)
C5—H51N1—O21.231 (2)
C6—Br21.9675 (18)O1—H10.76 (3)
C6—C1—C7100.87 (14)C5—C6—Br2111.61 (12)
C6—C1—C2105.65 (14)C1—C6—H6110
C7—C1—C2104.04 (14)C5—C6—H6110
C6—C1—H1A114.9Br2—C6—H6110
C7—C1—H1A114.9C1—C7—C494.51 (13)
C2—C1—H1A114.9C1—C7—H7A112.8
C8—C2—C3117.58 (15)C4—C7—H7A112.8
C8—C2—C1115.21 (15)C1—C7—H7B112.8
C3—C2—C1101.22 (13)C4—C7—H7B112.8
C8—C2—H2107.4H7A—C7—H7B110.3
C3—C2—H2107.4C9—C8—C13118.17 (18)
C1—C2—H2107.4C9—C8—C2122.65 (17)
C4—C3—N1112.85 (14)C13—C8—C2119.16 (17)
C4—C3—C2104.89 (14)C8—C9—C10120.89 (19)
N1—C3—C2113.81 (14)C8—C9—H9119.6
C4—C3—Br1110.30 (12)C10—C9—H9119.6
N1—C3—Br1101.10 (11)C11—C10—C9120.2 (2)
C2—C3—Br1114.13 (12)C11—C10—H10119.9
C3—C4—C799.72 (14)C9—C10—H10119.9
C3—C4—C5110.68 (15)C10—C11—C12119.53 (19)
C7—C4—C5100.08 (15)C10—C11—H11120.2
C3—C4—H4114.8C12—C11—H11120.2
C7—C4—H4114.8C13—C12—C11120.4 (2)
C5—C4—H4114.8C13—C12—H12119.8
O1—C5—C4111.54 (15)C11—C12—H12119.8
O1—C5—C6112.53 (16)C12—C13—C8120.7 (2)
C4—C5—C6103.66 (14)C12—C13—H13119.6
O1—C5—H5109.7C8—C13—H13119.6
C4—C5—H5109.7O3—N1—O2124.99 (17)
C6—C5—H5109.7O3—N1—C3118.98 (16)
C1—C6—C5103.30 (14)O2—N1—C3116.00 (15)
C1—C6—Br2111.91 (12)C5—O1—H1112 (2)
C6—C1—C2—C8153.54 (15)C4—C5—C6—C10.19 (17)
C7—C1—C2—C8100.68 (17)O1—C5—C6—Br2119.16 (14)
C6—C1—C2—C378.50 (16)C4—C5—C6—Br2120.20 (13)
C7—C1—C2—C327.28 (17)C6—C1—C7—C457.05 (16)
C8—C2—C3—C4135.65 (16)C2—C1—C7—C452.28 (16)
C1—C2—C3—C49.25 (17)C3—C4—C7—C156.91 (15)
C8—C2—C3—N1100.53 (18)C5—C4—C7—C156.32 (15)
C1—C2—C3—N1133.06 (15)C3—C2—C8—C989.7 (2)
C8—C2—C3—Br114.8 (2)C1—C2—C8—C929.6 (3)
C1—C2—C3—Br1111.58 (13)C3—C2—C8—C1391.6 (2)
N1—C3—C4—C7166.71 (15)C1—C2—C8—C13149.18 (18)
C2—C3—C4—C742.28 (17)C13—C8—C9—C101.3 (3)
Br1—C3—C4—C781.04 (15)C2—C8—C9—C10177.45 (19)
N1—C3—C4—C561.97 (19)C8—C9—C10—C111.0 (3)
C2—C3—C4—C562.46 (18)C9—C10—C11—C120.3 (3)
Br1—C3—C4—C5174.21 (12)C10—C11—C12—C131.4 (3)
C3—C4—C5—O152.3 (2)C11—C12—C13—C81.2 (3)
C7—C4—C5—O1156.77 (15)C9—C8—C13—C120.2 (3)
C3—C4—C5—C669.04 (18)C2—C8—C13—C12178.59 (19)
C7—C4—C5—C635.46 (16)C4—C3—N1—O3132.10 (18)
C7—C1—C6—C535.91 (17)C2—C3—N1—O312.7 (2)
C2—C1—C6—C572.17 (17)Br1—C3—N1—O3110.11 (16)
C7—C1—C6—Br284.28 (15)C4—C3—N1—O249.8 (2)
C2—C1—C6—Br2167.64 (12)C2—C3—N1—O2169.18 (15)
O1—C5—C6—C1120.45 (16)Br1—C3—N1—O268.00 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.76 (3)2.17 (3)2.927 (2)171 (3)
Symmetry code: (i) x+1, y+1/2, z+3/2.
(IV) (±)-methyl 3-exo,6-exo-dibromo-5-endo-hydroxy-3-endo- nitrobicyclo[2.2.1]heptane-2-exo-carboxylate top
Crystal data top
C9H11Br2NO5Z = 2
Mr = 373.01F(000) = 364
Triclinic, P1Dx = 2.125 Mg m3
Dm = 0 Mg m3
Dm measured by not measured
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7221 (2) ÅCell parameters from 3264 reflections
b = 7.7353 (3) Åθ = 2.8–28.1°
c = 12.1546 (5) ŵ = 6.96 mm1
α = 88.296 (3)°T = 173 K
β = 80.595 (3)°Plate, colourless
γ = 69.323 (3)°0.28 × 0.12 × 0.04 mm
V = 583.08 (4) Å3
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2244 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
ω scansθmax = 28°, θmin = 1.7°
Absorption correction: integration
(XPREP; Bruker, 1999)
h = 88
Tmin = 0.318, Tmax = 0.770k = 1010
7104 measured reflectionsl = 1616
2805 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.07H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0307P)2]
where P = (Fo2 + 2Fc2)/3
2805 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 1.44 e Å3
0 restraintsΔρmin = 1.41 e Å3
Crystal data top
C9H11Br2NO5γ = 69.323 (3)°
Mr = 373.01V = 583.08 (4) Å3
Triclinic, P1Z = 2
a = 6.7221 (2) ÅMo Kα radiation
b = 7.7353 (3) ŵ = 6.96 mm1
c = 12.1546 (5) ÅT = 173 K
α = 88.296 (3)°0.28 × 0.12 × 0.04 mm
β = 80.595 (3)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2805 independent reflections
Absorption correction: integration
(XPREP; Bruker, 1999)
2244 reflections with I > 2σ(I)
Tmin = 0.318, Tmax = 0.770Rint = 0.083
7104 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.07H-atom parameters constrained
S = 0.96Δρmax = 1.44 e Å3
2805 reflectionsΔρmin = 1.41 e Å3
155 parameters
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 1999)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3951 (5)0.5479 (4)0.3174 (2)0.0160 (6)
H1A0.54460.49040.33470.019*
C20.3608 (4)0.4824 (4)0.2044 (2)0.0134 (5)
H20.38880.56540.14390.016*
C30.1156 (4)0.5112 (4)0.2278 (2)0.0148 (6)
C40.0339 (5)0.6194 (4)0.3391 (2)0.0159 (6)
H40.11220.6240.37590.019*
C50.0621 (5)0.8099 (4)0.3296 (2)0.0166 (6)
H50.00980.88510.40.02*
C60.3099 (5)0.7587 (4)0.3168 (2)0.0159 (6)
H60.36620.80230.24410.019*
C70.2179 (5)0.5129 (4)0.4032 (2)0.0187 (6)
H7A0.23780.38020.40960.022*
H7B0.20190.56930.47770.022*
C80.5091 (5)0.2857 (4)0.1755 (2)0.0167 (6)
C90.6991 (6)0.0704 (4)0.0305 (3)0.0297 (7)
H9A0.71420.05550.05060.044*
H9B0.65080.02580.06710.044*
H9C0.83840.05940.05040.044*
N10.0081 (4)0.6094 (3)0.1355 (2)0.0171 (5)
O10.0071 (3)0.9136 (3)0.23726 (18)0.0201 (4)
H10.13910.97640.2530.03*
O20.2044 (3)0.6620 (3)0.15927 (19)0.0247 (5)
O30.0929 (4)0.6255 (3)0.04607 (18)0.0252 (5)
O40.5898 (4)0.1785 (3)0.24275 (19)0.0243 (5)
O50.5423 (3)0.2503 (3)0.06654 (17)0.0214 (5)
Br10.05890 (5)0.27961 (4)0.23778 (3)0.02055 (9)
Br20.39158 (5)0.86070 (5)0.44082 (3)0.02960 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0126 (14)0.0165 (14)0.0170 (14)0.0015 (12)0.0048 (11)0.0001 (11)
C20.0122 (13)0.0117 (13)0.0154 (14)0.0031 (11)0.0022 (10)0.0002 (11)
C30.0147 (14)0.0124 (13)0.0180 (14)0.0051 (12)0.0044 (11)0.0022 (11)
C40.0156 (14)0.0170 (14)0.0158 (14)0.0063 (12)0.0034 (11)0.0017 (11)
C50.0174 (15)0.0124 (13)0.0164 (14)0.0010 (12)0.0016 (11)0.0047 (11)
C60.0160 (14)0.0150 (14)0.0174 (14)0.0042 (12)0.0071 (11)0.0034 (11)
C70.0204 (15)0.0200 (15)0.0157 (14)0.0059 (13)0.0052 (11)0.0017 (12)
C80.0142 (14)0.0153 (14)0.0203 (15)0.0057 (12)0.0002 (11)0.0033 (12)
C90.0285 (18)0.0214 (17)0.0286 (19)0.0024 (15)0.0001 (14)0.0070 (14)
N10.0215 (14)0.0106 (12)0.0215 (14)0.0068 (11)0.0076 (10)0.0004 (10)
O10.0192 (11)0.0146 (10)0.0270 (12)0.0046 (9)0.0089 (9)0.0036 (9)
O20.0151 (12)0.0245 (12)0.0342 (13)0.0039 (10)0.0101 (9)0.0009 (10)
O30.0317 (13)0.0302 (13)0.0182 (11)0.0150 (11)0.0084 (9)0.0047 (10)
O40.0239 (12)0.0170 (11)0.0265 (12)0.0008 (10)0.0067 (9)0.0003 (9)
O50.0244 (12)0.0153 (11)0.0190 (11)0.0016 (9)0.0002 (9)0.0033 (9)
Br10.02076 (16)0.01412 (15)0.02957 (18)0.00897 (12)0.00580 (12)0.00232 (12)
Br20.02740 (19)0.02775 (19)0.0349 (2)0.00640 (15)0.01387 (14)0.01265 (15)
Geometric parameters (Å, º) top
C1—C61.526 (4)C5—H51
C1—C71.544 (4)C6—Br21.961 (3)
C1—C21.556 (4)C6—H61
C1—H1A1C7—H7A0.99
C2—C81.509 (4)C7—H7B0.99
C2—C31.562 (4)C8—O41.199 (4)
C2—H21C8—O51.327 (4)
C3—C41.527 (4)C9—O51.446 (4)
C3—N11.528 (4)C9—H9A0.98
C3—Br11.955 (3)C9—H9B0.98
C4—C71.540 (4)C9—H9C0.98
C4—C51.549 (4)N1—O31.212 (3)
C4—H41N1—O21.222 (3)
C5—O11.405 (4)O1—H10.84
C5—C61.552 (4)
C6—C1—C7100.8 (2)C4—C5—H5109.8
C6—C1—C2106.0 (2)C6—C5—H5109.8
C7—C1—C2103.5 (2)C1—C6—C5103.5 (2)
C6—C1—H1A115C1—C6—Br2110.54 (19)
C7—C1—H1A115C5—C6—Br2111.78 (19)
C2—C1—H1A115C1—C6—H6110.3
C8—C2—C1110.6 (2)C5—C6—H6110.3
C8—C2—C3114.9 (2)Br2—C6—H6110.3
C1—C2—C3101.8 (2)C4—C7—C194.4 (2)
C8—C2—H2109.7C4—C7—H7A112.9
C1—C2—H2109.7C1—C7—H7A112.9
C3—C2—H2109.7C4—C7—H7B112.9
C4—C3—N1112.7 (2)C1—C7—H7B112.9
C4—C3—C2103.9 (2)H7A—C7—H7B110.3
N1—C3—C2114.1 (2)O4—C8—O5125.1 (3)
C4—C3—Br1110.72 (17)O4—C8—C2123.8 (3)
N1—C3—Br1102.39 (16)O5—C8—C2111.1 (3)
C2—C3—Br1113.37 (19)O5—C9—H9A109.5
C3—C4—C799.8 (2)O5—C9—H9B109.5
C3—C4—C5111.1 (2)H9A—C9—H9B109.5
C7—C4—C5100.7 (2)O5—C9—H9C109.5
C3—C4—H4114.5H9A—C9—H9C109.5
C7—C4—H4114.5H9B—C9—H9C109.5
C5—C4—H4114.5O3—N1—O2125.7 (3)
O1—C5—C4116.1 (2)O3—N1—C3118.7 (2)
O1—C5—C6107.8 (2)O2—N1—C3115.5 (2)
C4—C5—C6103.2 (2)C5—O1—H1109.5
O1—C5—H5109.8C8—O5—C9114.6 (2)
C6—C1—C2—C8158.6 (2)C7—C1—C6—Br283.1 (2)
C7—C1—C2—C895.7 (3)C2—C1—C6—Br2169.26 (16)
C6—C1—C2—C378.8 (2)O1—C5—C6—C1121.9 (2)
C7—C1—C2—C326.8 (3)C4—C5—C6—C11.4 (3)
C8—C2—C3—C4129.5 (2)O1—C5—C6—Br2119.1 (2)
C1—C2—C3—C410.0 (3)C4—C5—C6—Br2117.6 (2)
C8—C2—C3—N1107.4 (3)C3—C4—C7—C158.0 (2)
C1—C2—C3—N1133.0 (2)C5—C4—C7—C155.9 (2)
C8—C2—C3—Br19.3 (3)C6—C1—C7—C457.2 (2)
C1—C2—C3—Br1110.3 (2)C2—C1—C7—C452.4 (3)
N1—C3—C4—C7167.3 (2)C1—C2—C8—O421.4 (4)
C2—C3—C4—C743.2 (2)C3—C2—C8—O493.2 (3)
Br1—C3—C4—C778.8 (2)C1—C2—C8—O5156.8 (2)
N1—C3—C4—C561.7 (3)C3—C2—C8—O588.6 (3)
C2—C3—C4—C562.3 (3)C4—C3—N1—O3131.6 (2)
Br1—C3—C4—C5175.64 (18)C2—C3—N1—O313.5 (3)
C3—C4—C5—O147.2 (3)Br1—C3—N1—O3109.5 (2)
C7—C4—C5—O1152.2 (3)C4—C3—N1—O249.8 (3)
C3—C4—C5—C670.5 (3)C2—C3—N1—O2168.0 (2)
C7—C4—C5—C634.5 (3)Br1—C3—N1—O269.1 (2)
C7—C1—C6—C536.7 (3)O4—C8—O5—C93.8 (4)
C2—C1—C6—C570.9 (3)C2—C8—O5—C9174.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.841.962.752 (3)157
Symmetry code: (i) x1, y+1, z.
(V) (±)-methyl 3-exo,6-exo-dibromo-7-(diphenylmethylidene)-5-endo- hydroxy-3-endo-nitrobicyclo[2.2.1]heptane-2-exo-carboxylate top
Crystal data top
C22H19Br2NO5F(000) = 1072
Mr = 537.2Dx = 1.675 Mg m3
Dm = 0 Mg m3
Dm measured by not measured
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3493 reflections
a = 15.8724 (8) Åθ = 2.6–26.1°
b = 9.0341 (4) ŵ = 3.84 mm1
c = 15.0064 (7) ÅT = 173 K
β = 98.219 (2)°Needle, brown
V = 2129.71 (17) Å30.3 × 0.1 × 0.06 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3059 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
ω scansθmax = 28°, θmin = 1.3°
Absorption correction: integration
(XPREP; Bruker, 1999)
h = 2015
Tmin = 0.509, Tmax = 0.817k = 1111
17671 measured reflectionsl = 1919
5119 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 0.82 w = 1/[σ2(Fo2) + (0.0158P)2]
where P = (Fo2 + 2Fc2)/3
5119 reflections(Δ/σ)max = 0.001
467 parametersΔρmax = 0.45 e Å3
83 restraintsΔρmin = 0.43 e Å3
Crystal data top
C22H19Br2NO5V = 2129.71 (17) Å3
Mr = 537.2Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.8724 (8) ŵ = 3.84 mm1
b = 9.0341 (4) ÅT = 173 K
c = 15.0064 (7) Å0.3 × 0.1 × 0.06 mm
β = 98.219 (2)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5119 independent reflections
Absorption correction: integration
(XPREP; Bruker, 1999)
3059 reflections with I > 2σ(I)
Tmin = 0.509, Tmax = 0.817Rint = 0.078
17671 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03383 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 0.82Δρmax = 0.45 e Å3
5119 reflectionsΔρmin = 0.43 e Å3
467 parameters
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 1999)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1A0.3573 (4)0.3060 (6)0.4454 (5)0.0254 (6)0.5
H1A10.35350.35160.50540.03*0.5
C2A0.3783 (5)0.1379 (6)0.4466 (5)0.0221 (7)0.5
H2A0.4410.12620.4470.027*0.5
C3A0.3324 (3)0.0877 (6)0.3539 (5)0.0226 (8)0.5
C4A0.3119 (5)0.2321 (7)0.3025 (5)0.019 (3)0.5
H4A0.27180.22250.24490.023*0.5
C5A0.3951 (7)0.3174 (8)0.2950 (6)0.0247 (8)0.5
H5A0.38330.40180.25190.03*0.5
C6A0.4217 (5)0.3767 (5)0.3921 (6)0.0269 (6)0.5
H6A0.48060.34270.41590.032*0.5
C7A0.2779 (4)0.3197 (9)0.3760 (4)0.0225 (7)0.5
C8A0.3536 (12)0.0554 (9)0.5266 (6)0.0281 (11)0.5
C9A0.351 (2)0.1792 (17)0.5958 (18)0.0427 (8)0.5
H9A10.29520.14840.61060.064*0.5
H9A20.39410.16640.64870.064*0.5
H9A30.34830.28350.57770.064*0.5
C10A0.2049 (5)0.3894 (13)0.3769 (4)0.0273 (7)0.5
C11A0.1804 (8)0.4544 (10)0.4609 (4)0.0365 (9)0.5
C12A0.1677 (6)0.3657 (8)0.5332 (5)0.049 (3)0.5
H12A0.17760.26210.53130.059*0.5
C13A0.1404 (6)0.4292 (10)0.6084 (5)0.069 (3)0.5
H13A0.1360.36950.65970.083*0.5
C14A0.1203 (8)0.5733 (12)0.6100 (6)0.072 (4)0.5
H14A0.09460.61250.65830.086*0.5
C15A0.1375 (6)0.6655 (10)0.5396 (5)0.079 (5)0.5
H15A0.1310.76970.54370.095*0.5
C16A0.1638 (6)0.6039 (10)0.4651 (4)0.059 (3)0.5
H16A0.17070.66520.41520.07*0.5
C17A0.1434 (4)0.4138 (9)0.2933 (4)0.024 (2)0.5
C18A0.0572 (4)0.3908 (9)0.2938 (4)0.047 (2)0.5
H18A0.03740.35960.34760.056*0.5
C19A0.0002 (4)0.4130 (10)0.2163 (4)0.062 (2)0.5
H19A0.05910.39450.21660.075*0.5
C20A0.0278 (4)0.4620 (9)0.1388 (4)0.053 (2)0.5
H20A0.01190.47990.08630.063*0.5
C21A0.1124 (4)0.4847 (9)0.1370 (4)0.041 (2)0.5
H21A0.13210.51280.08260.049*0.5
C22A0.1695 (4)0.4664 (11)0.2154 (5)0.033 (3)0.5
H22A0.22770.49070.21540.039*0.5
N1A0.3830 (5)0.0234 (9)0.3053 (6)0.022 (2)0.5
O1A0.4573 (8)0.2237 (18)0.2677 (14)0.0325 (10)0.5
H1A0.49490.27490.24810.049*0.5
O2A0.3551 (8)0.049 (2)0.2269 (8)0.036 (2)0.5
O3A0.4484 (8)0.075 (2)0.3461 (10)0.028 (2)0.5
O4A0.3141 (16)0.1077 (19)0.5811 (11)0.034 (4)0.5
O5A0.3729 (16)0.0882 (12)0.5217 (13)0.028 (4)0.5
Br1A0.22575 (17)0.0178 (4)0.3625 (3)0.0363 (5)0.5
Br2A0.4151 (2)0.5928 (3)0.39687 (10)0.0300 (7)0.5
C1B0.3620 (4)0.3021 (6)0.4479 (5)0.0254 (6)0.5
H1B10.35520.34890.50690.03*0.5
C2B0.3892 (5)0.1363 (6)0.4527 (5)0.0221 (7)0.5
H2B0.45250.13090.45670.027*0.5
C3B0.3491 (3)0.0794 (6)0.3592 (5)0.0226 (8)0.5
C4B0.3227 (5)0.2199 (7)0.3058 (4)0.026 (4)0.5
H4B0.28410.20390.24790.032*0.5
C5B0.4021 (7)0.3157 (8)0.2985 (6)0.0247 (8)0.5
H5B0.3870.39830.25480.03*0.5
C6B0.4250 (5)0.3783 (5)0.3953 (6)0.0269 (6)0.5
H6B0.48470.35070.42050.032*0.5
C7B0.2834 (4)0.3044 (9)0.3773 (4)0.0225 (7)0.5
C8B0.3626 (12)0.0548 (9)0.5322 (6)0.0281 (11)0.5
C9B0.351 (2)0.1818 (17)0.5959 (18)0.0427 (8)0.5
H9B10.28870.18140.57980.064*0.5
H9B20.36590.14510.65760.064*0.5
H9B30.37220.2830.59180.064*0.5
C10B0.2090 (5)0.3729 (13)0.3713 (4)0.0273 (7)0.5
C11B0.1810 (9)0.4593 (10)0.4464 (4)0.0365 (9)0.5
C12B0.1977 (6)0.4121 (8)0.5352 (5)0.045 (3)0.5
H12B0.22750.3220.5490.054*0.5
C13B0.1713 (5)0.4952 (9)0.6041 (5)0.051 (3)0.5
H13B0.1790.45650.66360.062*0.5
C14B0.1353 (7)0.6289 (9)0.5883 (6)0.050 (3)0.5
H14B0.12690.69310.63640.06*0.5
C15B0.1106 (6)0.6704 (9)0.4984 (5)0.069 (3)0.5
H15B0.07430.75330.48470.083*0.5
C16B0.1384 (5)0.5920 (9)0.4304 (5)0.047 (2)0.5
H16B0.12820.62970.37080.057*0.5
C17B0.1479 (4)0.3639 (9)0.2859 (4)0.026 (2)0.5
C18B0.0679 (4)0.3028 (9)0.2855 (4)0.052 (2)0.5
H18B0.05140.26680.33990.062*0.5
C19B0.0117 (4)0.2940 (10)0.2059 (5)0.076 (3)0.5
H19B0.04210.2480.20560.091*0.5
C20B0.0335 (4)0.3516 (11)0.1275 (4)0.069 (2)0.5
H20B0.00630.34910.07380.082*0.5
C21B0.1119 (5)0.4121 (10)0.1266 (5)0.058 (3)0.5
H21B0.12750.45010.07220.07*0.5
C22B0.1689 (4)0.4178 (11)0.2060 (5)0.030 (3)0.5
H22B0.22360.45980.20510.037*0.5
N1B0.4068 (5)0.0233 (10)0.3133 (6)0.024 (2)0.5
O1B0.4686 (8)0.2307 (18)0.2723 (15)0.0325 (10)0.5
H1B0.48020.26180.22280.049*0.5
O2B0.3822 (8)0.052 (2)0.2345 (8)0.036 (2)0.5
O3B0.4723 (8)0.069 (2)0.3570 (10)0.028 (2)0.5
O4B0.3321 (16)0.1131 (18)0.5917 (11)0.032 (4)0.5
O5B0.3889 (16)0.0859 (11)0.5337 (13)0.026 (3)0.5
Br1B0.24718 (18)0.0420 (4)0.3638 (3)0.0327 (4)0.5
Br2B0.4108 (2)0.5935 (3)0.39699 (15)0.0510 (9)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0311 (16)0.0237 (14)0.0206 (12)0.0090 (12)0.0012 (12)0.0045 (11)
C2A0.025 (2)0.0225 (13)0.0173 (14)0.0043 (12)0.0011 (13)0.0016 (11)
C3A0.024 (2)0.0248 (14)0.0193 (13)0.0001 (15)0.0050 (16)0.0013 (12)
C4A0.018 (5)0.014 (5)0.024 (6)0.002 (4)0.003 (4)0.010 (4)
C5A0.029 (2)0.0201 (13)0.0258 (14)0.0041 (12)0.0065 (14)0.0003 (11)
C6A0.0317 (17)0.0179 (13)0.0295 (14)0.0062 (11)0.0009 (12)0.0033 (11)
C7A0.0261 (16)0.0224 (18)0.0184 (12)0.0007 (12)0.0016 (12)0.0014 (12)
C8A0.029 (3)0.0330 (17)0.0192 (16)0.0079 (14)0.0063 (18)0.0014 (12)
C9A0.055 (2)0.0391 (19)0.0351 (16)0.0090 (15)0.0090 (16)0.0158 (15)
C10A0.0262 (16)0.034 (2)0.0217 (14)0.0008 (13)0.0016 (12)0.0038 (12)
C11A0.0218 (16)0.058 (2)0.029 (2)0.0145 (15)0.002 (2)0.0001 (19)
C12A0.039 (6)0.087 (7)0.020 (4)0.019 (5)0.005 (3)0.003 (4)
C13A0.043 (6)0.133 (10)0.033 (4)0.043 (7)0.007 (4)0.006 (5)
C14A0.044 (7)0.134 (12)0.040 (5)0.046 (8)0.014 (4)0.003 (6)
C15A0.070 (8)0.126 (11)0.034 (6)0.070 (7)0.017 (6)0.037 (7)
C16A0.056 (6)0.089 (7)0.027 (4)0.024 (5)0.010 (4)0.007 (4)
C17A0.027 (4)0.024 (6)0.021 (3)0.008 (3)0.002 (3)0.002 (3)
C18A0.033 (4)0.079 (6)0.029 (3)0.001 (4)0.004 (3)0.006 (4)
C19A0.021 (4)0.114 (7)0.047 (4)0.010 (4)0.008 (3)0.004 (5)
C20A0.052 (5)0.078 (5)0.023 (3)0.012 (4)0.012 (3)0.003 (4)
C21A0.037 (5)0.058 (6)0.025 (3)0.002 (4)0.000 (3)0.002 (3)
C22A0.036 (4)0.025 (7)0.036 (4)0.005 (3)0.001 (3)0.001 (3)
N1A0.029 (4)0.017 (3)0.019 (4)0.003 (3)0.003 (3)0.000 (3)
O1A0.035 (3)0.0252 (15)0.040 (2)0.0010 (17)0.016 (2)0.0019 (10)
O2A0.043 (7)0.0382 (14)0.0228 (19)0.001 (5)0.007 (3)0.0133 (17)
O3A0.028 (6)0.0259 (16)0.027 (3)0.008 (5)0.006 (3)0.0022 (19)
O4A0.034 (8)0.044 (5)0.023 (6)0.016 (4)0.003 (6)0.004 (4)
O5A0.037 (8)0.028 (4)0.018 (5)0.001 (3)0.001 (6)0.007 (3)
Br1A0.0378 (13)0.0390 (11)0.0306 (5)0.0126 (8)0.0002 (9)0.0037 (7)
Br2A0.0443 (13)0.0242 (13)0.0187 (6)0.0016 (10)0.0050 (7)0.0064 (7)
C1B0.0311 (16)0.0237 (14)0.0206 (12)0.0090 (12)0.0012 (12)0.0045 (11)
C2B0.025 (2)0.0225 (13)0.0173 (14)0.0043 (12)0.0011 (13)0.0016 (11)
C3B0.024 (2)0.0248 (14)0.0193 (13)0.0001 (15)0.0050 (16)0.0013 (12)
C4B0.032 (6)0.033 (7)0.012 (6)0.000 (5)0.004 (4)0.008 (4)
C5B0.029 (2)0.0201 (13)0.0258 (14)0.0041 (12)0.0065 (14)0.0003 (11)
C6B0.0317 (17)0.0179 (13)0.0295 (14)0.0062 (11)0.0009 (12)0.0033 (11)
C7B0.0261 (16)0.0224 (18)0.0184 (12)0.0007 (12)0.0016 (12)0.0014 (12)
C8B0.029 (3)0.0330 (17)0.0192 (16)0.0079 (14)0.0063 (18)0.0014 (12)
C9B0.055 (2)0.0391 (19)0.0351 (16)0.0090 (15)0.0090 (16)0.0158 (15)
C10B0.0262 (16)0.034 (2)0.0217 (14)0.0008 (13)0.0016 (12)0.0038 (12)
C11B0.0218 (16)0.058 (2)0.029 (2)0.0145 (15)0.002 (2)0.0001 (19)
C12B0.046 (7)0.048 (4)0.041 (5)0.024 (5)0.009 (4)0.008 (4)
C13B0.055 (7)0.068 (6)0.032 (4)0.018 (5)0.010 (4)0.006 (4)
C14B0.057 (7)0.046 (5)0.059 (8)0.009 (4)0.044 (6)0.001 (6)
C15B0.082 (8)0.080 (6)0.050 (6)0.048 (5)0.028 (5)0.013 (5)
C16B0.051 (6)0.057 (5)0.038 (4)0.030 (4)0.018 (4)0.010 (4)
C17B0.026 (4)0.015 (5)0.036 (4)0.007 (3)0.002 (3)0.002 (3)
C18B0.033 (5)0.074 (6)0.047 (4)0.017 (4)0.003 (3)0.008 (4)
C19B0.042 (5)0.110 (8)0.070 (6)0.023 (5)0.008 (4)0.010 (6)
C20B0.051 (6)0.099 (7)0.047 (5)0.001 (5)0.022 (4)0.011 (5)
C21B0.070 (7)0.064 (7)0.036 (4)0.003 (5)0.009 (4)0.009 (4)
C22B0.033 (4)0.023 (6)0.034 (4)0.000 (3)0.002 (3)0.003 (4)
N1B0.021 (4)0.025 (4)0.026 (4)0.006 (3)0.003 (4)0.010 (3)
O1B0.035 (3)0.0252 (15)0.040 (2)0.0010 (17)0.016 (2)0.0019 (10)
O2B0.043 (7)0.0382 (14)0.0228 (19)0.001 (5)0.007 (3)0.0133 (17)
O3B0.028 (6)0.0259 (16)0.027 (3)0.008 (5)0.006 (3)0.0022 (19)
O4B0.042 (10)0.042 (4)0.010 (3)0.013 (4)0.001 (5)0.001 (3)
O5B0.036 (8)0.028 (4)0.012 (4)0.013 (4)0.005 (5)0.002 (2)
Br1B0.0307 (11)0.0349 (9)0.0315 (5)0.0055 (6)0.0011 (8)0.0044 (6)
Br2B0.0619 (18)0.0167 (13)0.0736 (13)0.0005 (12)0.0067 (10)0.0048 (10)
Geometric parameters (Å, º) top
C1A—C7A1.520 (4)C1B—C7B1.518 (4)
C1A—C6A1.525 (4)C1B—C6B1.524 (4)
C1A—C2A1.555 (4)C1B—C2B1.557 (4)
C1A—H1A11C1B—H1B11
C2A—C8A1.511 (4)C2B—C8B1.512 (4)
C2A—C3A1.544 (4)C2B—C3B1.543 (4)
C2A—H2A1C2B—H2B1
C3A—C4A1.527 (5)C3B—C4B1.527 (5)
C3A—N1A1.534 (4)C3B—N1B1.535 (4)
C3A—Br1A1.963 (3)C3B—Br1B1.963 (3)
C4A—C7A1.518 (4)C4B—C7B1.522 (4)
C4A—C5A1.546 (4)C4B—C5B1.545 (4)
C4A—H4A1C4B—H4B1
C5A—O1A1.406 (4)C5B—O1B1.406 (4)
C5A—C6A1.553 (4)C5B—C6B1.553 (4)
C5A—H5A1C5B—H5B1
C6A—Br2A1.957 (3)C6B—Br2B1.957 (3)
C6A—H6A1C6B—H6B1
C7A—C10A1.321 (4)C7B—C10B1.325 (4)
C8A—O4A1.197 (4)C8B—O4B1.197 (4)
C8A—O5A1.338 (4)C8B—O5B1.337 (4)
C9A—O5A1.465 (6)C9B—O5B1.466 (6)
C9A—H9A10.98C9B—H9B10.98
C9A—H9A20.98C9B—H9B20.98
C9A—H9A30.98C9B—H9B30.98
C10A—C17A1.492 (4)C10B—C11B1.490 (4)
C10A—C11A1.492 (4)C10B—C17B1.495 (4)
C11A—C16A1.379 (6)C11B—C16B1.381 (6)
C11A—C12A1.387 (6)C11B—C12B1.387 (6)
C12A—C13A1.390 (5)C12B—C13B1.390 (5)
C12A—H12A0.95C12B—H12B0.95
C13A—C14A1.341 (9)C13B—C14B1.343 (9)
C13A—H13A0.95C13B—H13B0.95
C14A—C15A1.403 (9)C14B—C15B1.401 (9)
C14A—H14A0.95C14B—H14B0.95
C15A—C16A1.366 (7)C15B—C16B1.366 (7)
C15A—H15A0.95C15B—H15B0.95
C16A—H16A0.95C16B—H16B0.95
C17A—C22A1.378 (5)C17B—C22B1.379 (5)
C17A—C18A1.384 (5)C17B—C18B1.384 (5)
C18A—C19A1.387 (6)C18B—C19B1.387 (6)
C18A—H18A0.95C18B—H18B0.95
C19A—C20A1.376 (6)C19B—C20B1.376 (6)
C19A—H19A0.95C19B—H19B0.95
C20A—C21A1.361 (6)C20B—C21B1.361 (6)
C20A—H20A0.95C20B—H20B0.95
C21A—C22A1.389 (5)C21B—C22B1.390 (5)
C21A—H21A0.95C21B—H21B0.95
C22A—H22A0.95C22B—H22B0.95
N1A—O2A1.219 (4)N1B—O2B1.220 (4)
N1A—O3A1.221 (5)N1B—O3B1.221 (5)
O1A—H1A0.84O1B—H1B0.84
C7A—C1A—C6A99.2 (3)C6B—C1B—H1B1115.4
C7A—C1A—C2A104.1 (3)C2B—C1B—H1B1115.4
C6A—C1A—C2A104.9 (3)C8B—C2B—C3B115.4 (5)
C7A—C1A—H1A1115.6C8B—C2B—C1B113.5 (4)
C6A—C1A—H1A1115.6C3B—C2B—C1B101.7 (3)
C2A—C1A—H1A1115.6C8B—C2B—H2B108.6
C8A—C2A—C3A115.4 (5)C3B—C2B—H2B108.6
C8A—C2A—C1A114.4 (4)C1B—C2B—H2B108.6
C3A—C2A—C1A101.7 (3)C4B—C3B—N1B113.8 (4)
C8A—C2A—H2A108.3C4B—C3B—C2B104.3 (3)
C3A—C2A—H2A108.3N1B—C3B—C2B114.5 (4)
C1A—C2A—H2A108.3C4B—C3B—Br1B108.5 (4)
C4A—C3A—N1A114.0 (4)N1B—C3B—Br1B103.0 (3)
C4A—C3A—C2A104.1 (3)C2B—C3B—Br1B112.9 (3)
N1A—C3A—C2A114.1 (4)C7B—C4B—C3B99.0 (3)
C4A—C3A—Br1A109.0 (3)C7B—C4B—C5B101.0 (3)
N1A—C3A—Br1A103.2 (3)C3B—C4B—C5B109.8 (4)
C2A—C3A—Br1A112.6 (3)C7B—C4B—H4B115
C7A—C4A—C3A98.6 (3)C3B—C4B—H4B115
C7A—C4A—C5A100.9 (3)C5B—C4B—H4B115
C3A—C4A—C5A109.9 (4)O1B—C5B—C4B111.5 (5)
C7A—C4A—H4A115.1O1B—C5B—C6B112.0 (5)
C3A—C4A—H4A115.1C4B—C5B—C6B102.8 (3)
C5A—C4A—H4A115.1O1B—C5B—H5B110.1
O1A—C5A—C4A111.3 (5)C4B—C5B—H5B110.1
O1A—C5A—C6A111.9 (5)C6B—C5B—H5B110.1
C4A—C5A—C6A103.0 (3)C1B—C6B—C5B103.7 (3)
O1A—C5A—H5A110.1C1B—C6B—Br2B110.9 (3)
C4A—C5A—H5A110.1C5B—C6B—Br2B111.2 (3)
C6A—C5A—H5A110.1C1B—C6B—H6B110.3
C1A—C6A—C5A103.5 (3)C5B—C6B—H6B110.3
C1A—C6A—Br2A110.8 (4)Br2B—C6B—H6B110.3
C5A—C6A—Br2A111.7 (3)C10B—C7B—C1B133.6 (4)
C1A—C6A—H6A110.2C10B—C7B—C4B129.7 (4)
C5A—C6A—H6A110.2C1B—C7B—C4B96.1 (3)
Br2A—C6A—H6A110.2O4B—C8B—O5B124.3 (5)
C10A—C7A—C4A131.2 (4)O4B—C8B—C2B124.3 (5)
C10A—C7A—C1A132.4 (4)O5B—C8B—C2B110.8 (4)
C4A—C7A—C1A96.3 (3)O5B—C9B—H9B1109.5
O4A—C8A—O5A124.5 (6)O5B—C9B—H9B2109.5
O4A—C8A—C2A124.7 (5)H9B1—C9B—H9B2109.5
O5A—C8A—C2A110.4 (4)O5B—C9B—H9B3109.5
C7A—C10A—C17A122.1 (4)H9B1—C9B—H9B3109.5
C7A—C10A—C11A122.1 (4)H9B2—C9B—H9B3109.5
C17A—C10A—C11A115.8 (4)C7B—C10B—C11B123.6 (4)
C16A—C11A—C12A118.7 (4)C7B—C10B—C17B119.7 (4)
C16A—C11A—C10A119.9 (5)C11B—C10B—C17B116.8 (4)
C12A—C11A—C10A121.2 (5)C16B—C11B—C12B117.1 (4)
C11A—C12A—C13A119.6 (5)C16B—C11B—C10B121.0 (4)
C11A—C12A—H12A120.2C12B—C11B—C10B121.9 (4)
C13A—C12A—H12A120.2C11B—C12B—C13B120.8 (5)
C14A—C13A—C12A121.2 (6)C11B—C12B—H12B119.6
C14A—C13A—H13A119.4C13B—C12B—H12B119.6
C12A—C13A—H13A119.4C14B—C13B—C12B121.3 (6)
C13A—C14A—C15A119.4 (7)C14B—C13B—H13B119.3
C13A—C14A—H14A120.3C12B—C13B—H13B119.3
C15A—C14A—H14A120.3C13B—C14B—C15B117.6 (6)
C16A—C15A—C14A119.3 (7)C13B—C14B—H14B121.2
C16A—C15A—H15A120.3C15B—C14B—H14B121.2
C14A—C15A—H15A120.3C16B—C15B—C14B120.3 (7)
C15A—C16A—C11A121.2 (6)C16B—C15B—H15B119.8
C15A—C16A—H16A119.4C14B—C15B—H15B119.8
C11A—C16A—H16A119.4C15B—C16B—C11B121.5 (6)
C22A—C17A—C18A118.3 (4)C15B—C16B—H16B119.2
C22A—C17A—C10A121.6 (4)C11B—C16B—H16B119.2
C18A—C17A—C10A120.1 (4)C22B—C17B—C18B118.2 (4)
C17A—C18A—C19A120.3 (4)C22B—C17B—C10B121.3 (5)
C17A—C18A—H18A119.8C18B—C17B—C10B120.5 (4)
C19A—C18A—H18A119.8C17B—C18B—C19B120.2 (5)
C20A—C19A—C18A120.1 (5)C17B—C18B—H18B119.9
C20A—C19A—H19A119.9C19B—C18B—H18B119.9
C18A—C19A—H19A119.9C20B—C19B—C18B120.4 (5)
C21A—C20A—C19A120.3 (5)C20B—C19B—H19B119.8
C21A—C20A—H20A119.9C18B—C19B—H19B119.8
C19A—C20A—H20A119.9C21B—C20B—C19B120.1 (5)
C20A—C21A—C22A119.4 (5)C21B—C20B—H20B119.9
C20A—C21A—H21A120.3C19B—C20B—H20B119.9
C22A—C21A—H21A120.3C20B—C21B—C22B119.4 (5)
C17A—C22A—C21A121.3 (5)C20B—C21B—H21B120.3
C17A—C22A—H22A119.3C22B—C21B—H21B120.3
C21A—C22A—H22A119.3C17B—C22B—C21B121.6 (5)
O2A—N1A—O3A125.2 (5)C17B—C22B—H22B119.2
O2A—N1A—C3A116.2 (5)C21B—C22B—H22B119.2
O3A—N1A—C3A118.5 (5)O2B—N1B—O3B125.3 (5)
C8A—O5A—C9A114.9 (6)O2B—N1B—C3B115.8 (5)
C7B—C1B—C6B99.6 (3)O3B—N1B—C3B118.9 (5)
C7B—C1B—C2B103.8 (3)C5B—O1B—H1B109.5
C6B—C1B—C2B105.1 (3)C8B—O5B—C9B114.6 (6)
C7B—C1B—H1B1115.4
C7A—C1A—C2A—C8A103.1 (7)C7B—C1B—C2B—C8B100.9 (7)
C6A—C1A—C2A—C8A153.3 (7)C6B—C1B—C2B—C8B155.0 (7)
C7A—C1A—C2A—C3A22.0 (5)C7B—C1B—C2B—C3B23.8 (5)
C6A—C1A—C2A—C3A81.7 (4)C6B—C1B—C2B—C3B80.4 (4)
C8A—C2A—C3A—C4A138.6 (6)C8B—C2B—C3B—C4B135.7 (6)
C1A—C2A—C3A—C4A14.3 (5)C1B—C2B—C3B—C4B12.4 (5)
C8A—C2A—C3A—N1A96.4 (6)C8B—C2B—C3B—N1B99.3 (7)
C1A—C2A—C3A—N1A139.2 (5)C1B—C2B—C3B—N1B137.3 (5)
C8A—C2A—C3A—Br1A20.8 (6)C8B—C2B—C3B—Br1B18.1 (7)
C1A—C2A—C3A—Br1A103.6 (4)C1B—C2B—C3B—Br1B105.2 (4)
N1A—C3A—C4A—C7A170.4 (4)N1B—C3B—C4B—C7B169.4 (5)
C2A—C3A—C4A—C7A45.4 (4)C2B—C3B—C4B—C7B44.0 (4)
Br1A—C3A—C4A—C7A75.0 (4)Br1B—C3B—C4B—C7B76.6 (4)
N1A—C3A—C4A—C5A65.4 (5)N1B—C3B—C4B—C5B64.2 (5)
C2A—C3A—C4A—C5A59.6 (4)C2B—C3B—C4B—C5B61.2 (4)
Br1A—C3A—C4A—C5A179.9 (4)Br1B—C3B—C4B—C5B178.2 (3)
C7A—C4A—C5A—O1A150.3 (7)C7B—C4B—C5B—O1B151.3 (7)
C3A—C4A—C5A—O1A46.9 (8)C3B—C4B—C5B—O1B47.5 (8)
C7A—C4A—C5A—C6A30.3 (5)C7B—C4B—C5B—C6B31.1 (5)
C3A—C4A—C5A—C6A73.1 (5)C3B—C4B—C5B—C6B72.7 (5)
C7A—C1A—C6A—C5A39.6 (5)C7B—C1B—C6B—C5B38.7 (5)
C2A—C1A—C6A—C5A67.7 (5)C2B—C1B—C6B—C5B68.5 (5)
C7A—C1A—C6A—Br2A80.3 (5)C7B—C1B—C6B—Br2B80.7 (5)
C2A—C1A—C6A—Br2A172.4 (4)C2B—C1B—C6B—Br2B172.0 (4)
O1A—C5A—C6A—C1A113.9 (8)O1B—C5B—C6B—C1B115.2 (8)
C4A—C5A—C6A—C1A5.8 (5)C4B—C5B—C6B—C1B4.6 (6)
O1A—C5A—C6A—Br2A126.9 (7)O1B—C5B—C6B—Br2B125.6 (7)
C4A—C5A—C6A—Br2A113.5 (5)C4B—C5B—C6B—Br2B114.6 (5)
C3A—C4A—C7A—C10A125.1 (11)C6B—C1B—C7B—C10B113.3 (12)
C5A—C4A—C7A—C10A122.6 (12)C2B—C1B—C7B—C10B138.4 (11)
C3A—C4A—C7A—C1A57.5 (4)C6B—C1B—C7B—C4B57.8 (4)
C5A—C4A—C7A—C1A54.8 (4)C2B—C1B—C7B—C4B50.5 (4)
C6A—C1A—C7A—C10A119.0 (11)C3B—C4B—C7B—C10B131.0 (11)
C2A—C1A—C7A—C10A133.0 (11)C5B—C4B—C7B—C10B116.7 (11)
C6A—C1A—C7A—C4A58.4 (4)C3B—C4B—C7B—C1B57.4 (4)
C2A—C1A—C7A—C4A49.6 (4)C5B—C4B—C7B—C1B55.0 (4)
C3A—C2A—C8A—O4A111 (2)C3B—C2B—C8B—O4B125 (2)
C1A—C2A—C8A—O4A7 (2)C1B—C2B—C8B—O4B8 (2)
C3A—C2A—C8A—O5A61.7 (17)C3B—C2B—C8B—O5B64.3 (17)
C1A—C2A—C8A—O5A179.2 (15)C1B—C2B—C8B—O5B178.9 (15)
C4A—C7A—C10A—C17A10.1 (16)C1B—C7B—C10B—C11B7.8 (18)
C1A—C7A—C10A—C17A166.4 (7)C4B—C7B—C10B—C11B176.2 (7)
C4A—C7A—C10A—C11A172.6 (7)C1B—C7B—C10B—C17B173.0 (7)
C1A—C7A—C10A—C11A10.9 (17)C4B—C7B—C10B—C17B4.5 (15)
C7A—C10A—C11A—C16A120.9 (12)C7B—C10B—C11B—C16B139.4 (12)
C17A—C10A—C11A—C16A56.6 (14)C17B—C10B—C11B—C16B41.3 (15)
C7A—C10A—C11A—C12A64.1 (17)C7B—C10B—C11B—C12B39.3 (18)
C17A—C10A—C11A—C12A118.5 (11)C17B—C10B—C11B—C12B139.9 (11)
C16A—C11A—C12A—C13A1.4 (17)C16B—C11B—C12B—C13B0.8 (17)
C10A—C11A—C12A—C13A176.5 (9)C10B—C11B—C12B—C13B179.6 (10)
C11A—C12A—C13A—C14A4.8 (17)C11B—C12B—C13B—C14B5.5 (16)
C12A—C13A—C14A—C15A8.4 (18)C12B—C13B—C14B—C15B11.7 (15)
C13A—C14A—C15A—C16A8.7 (17)C13B—C14B—C15B—C16B13.5 (15)
C14A—C15A—C16A—C11A5.5 (15)C14B—C15B—C16B—C11B9.3 (16)
C12A—C11A—C16A—C15A1.8 (16)C12B—C11B—C16B—C15B2.8 (17)
C10A—C11A—C16A—C15A177.0 (8)C10B—C11B—C16B—C15B178.4 (10)
C7A—C10A—C17A—C22A46.9 (15)C7B—C10B—C17B—C22B61.3 (14)
C11A—C10A—C17A—C22A130.6 (9)C11B—C10B—C17B—C22B119.4 (9)
C7A—C10A—C17A—C18A136.4 (10)C7B—C10B—C17B—C18B119.7 (11)
C11A—C10A—C17A—C18A46.1 (12)C11B—C10B—C17B—C18B59.6 (12)
C22A—C17A—C18A—C19A3.3 (13)C22B—C17B—C18B—C19B1.3 (14)
C10A—C17A—C18A—C19A179.9 (8)C10B—C17B—C18B—C19B179.7 (8)
C17A—C18A—C19A—C20A1.7 (14)C17B—C18B—C19B—C20B2.8 (15)
C18A—C19A—C20A—C21A1.9 (14)C18B—C19B—C20B—C21B2.8 (16)
C19A—C20A—C21A—C22A3.7 (14)C19B—C20B—C21B—C22B1.3 (16)
C18A—C17A—C22A—C21A5.2 (14)C18B—C17B—C22B—C21B0.2 (15)
C10A—C17A—C22A—C21A178.0 (8)C10B—C17B—C22B—C21B178.9 (8)
C20A—C21A—C22A—C17A5.5 (14)C20B—C21B—C22B—C17B0.2 (16)
C4A—C3A—N1A—O2A50.0 (14)C4B—C3B—N1B—O2B49.7 (14)
C2A—C3A—N1A—O2A169.5 (13)C2B—C3B—N1B—O2B169.5 (13)
Br1A—C3A—N1A—O2A68.0 (14)Br1B—C3B—N1B—O2B67.6 (14)
C4A—C3A—N1A—O3A127.7 (14)C4B—C3B—N1B—O3B130.4 (14)
C2A—C3A—N1A—O3A8.2 (15)C2B—C3B—N1B—O3B10.7 (15)
Br1A—C3A—N1A—O3A114.2 (14)Br1B—C3B—N1B—O3B112.3 (15)
O4A—C8A—O5A—C9A7 (4)O4B—C8B—O5B—C9B22 (4)
C2A—C8A—O5A—C9A179 (2)C2B—C8B—O5B—C9B167 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O3Ai0.842.243.03 (2)157
O1B—H1B···O3Bi0.842.142.90 (3)151
Symmetry code: (i) x+1, y+1/2, z+1/2.
(VI) (±)-methyl 3-exo,6-exo-dibromo-5-endo-hydroxy-3-endo-nitro- 7-oxabicyclo[2.2.1]heptane-2-exo-carboxylate top
Crystal data top
C8H9Br2NO6F(000) = 728
Mr = 374.98Dx = 2.209 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 921 reflections
a = 7.8071 (13) Åθ = 3.2–28.4°
b = 22.760 (4) ŵ = 7.21 mm1
c = 6.7673 (10) ÅT = 173 K
β = 110.32 (1)°Block, colourless
V = 1127.7 (3) Å30.42 × 0.4 × 0.2 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2453 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
ω scansθmax = 28°, θmin = 2.8°
Absorption correction: integration
(XPREP; Bruker, 1999)
h = 109
Tmin = 0.092, Tmax = 0.290k = 3030
12168 measured reflectionsl = 88
2715 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.22 w = 1/[σ2(Fo2) + 1.494P]
where P = (Fo2 + 2Fc2)/3
2715 reflections(Δ/σ)max = 0.001
158 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.92 e Å3
Crystal data top
C8H9Br2NO6V = 1127.7 (3) Å3
Mr = 374.98Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8071 (13) ŵ = 7.21 mm1
b = 22.760 (4) ÅT = 173 K
c = 6.7673 (10) Å0.42 × 0.4 × 0.2 mm
β = 110.32 (1)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2715 independent reflections
Absorption correction: integration
(XPREP; Bruker, 1999)
2453 reflections with I > 2σ(I)
Tmin = 0.092, Tmax = 0.290Rint = 0.085
12168 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.22Δρmax = 0.47 e Å3
2715 reflectionsΔρmin = 0.92 e Å3
158 parameters
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 1999)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4596 (4)0.08700 (13)0.8249 (4)0.0151 (5)
H1A0.51910.0780.97820.018*
C20.5255 (4)0.14527 (13)0.7547 (4)0.0149 (5)
H20.44420.17850.76180.018*
C30.4978 (4)0.13033 (13)0.5217 (4)0.0157 (5)
C40.3934 (4)0.07166 (13)0.4912 (4)0.0165 (6)
H40.39310.04910.36430.02*
C50.2012 (4)0.07874 (14)0.5083 (4)0.0178 (6)
H50.13020.04150.46420.021*
C60.2510 (4)0.08814 (13)0.7492 (4)0.0171 (5)
H60.20610.12710.77880.02*
C70.7230 (4)0.15867 (13)0.8883 (4)0.0177 (6)
C80.9566 (4)0.22856 (17)0.9698 (6)0.0302 (7)
H8A0.99120.21711.11810.045*
H8B0.97350.2710.96030.045*
H8C1.03340.20760.90520.045*
N10.3988 (3)0.17724 (11)0.3625 (4)0.0180 (5)
O10.0960 (3)0.12686 (10)0.4001 (4)0.0221 (5)
H10.029 (6)0.1174 (19)0.269 (7)0.033*
O20.3489 (3)0.16231 (11)0.1774 (3)0.0270 (5)
O30.3757 (3)0.22552 (10)0.4268 (4)0.0286 (5)
O40.8248 (3)0.12368 (10)1.0054 (4)0.0251 (5)
O50.7660 (3)0.21368 (10)0.8594 (3)0.0229 (5)
O60.4935 (3)0.04365 (9)0.6866 (3)0.0183 (4)
Br10.72464 (4)0.118459 (15)0.46861 (5)0.02389 (10)
Br20.16270 (4)0.025117 (16)0.88365 (5)0.02651 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0163 (13)0.0148 (13)0.0129 (12)0.0008 (10)0.0035 (10)0.0011 (10)
C20.0173 (13)0.0132 (13)0.0138 (12)0.0008 (10)0.0049 (10)0.0008 (10)
C30.0156 (13)0.0179 (14)0.0136 (12)0.0022 (10)0.0049 (10)0.0002 (11)
C40.0185 (13)0.0152 (14)0.0148 (12)0.0007 (11)0.0043 (11)0.0025 (11)
C50.0132 (12)0.0198 (14)0.0170 (13)0.0006 (11)0.0011 (10)0.0019 (11)
C60.0193 (13)0.0156 (14)0.0165 (12)0.0021 (11)0.0064 (11)0.0010 (11)
C70.0200 (14)0.0182 (14)0.0149 (12)0.0021 (11)0.0061 (11)0.0023 (11)
C80.0223 (15)0.0312 (18)0.0323 (17)0.0119 (14)0.0037 (13)0.0040 (15)
N10.0182 (11)0.0177 (12)0.0183 (11)0.0012 (10)0.0065 (10)0.0031 (10)
O10.0178 (10)0.0269 (12)0.0182 (10)0.0058 (9)0.0019 (8)0.0042 (9)
O20.0322 (12)0.0320 (13)0.0139 (10)0.0021 (10)0.0043 (9)0.0024 (9)
O30.0377 (13)0.0173 (11)0.0289 (12)0.0041 (10)0.0091 (10)0.0018 (10)
O40.0201 (11)0.0254 (12)0.0229 (11)0.0031 (9)0.0012 (9)0.0047 (9)
O50.0202 (10)0.0196 (11)0.0251 (11)0.0041 (9)0.0033 (9)0.0005 (9)
O60.0220 (10)0.0151 (10)0.0158 (9)0.0046 (8)0.0039 (8)0.0002 (8)
Br10.01801 (14)0.03388 (19)0.02190 (16)0.00381 (12)0.00963 (12)0.00164 (13)
Br20.02506 (16)0.03039 (18)0.02249 (16)0.00843 (13)0.00624 (12)0.00615 (13)
Geometric parameters (Å, º) top
C1—O61.446 (3)C5—C61.554 (4)
C1—C61.528 (4)C5—H51
C1—C21.555 (4)C6—Br21.948 (3)
C1—H1A1C6—H61
C2—C71.523 (4)C7—O41.207 (4)
C2—C31.553 (4)C7—O51.328 (4)
C2—H21C8—O51.454 (4)
C3—N11.523 (4)C8—H8A0.98
C3—C41.540 (4)C8—H8B0.98
C3—Br11.944 (3)C8—H8C0.98
C4—O61.431 (3)N1—O31.218 (4)
C4—C51.553 (4)N1—O21.223 (3)
C4—H41O1—H10.89 (4)
C5—O11.411 (4)
O6—C1—C6102.0 (2)C4—C5—C6101.3 (2)
O6—C1—C2103.3 (2)O1—C5—H5109.9
C6—C1—C2108.1 (2)C4—C5—H5109.9
O6—C1—H1A114.1C6—C5—H5109.9
C6—C1—H1A114.1C1—C6—C5101.4 (2)
C2—C1—H1A114.1C1—C6—Br2109.9 (2)
C7—C2—C3113.7 (2)C5—C6—Br2112.9 (2)
C7—C2—C1111.3 (2)C1—C6—H6110.8
C3—C2—C1100.3 (2)C5—C6—H6110.8
C7—C2—H2110.4Br2—C6—H6110.8
C3—C2—H2110.4O4—C7—O5125.2 (3)
C1—C2—H2110.4O4—C7—C2123.9 (3)
N1—C3—C4113.5 (2)O5—C7—C2110.9 (2)
N1—C3—C2115.0 (2)O5—C8—H8A109.5
C4—C3—C2101.9 (2)O5—C8—H8B109.5
N1—C3—Br1103.75 (18)H8A—C8—H8B109.5
C4—C3—Br1109.16 (19)O5—C8—H8C109.5
C2—C3—Br1113.77 (19)H8A—C8—H8C109.5
O6—C4—C399.7 (2)H8B—C8—H8C109.5
O6—C4—C5102.1 (2)O3—N1—O2125.6 (3)
C3—C4—C5112.3 (2)O3—N1—C3118.8 (2)
O6—C4—H4113.8O2—N1—C3115.6 (2)
C3—C4—H4113.8C5—O1—H1111 (3)
C5—C4—H4113.8C7—O5—C8114.2 (3)
O1—C5—C4116.4 (2)C4—O6—C197.5 (2)
O1—C5—C6109.0 (2)
O6—C1—C2—C793.9 (3)O6—C1—C6—Br284.0 (2)
C6—C1—C2—C7158.5 (2)C2—C1—C6—Br2167.60 (18)
O6—C1—C2—C326.7 (2)O1—C5—C6—C1121.4 (2)
C6—C1—C2—C380.8 (3)C4—C5—C6—C11.9 (3)
C7—C2—C3—N1109.0 (3)O1—C5—C6—Br2121.1 (2)
C1—C2—C3—N1132.1 (2)C4—C5—C6—Br2115.6 (2)
C7—C2—C3—C4127.8 (2)C3—C2—C7—O499.5 (3)
C1—C2—C3—C48.9 (3)C1—C2—C7—O412.9 (4)
C7—C2—C3—Br110.5 (3)C3—C2—C7—O581.0 (3)
C1—C2—C3—Br1108.5 (2)C1—C2—C7—O5166.5 (2)
N1—C3—C4—O6166.4 (2)C4—C3—N1—O3128.5 (3)
C2—C3—C4—O642.2 (2)C2—C3—N1—O311.8 (4)
Br1—C3—C4—O678.4 (2)Br1—C3—N1—O3113.1 (2)
N1—C3—C4—C559.0 (3)C4—C3—N1—O251.5 (3)
C2—C3—C4—C565.2 (3)C2—C3—N1—O2168.2 (2)
Br1—C3—C4—C5174.12 (18)Br1—C3—N1—O266.9 (3)
O6—C4—C5—O1150.8 (2)O4—C7—O5—C84.9 (4)
C3—C4—C5—O144.9 (3)C2—C7—O5—C8175.6 (3)
O6—C4—C5—C632.7 (3)C3—C4—O6—C159.7 (2)
C3—C4—C5—C673.2 (3)C5—C4—O6—C155.8 (2)
O6—C1—C6—C535.7 (3)C6—C1—O6—C457.5 (2)
C2—C1—C6—C572.8 (3)C2—C1—O6—C454.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.89 (4)1.94 (4)2.774 (3)156 (4)
Symmetry code: (i) x1, y, z1.

Experimental details

(II)(III)(IV)(V)
Crystal data
Chemical formulaC8H8Br2N2O3C13H13Br2NO3C9H11Br2NO5C22H19Br2NO5
Mr339.98391.06373.01537.2
Crystal system, space groupMonoclinic, CcMonoclinic, P21/cTriclinic, P1Monoclinic, P21/c
Temperature (K)173173173173
a, b, c (Å)6.6517 (8), 16.084 (2), 9.8254 (14)15.945 (2), 6.7578 (10), 13.194 (2)6.7221 (2), 7.7353 (3), 12.1546 (5)15.8724 (8), 9.0341 (4), 15.0064 (7)
α, β, γ (°)90, 91.825 (6), 9090, 107.655 (9), 9088.296 (3), 80.595 (3), 69.323 (3)90, 98.219 (2), 90
V3)1050.6 (2)1354.7 (4)583.08 (4)2129.71 (17)
Z4424
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)7.705.996.963.84
Crystal size (mm)0.6 × 0.2 × 0.20.4 × 0.3 × 0.140.28 × 0.12 × 0.040.3 × 0.1 × 0.06
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Bruker SMART 1K CCD area-detector
diffractometer
Bruker SMART 1K CCD area-detector
diffractometer
Bruker SMART 1K CCD area-detector
diffractometer
Absorption correctionIntegration
(XPREP; Bruker, 1999)
Integration
(XPREP; Bruker, 1999)
Integration
(XPREP; Bruker, 1999)
Integration
(XPREP; Bruker, 1999)
Tmin, Tmax0.075, 0.3010.110, 0.4670.318, 0.7700.509, 0.817
No. of measured, independent and
observed [I > 2σ(I)] reflections
3346, 2038, 1945 18725, 3256, 2786 7104, 2805, 2244 17671, 5119, 3059
Rint0.0670.0420.0830.078
(sin θ/λ)max1)0.6600.6610.6610.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.116, 1.04 0.022, 0.052, 1.04 0.039, 0.07, 0.96 0.033, 0.057, 0.82
No. of reflections2038325628055119
No. of parameters139175155467
No. of restraints20083
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.20, 0.940.34, 0.641.44, 1.410.45, 0.43
Absolute structureFlack (1983), 765 Friedel pairs???
Absolute structure parameter0.003 (19)???


(VI)
Crystal data
Chemical formulaC8H9Br2NO6
Mr374.98
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)7.8071 (13), 22.760 (4), 6.7673 (10)
α, β, γ (°)90, 110.32 (1), 90
V3)1127.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)7.21
Crystal size (mm)0.42 × 0.4 × 0.2
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionIntegration
(XPREP; Bruker, 1999)
Tmin, Tmax0.092, 0.290
No. of measured, independent and
observed [I > 2σ(I)] reflections
12168, 2715, 2453
Rint0.085
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.076, 1.22
No. of reflections2715
No. of parameters158
No. of restraints0
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.92
Absolute structure?
Absolute structure parameter?

Computer programs: SMART-NT (Bruker, 1998), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.86 (12)2.01 (12)2.858 (8)169 (10)
Symmetry code: (i) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.76 (3)2.17 (3)2.927 (2)171 (3)
Symmetry code: (i) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.841.962.752 (3)157
Symmetry code: (i) x1, y+1, z.
Hydrogen-bond geometry (Å, º) for (V) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O3Ai0.842.243.03 (2)157
O1B—H1B···O3Bi0.842.142.90 (3)151
Symmetry code: (i) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (VI) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.89 (4)1.94 (4)2.774 (3)156 (4)
Symmetry code: (i) x1, y, z1.
Table 6. Br···Br and Br···O geometries in all compounds (Å, °). top
CompoundInteractionX···Xθ1θ2Type
(II)C3—Br1···Br2i3.663 (2)13899II
C6—Br2···O2ii3.205 (2)155III
(IV)C6—Br2···Br2iii3.453 (4)155155I
C3—Br1···O1iv3.017 (3)176III
(V)C6A—Br2A···O3Av3.159 (2)158III
C6B—Br2B···O3Bv3.258 (2)152III
(VI)C6—Br2···Br2vi3.608 (10)149149I
C3—Br1···O1vii3.097 (5)168III
Symmetry codes: (i) x-1/2, y-1/2, z; (ii) x+1, -y+1, z+1/2; (iii) -x+1, -y+2, -z+1; (iv) x, y-1, z; (v) x, y+1, z; (vi) -x+2, -y, -z+2; (vii) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds