Download citation
Download citation
link to html
The crystal structures of 7-benzoyl-r-2,c-4,t-6,t-8-tetra­phenyl-3-thia-7-aza­bicyclo­[3.3.1]nonane, C38H33NOS, (I), and r-2,c-4,t-6,t-8-tetra­phenyl-7-phenyl­acetyl-3-thia-7-aza­bicyclo­[3.3.1]nonane [systematic name: 2-phenyl-1-(r-2,c-4,t-6,t-8-tetra­phenyl-3-thia-7-aza­bicyclo­[3.3.1]nonan-7-yl)ethanone], C39H35NOS, (II), both reveal a forced twin-chair conformation with the 1,3-diaxial phenyl groups in the piperidine ring, and flattening at the N-atom end of the piperidine ring of the bicyclic system. In the crystal structure of (I), mol­ecules are linked into sheets by a combination of two weak C—H...O and one C—H...π(arene) hydrogen bond, while in the crystal structure of (II), the mol­ecules extend into double-layered sheets assisted by three C—H...π(arene) hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110023115/gd3335sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110023115/gd3335Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110023115/gd3335IIsup3.hkl
Contains datablock II

CCDC references: 790639; 790640

Comment top

The 3,7-diheterabicyclo[3.3.1]nonane ring system offers wide conformational flexibility owing to its possible twin-chair, chair-boat, boat-chair and twin-boat conformations (Jackman et al., 1982; Arjunan et al., 1981; Pantaleo et al., 1981; Jeyaraman & Avila, 1981). Many derivatives of 3,7-diheterabicyclo[3.3.1]nonanes have been found to be good class III antiarrhythmic agents (Cheema et al., 2007; Garrison et al., 1996; Yu et al., 2006). As part of a programme studying the synthesis and stereochemistry of N-acyl azabicyclic systems, we have synthesized a series of N-acyl derivatives of 2,4,6,8-tetraphenyl-3-thia-7-azabicyclo[3.3.1]nonanes and studied their stereochemistry (Sakthivel & Jeyaraman, 2010). We report here the molecular and crystal structures of phenyl(r-2,c-4,t-6,t-8-tetraphenyl-3-thia-7-azabicyclo[3.3.1]nonan-7-yl)methanone, (I), and 2-phenyl-1-(r-2,c-4,t-6,t-8-tetraphenyl-3-thia-7-azabicyclo[3.3.1]nonan-7-yl)ethanone, (II).

The asymmetric units of (I) and (II) each contain one molecule. The overall conformations are similar in both compounds. While the precursor of the title compounds, r-2,c-4,t-6,t-8-tetraphenyl-3-thia-7-diazabicyclo[3.3.1]nonan-9-one (TABN), is known to exist in a chair-boat conformation, with the piperidine ring of the bicyclic system in a boat form (Pantaleo et al., 1981), the bicyclic compounds (I) and (II) are forced to adopt twin-chair conformations (Figs. 1 and 2) with the 1,3-diaxial phenyl groups in the piperidine ring, because of the stabilizing character of the N—CO group, to avoid A1,3-strain (Johnson, 1968).

In both compounds, the thiapyrane ring is slightly distorted from an ideal chair conformation. Within this ring, the displacements of atoms C9 and S3 from the C1/C5/C4/C2 mean plane are 0.768 (2) and -0.864 (2) Å, respectively, in (I), and 0.757 (3) and -0.834 (2) Å, respectively, in (II). The C2—S3—C4 angle in the thiapyrane ring is 98.37 (7)° in (I) and 98.79 (9)° in (II). The two phenyl substitutents in this ring prefer to occupy equatorial positions.

Unlike the thiapyrane ring, the piperidine ring is considerably distorted from an ideal chair conformation in both compounds. Atoms C9 and N7 deviate from the C1/C5/C6/C8 mean plane by -0.699 (2) and 0.462 (2) Å, respectively, in (I), and -0.711 (3) and 0.391 (3) Å, respectively, in (II). These deviations are also reflected in the ranges of the C—C bond lengths and endocyclic C—C—C bond angles observed for both compounds [1.520 (2)–1.539 (2) Å and 108.21 (1)–113.34 (1)° in (I), and 1.519 (3)–1.547 (3) Å and 109.47 (1)–114.13 (2)° in (II)]. The displacement of atom N7 from the C6/C8/C28 plane is -0.077 (2) Å in (I) and -0.074 (2) Å in (II), and the sum of the angles around N7 is 358.15° in (I) and 359.24° in (II) (Tables 1 and 3), showing that this N atom exhibits planar character.

The acyl group prefers a coplanar orientation with respect to atoms C6 and C8, as is evident from the torsion angles C6—N7—C28—O29 and C8—N7—C28—O29 [-6.5 (2) and -175.93 (1)°, respectively, in (I), and 4.5 (3) and -165.67 (2)°, respectively, in (II)]. The angles between the least-squares planes C6/N7/C8 and N7/C28/O29 are 9.39 (3) and 12.65 (3)° in (I) and (II), respectively, showing that the acyl functionality is coplanar with the C6/N7/C8 plane. The N7—C28 bond is 1.36 (2) Å in (I) and 1.37 (2) Å in (II). The contraction of this N—C bond is due to delocalization between the lone pair of electrons of the ring N atom and the hetero π electrons of the carbonyl group. As a result, the N—C bond exhibits partial double-bond character, which leads to restricted rotation about the bond, as also found in solution NMR studies (Rogers & Woodbrey, 1962).

A comparison of the molecular structures of (I) and (II) with that of the precursor, TABN (Pantaleo et al., 1981), reveals that the piperidine ring in (I) and (II) is flipped from a boat conformation to a chair in order to avoid A1,3-strain (Johnson, 1968) caused by the interaction of the acyl group with the α,α'-diphenyl substituents. This is evidenced by the increased torsion angles about the C1—C8 and C5—C6 bonds in (I) and (II) compared with TABN (Table 5). The ring flipping causes a decrease in the N7···S3 non-bonding distance, to 3.080 (2) Å in (I) and 3.176 (2) Å in (II), compared with 3.841 Å in TABN. As a result, the lone pair–lone pair repulsion of the sp2-hybridized atoms N7 and S3 is increased. However, severe interaction is avoided by ring flattening at the N-atom end of the piperidine ring. The increased lone pair–lone pair repulsion of atoms N7 and S3 in (I) and (II) compared with TABN can be seen from the torsion angles about the C2—S3 and C4—S3 bonds, listed in Table 5. The N7···S3 non-bonding distances and the torsion angles about the C2—S3 and C4—S3 bonds are in agreement with the reported N3···C7 non-bonding distances and the torsion angles about the C6—C7 and C8—C7 bonds of N-acetyl- and N-nitroso-2,4-diphenyl-3-azabicyclo[3.3.1]nonanes (Kumaran et al., 1999; Priya et al., 1993). Due to ring flipping, the phenyl substitutents in the piperidine rings of (I) and (II) are pushed into diaxial positions, with dihedral angles of 37.64 (8) and 66.58 (8)°, respectively. This is in agreement with the ring flipping observed in N-nitroso-2,4,6,8-tetraphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one (Gdaniec et al., 1997).

The crystal structure of (I) is stabilized by two weak C—H···O hydrogen-bonding interactions and one C—H···π(arene) hydrogen-bonding interaction (Table 2). The molecules of (I) are linked into sheets, the formation of which can be analysed in terms of two substructural motifs formed by the individual hydrogen bonds. In the first of these motifs, the molecules are interlinked via intermolecular bifurcated C25—H25···O29 and C39—H39···O29 bonds, forming a cyclic R32(23) motif (Fig. 3) (Bernstein et al.,1995). Aromatic atoms C25 and C39 in the molecule at (x, y, z) act as hydrogen-bond donors to atom O29 in the molecules at (-x + 1, y - 1/2, -z + 3/2) and (x, y - 1, z), respectively. Translation of this motif by the space group then generates a ribbon along the b axis. Neighbouring ribbons run in an anti-parallel fashion, interconnected by the second motif. In the second motif, atom C1 in the molecule at (x, y, z) acts as a hydrogen-bond donor to the centroid of the aryl ring C10–C15 of the molecule at (-x + 2, -y, -z + 2), and likewise, the centroid of the aryl ring C10–C15 at (x, y, z) accepts a hydrogen bond from atom C1 in the molecule at (-x + 2, -y, -z + 2) (Fig. 4). The linking of the cyclic R32(23) motifs by C—H···π(arene) hydrogen bonds thus generates a sheet in the bc plane (Fig. 5). There are no interactions between adjacent sheets.

The crystal structure of (II) exhibits three types of C—H···π(arene) hydrogen bonds (Table 4). The molecules of (II) are linked into sheets by two C—H···π(arene) hydrogen bonds, and two such sheets are linked by a third C—H···π(arene) hydrogen bond to form a double-layered sheet. The whole structure can be readily analysed in terms of three substructural motifs. In the first motif, aromatic atom C14 in the molecule at (x, y, z) acts as a hydrogen-bond donor to the centroid of the C22–C27 ring in the molecule at (x, -y + 3/2, z - 1/2). Propagation by translation of this C—H···π(arene) hydrogen bond then generates a chain running along the c axis. In the second motif, parallel chains are interlinked by another C—H···π(arene) hydrogen bond formed by aromatic atom C12 in the molecule at (x, y, z) and the centroid of the C37–C42 ring in the molecule at (x, y + 1, z), thus forming a sheet in the bc plane (Fig. 6). The third substructure constitutes a double-layered sheet (Fig. 7), wherein two sheets are interlinked by the third C—H···π(arene) hydrogen bond, formed by aromatic atom C35 in the molecule at (x, y, z) and the centroid of the C37–C42 ring in the molecule at (-x + 1, -y + 2, -z + 1). The double-layered sheets are arranged in the ac plane and there are no interactions between adjacent double-layered sheets.

Related literature top

For related literature, see: Arjunan et al. (1981); Bernstein et al. (1995); Cheema et al. (2007); Garrison et al. (1996); Gdaniec et al. (1997); Jackman et al. (1982); Jeyaraman & Avila (1981); Johnson (1968); Kumaran et al. (1999); Pantaleo et al. (1981); Priya et al. (1993); Rogers & Woodbrey (1962); Sakthivel & Jeyaraman (2010); Sheldrick (2008); Yu et al. (2006).

Experimental top

Compounds, (I) and (II) were synthesized from 2,4,6,8-tetraphenyl-3-thia-7-azabicyclo[3.3.1]nonane by benzoylation and phenylacetylation, respectively, in the presence of triethylamine in a dry benzene medium (Sakthivel & Jeyaraman, 2010). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in a benzene–hexane (1:1 v/v) mixture.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with aromatic C—H = 0.93 Å, tertiary C—H = 0.98 Å and secondary C—H = 0.97 Å, and with Uiso(H) = 1.2Ueq(C). The (100) reflection for (I) was omitted from the refinement as it was completely obscured by the beamstop. The elongated anisotropic displacement ellipsoid of atom S3 in (II) was restrained using SIMU (SHELXL97; Sheldrick, 2008). Both data sets were truncated at ca θ = 26°, as only statistically insignificant data were present above these limits.

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004) and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004) and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-32 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the molecule of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of an R32(23) motif that forms the ribbon along the b axis. For the sake of clarity, H atoms not involved in the motif shown have been omitted. [Symmetry codes: (i) -x + 1, y - 1/2, -z + 3/2; (ii) x, y - 1, z.]
[Figure 4] Fig. 4. Part of the crystal structure of (I), showing the C—H···π interaction, which links the ribbons shown in Fig. 2 in the bc plane. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Cg1 is the centroid of the C10–C15 ring. [Please check added text] [Symmetry code: (iii) -x + 2, -y, -z + 2.]
[Figure 5] Fig. 5. Part of the crystal structure of (I), showing the formation of the hydrogen-bonded sheet in the bc plane. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 6] Fig. 6. Part of the crystal structure of (II), showing the formation of the sheet in the bc plane. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. Cg1 and Cg2 are the centroids of the C22–C27 and C37–C42 rings, respectively. [Please check added text] [Symmetry codes: (i) x, y + 1, z; (ii) x, -y + 3/2, z - 1/2.]
[Figure 7] Fig. 7. Part of the crystal structure of (II), showing the formation of the double-layered sheet in the ac plane. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
(I) phenyl(r-2,c-4,t-6,t-8-tetraphenyl- 3-thia-7-azabicyclo[3.3.1]nonan-7-yl)methanone top
Crystal data top
C38H33NOSF(000) = 1168
Mr = 551.72Dx = 1.283 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7350 reflections
a = 16.139 (5) Åθ = 1.3–28.7°
b = 10.145 (5) ŵ = 0.15 mm1
c = 17.453 (5) ÅT = 293 K
β = 92.046 (5)°Prism, colourless
V = 2855.8 (19) Å30.30 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5605 independent reflections
Radiation source: Fine-focus sealed tube4267 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and ϕ scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
[SADABS (Bruker, 2004; Blessing, 1995)]
h = 1919
Tmin = 0.957, Tmax = 0.974k = 1211
27638 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.044P)2 + 0.6605P]
where P = (Fo2 + 2Fc2)/3
5605 reflections(Δ/σ)max = 0.001
370 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C38H33NOSV = 2855.8 (19) Å3
Mr = 551.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.139 (5) ŵ = 0.15 mm1
b = 10.145 (5) ÅT = 293 K
c = 17.453 (5) Å0.30 × 0.22 × 0.18 mm
β = 92.046 (5)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5605 independent reflections
Absorption correction: multi-scan
[SADABS (Bruker, 2004; Blessing, 1995)]
4267 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.974Rint = 0.034
27638 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.05Δρmax = 0.33 e Å3
5605 reflectionsΔρmin = 0.24 e Å3
370 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S30.82644 (2)0.33712 (4)0.98103 (3)0.0448 (1)
O290.70878 (8)0.34354 (13)0.78847 (8)0.0596 (5)
N70.74152 (7)0.16124 (12)0.85768 (7)0.0339 (4)
C10.82690 (9)0.06116 (15)0.96358 (8)0.0363 (5)
C20.88048 (9)0.17861 (16)0.99035 (9)0.0394 (5)
C40.73137 (10)0.29193 (17)1.02738 (10)0.0453 (5)
C50.69169 (10)0.16727 (16)0.99169 (9)0.0408 (5)
C60.66884 (9)0.18204 (16)0.90608 (9)0.0391 (5)
C80.80249 (9)0.05810 (14)0.87769 (8)0.0331 (4)
C90.74878 (10)0.05018 (17)1.00927 (9)0.0423 (5)
C100.96512 (9)0.19279 (16)0.95551 (8)0.0385 (5)
C110.99993 (10)0.09658 (17)0.91042 (9)0.0445 (5)
C121.07730 (10)0.11366 (19)0.88021 (10)0.0514 (6)
C131.12242 (11)0.2256 (2)0.89621 (11)0.0559 (6)
C141.09029 (11)0.32036 (19)0.94271 (11)0.0540 (6)
C151.01265 (10)0.30458 (17)0.97154 (10)0.0463 (5)
C160.67511 (10)0.41074 (18)1.03071 (10)0.0477 (6)
C170.66804 (12)0.5029 (2)0.97288 (12)0.0601 (7)
C180.61737 (13)0.6117 (2)0.97894 (15)0.0751 (8)
C190.57213 (14)0.6290 (3)1.04317 (16)0.0796 (9)
C200.57740 (13)0.5376 (3)1.10071 (14)0.0754 (9)
C210.62839 (11)0.4298 (2)1.09509 (11)0.0591 (7)
C220.59391 (9)0.10197 (18)0.87771 (10)0.0441 (5)
C230.56730 (11)0.0126 (2)0.91184 (12)0.0583 (7)
C240.49901 (12)0.0802 (2)0.88170 (14)0.0724 (8)
C250.45601 (12)0.0342 (3)0.81897 (15)0.0775 (9)
C260.48129 (12)0.0798 (3)0.78469 (13)0.0761 (9)
C270.54948 (11)0.1477 (2)0.81390 (11)0.0580 (7)
C280.75666 (9)0.25237 (16)0.80319 (9)0.0402 (5)
C300.83591 (9)0.24288 (16)0.76142 (9)0.0389 (5)
C310.85066 (11)0.14558 (18)0.70793 (9)0.0491 (6)
C320.92464 (12)0.1418 (2)0.67186 (10)0.0581 (7)
C330.98443 (12)0.2338 (2)0.68825 (11)0.0636 (7)
C340.97058 (12)0.3314 (2)0.74012 (12)0.0620 (7)
C350.89625 (11)0.33674 (18)0.77646 (11)0.0528 (6)
C360.77523 (9)0.07787 (15)0.84855 (8)0.0357 (4)
C370.72046 (10)0.09110 (17)0.78593 (9)0.0436 (5)
C380.70216 (11)0.21268 (19)0.75478 (11)0.0555 (6)
C390.73747 (11)0.32502 (18)0.78514 (12)0.0587 (7)
C400.79081 (12)0.31406 (17)0.84747 (12)0.0568 (7)
C410.80947 (10)0.19264 (16)0.87882 (10)0.0466 (6)
H10.859500.018600.974400.0440*
H20.891300.165601.045400.0470*
H40.747200.269601.080500.0540*
H50.640000.151301.018000.0490*
H60.653100.274600.898900.0470*
H80.852700.080300.850500.0400*
H9A0.763500.048301.063600.0510*
H9B0.720100.031300.996200.0510*
H110.970800.019100.900300.0530*
H121.098900.048900.848900.0620*
H131.174300.237100.875700.0670*
H141.121100.395500.954800.0650*
H150.991400.370201.002500.0560*
H170.698000.491500.928800.0720*
H180.613900.673300.939500.0900*
H190.538100.702401.047600.0960*
H200.546200.548401.144000.0900*
H210.631700.368901.134900.0710*
H230.595400.044600.955400.0700*
H240.482400.158100.904700.0870*
H250.409900.079600.799400.0930*
H260.452300.111600.741500.0910*
H270.565800.225200.790400.0700*
H310.810200.082600.696500.0590*
H320.934200.076300.636000.0700*
H331.034800.229900.664000.0760*
H341.011300.394200.750900.0740*
H350.886700.403900.811300.0630*
H370.695600.016300.764600.0520*
H380.665400.218800.712600.0670*
H390.725300.407000.763700.0700*
H400.814800.389500.868900.0680*
H410.845900.187600.921300.0560*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S30.0406 (2)0.0369 (2)0.0567 (3)0.0011 (2)0.0019 (2)0.0060 (2)
O290.0545 (7)0.0500 (8)0.0743 (9)0.0168 (6)0.0012 (6)0.0231 (7)
N70.0327 (6)0.0295 (7)0.0392 (7)0.0019 (5)0.0028 (5)0.0024 (5)
C10.0384 (8)0.0317 (8)0.0383 (8)0.0013 (6)0.0042 (6)0.0037 (6)
C20.0387 (8)0.0400 (9)0.0389 (8)0.0002 (7)0.0068 (6)0.0009 (7)
C40.0456 (9)0.0477 (10)0.0424 (9)0.0000 (8)0.0002 (7)0.0065 (8)
C50.0377 (8)0.0424 (10)0.0426 (8)0.0028 (7)0.0041 (7)0.0023 (7)
C60.0337 (8)0.0369 (9)0.0467 (9)0.0036 (7)0.0001 (6)0.0021 (7)
C80.0309 (7)0.0304 (8)0.0377 (8)0.0019 (6)0.0019 (6)0.0039 (6)
C90.0452 (9)0.0431 (10)0.0384 (8)0.0049 (7)0.0002 (7)0.0020 (7)
C100.0372 (8)0.0401 (9)0.0376 (8)0.0015 (7)0.0080 (6)0.0031 (7)
C110.0394 (9)0.0421 (10)0.0512 (9)0.0030 (7)0.0092 (7)0.0013 (8)
C120.0438 (9)0.0567 (12)0.0535 (10)0.0086 (8)0.0019 (8)0.0015 (9)
C130.0432 (9)0.0674 (13)0.0572 (11)0.0034 (9)0.0039 (8)0.0099 (10)
C140.0510 (10)0.0513 (12)0.0592 (11)0.0117 (9)0.0045 (8)0.0045 (9)
C150.0453 (9)0.0440 (10)0.0491 (9)0.0026 (8)0.0042 (7)0.0036 (8)
C160.0433 (9)0.0473 (11)0.0524 (10)0.0008 (8)0.0015 (7)0.0126 (9)
C170.0586 (11)0.0558 (12)0.0668 (12)0.0106 (9)0.0135 (9)0.0065 (10)
C180.0735 (14)0.0583 (14)0.0940 (16)0.0194 (11)0.0095 (12)0.0021 (12)
C190.0653 (13)0.0702 (16)0.1039 (19)0.0197 (12)0.0113 (13)0.0245 (14)
C200.0626 (13)0.0830 (17)0.0818 (15)0.0048 (12)0.0193 (11)0.0309 (14)
C210.0565 (11)0.0629 (13)0.0583 (11)0.0016 (10)0.0085 (9)0.0157 (10)
C220.0310 (8)0.0492 (10)0.0521 (9)0.0045 (7)0.0022 (7)0.0120 (8)
C230.0419 (10)0.0619 (13)0.0709 (12)0.0095 (9)0.0009 (8)0.0029 (10)
C240.0449 (11)0.0728 (15)0.1000 (17)0.0167 (10)0.0082 (11)0.0191 (13)
C250.0372 (10)0.0935 (19)0.1014 (18)0.0088 (11)0.0020 (11)0.0434 (15)
C260.0453 (11)0.105 (2)0.0764 (14)0.0106 (12)0.0192 (10)0.0245 (14)
C270.0436 (10)0.0682 (13)0.0616 (11)0.0065 (9)0.0074 (8)0.0076 (10)
C280.0407 (8)0.0348 (9)0.0444 (9)0.0024 (7)0.0069 (7)0.0032 (7)
C300.0431 (8)0.0360 (9)0.0372 (8)0.0015 (7)0.0043 (6)0.0102 (7)
C310.0582 (11)0.0489 (11)0.0398 (9)0.0069 (8)0.0038 (8)0.0043 (8)
C320.0714 (13)0.0615 (13)0.0419 (9)0.0071 (10)0.0100 (9)0.0034 (9)
C330.0544 (11)0.0815 (16)0.0555 (11)0.0038 (11)0.0120 (9)0.0167 (11)
C340.0542 (11)0.0673 (14)0.0642 (12)0.0180 (10)0.0008 (9)0.0123 (11)
C350.0601 (11)0.0437 (10)0.0545 (10)0.0063 (9)0.0009 (8)0.0030 (8)
C360.0326 (7)0.0324 (8)0.0423 (8)0.0001 (6)0.0045 (6)0.0013 (7)
C370.0451 (9)0.0354 (9)0.0499 (9)0.0006 (7)0.0056 (7)0.0003 (8)
C380.0552 (11)0.0470 (11)0.0636 (11)0.0077 (9)0.0069 (9)0.0110 (9)
C390.0579 (11)0.0369 (11)0.0817 (14)0.0071 (8)0.0063 (10)0.0142 (10)
C400.0569 (11)0.0316 (10)0.0820 (13)0.0050 (8)0.0025 (10)0.0025 (9)
C410.0435 (9)0.0374 (10)0.0584 (10)0.0038 (7)0.0033 (8)0.0031 (8)
Geometric parameters (Å, º) top
S3—C21.8338 (19)C34—C351.378 (3)
S3—C41.8186 (19)C36—C371.387 (2)
O29—C281.227 (2)C36—C411.385 (2)
N7—C61.485 (2)C37—C381.376 (3)
N7—C81.470 (2)C38—C391.372 (3)
N7—C281.355 (2)C39—C401.368 (3)
C1—C21.535 (2)C40—C411.377 (3)
C1—C81.537 (2)C1—H10.9800
C1—C91.520 (2)C2—H20.9800
C2—C101.522 (2)C4—H40.9800
C4—C51.539 (2)C5—H50.9800
C4—C161.511 (3)C6—H60.9800
C5—C61.534 (2)C8—H80.9800
C5—C91.528 (2)C9—H9A0.9700
C6—C221.525 (2)C9—H9B0.9700
C8—C361.529 (2)C11—H110.9300
C10—C111.385 (2)C12—H120.9300
C10—C151.392 (2)C13—H130.9300
C11—C121.384 (2)C14—H140.9300
C12—C131.372 (3)C15—H150.9300
C13—C141.372 (3)C17—H170.9300
C14—C151.376 (3)C18—H180.9300
C16—C171.378 (3)C19—H190.9300
C16—C211.389 (3)C20—H200.9300
C17—C181.380 (3)C21—H210.9300
C18—C191.371 (4)C23—H230.9300
C19—C201.367 (4)C24—H240.9300
C20—C211.374 (3)C25—H250.9300
C22—C231.382 (3)C26—H260.9300
C22—C271.383 (3)C27—H270.9300
C23—C241.386 (3)C31—H310.9300
C24—C251.358 (3)C32—H320.9300
C25—C261.371 (4)C33—H330.9300
C26—C271.380 (3)C34—H340.9300
C28—C301.498 (2)C35—H350.9300
C30—C311.385 (2)C37—H370.9300
C30—C351.381 (2)C38—H380.9300
C31—C321.370 (3)C39—H390.9300
C32—C331.365 (3)C40—H400.9300
C33—C341.365 (3)C41—H410.9300
C2—C1—C9111.47 (12)C1—C2—H2106.00
C8—C1—C9108.77 (12)C10—C2—H2106.00
S3—C2—C1113.12 (10)S3—C4—H4106.00
S3—C4—C5111.87 (12)C5—C4—H4106.00
C4—C5—C9108.56 (13)C16—C4—H4107.00
C6—C5—C9113.20 (13)C4—C5—H5107.00
N7—C6—C5111.90 (12)C6—C5—H5107.00
N7—C8—C1111.32 (12)C9—C5—H5107.00
C1—C9—C5110.08 (13)N7—C6—H6106.00
O29—C28—N7122.25 (14)C5—C6—H6106.00
O29—C28—C30119.28 (15)C22—C6—H6106.00
C2—S3—C498.37 (7)N7—C8—H8106.00
C6—N7—C8120.12 (12)C1—C8—H8106.00
C6—N7—C28117.93 (12)C36—C8—H8106.00
C8—N7—C28121.10 (12)C1—C9—H9A110.00
C2—C1—C8115.76 (12)C1—C9—H9B110.00
S3—C2—C10108.21 (11)C5—C9—H9A110.00
C1—C2—C10117.11 (13)C5—C9—H9B110.00
S3—C4—C16109.49 (12)H9A—C9—H9B108.00
C5—C4—C16115.40 (14)C10—C11—H11119.00
C4—C5—C6113.34 (13)C12—C11—H11119.00
N7—C6—C22111.90 (13)C11—C12—H12120.00
C5—C6—C22115.13 (13)C13—C12—H12120.00
N7—C8—C36112.39 (12)C12—C13—H13120.00
C1—C8—C36113.79 (12)C14—C13—H13120.00
C2—C10—C11123.26 (14)C13—C14—H14120.00
C2—C10—C15119.53 (14)C15—C14—H14120.00
C11—C10—C15117.16 (14)C10—C15—H15119.00
C10—C11—C12121.20 (16)C14—C15—H15119.00
C11—C12—C13120.37 (17)C16—C17—H17119.00
C12—C13—C14119.42 (17)C18—C17—H17119.00
C13—C14—C15120.21 (17)C17—C18—H18120.00
C10—C15—C14121.58 (16)C19—C18—H18120.00
C4—C16—C17123.18 (16)C18—C19—H19120.00
C4—C16—C21119.10 (16)C20—C19—H19120.00
C17—C16—C21117.72 (17)C19—C20—H20120.00
C16—C17—C18121.4 (2)C21—C20—H20120.00
C17—C18—C19120.0 (2)C16—C21—H21120.00
C18—C19—C20119.5 (2)C20—C21—H21120.00
C19—C20—C21120.6 (2)C22—C23—H23120.00
C16—C21—C20120.82 (19)C24—C23—H23120.00
C6—C22—C23124.29 (15)C23—C24—H24120.00
C6—C22—C27117.72 (16)C25—C24—H24120.00
C23—C22—C27117.98 (16)C24—C25—H25120.00
C22—C23—C24120.53 (19)C26—C25—H25120.00
C23—C24—C25120.8 (2)C25—C26—H26120.00
C24—C25—C26119.4 (2)C27—C26—H26120.00
C25—C26—C27120.4 (2)C22—C27—H27119.00
C22—C27—C26120.90 (19)C26—C27—H27120.00
N7—C28—C30118.45 (13)C30—C31—H31120.00
C28—C30—C31122.97 (14)C32—C31—H31120.00
C28—C30—C35118.16 (15)C31—C32—H32120.00
C31—C30—C35118.86 (15)C33—C32—H32120.00
C30—C31—C32120.21 (16)C32—C33—H33120.00
C31—C32—C33120.37 (18)C34—C33—H33120.00
C32—C33—C34120.23 (18)C33—C34—H34120.00
C33—C34—C35119.97 (18)C35—C34—H34120.00
C30—C35—C34120.34 (17)C30—C35—H35120.00
C8—C36—C37121.12 (14)C34—C35—H35120.00
C8—C36—C41121.68 (13)C36—C37—H37119.00
C37—C36—C41116.96 (15)C38—C37—H37119.00
C36—C37—C38121.32 (16)C37—C38—H38120.00
C37—C38—C39120.78 (17)C39—C38—H38120.00
C38—C39—C40118.73 (17)C38—C39—H39121.00
C39—C40—C41120.76 (17)C40—C39—H39121.00
C36—C41—C40121.45 (16)C39—C40—H40120.00
C2—C1—H1107.00C41—C40—H40120.00
C8—C1—H1107.00C36—C41—H41119.00
C9—C1—H1107.00C40—C41—H41119.00
S3—C2—H2106.00
C4—S3—C2—C149.37 (12)N7—C8—C36—C3725.00 (19)
C4—S3—C2—C10179.17 (11)N7—C8—C36—C41160.87 (14)
C2—S3—C4—C553.26 (13)C1—C8—C36—C37152.67 (14)
C2—S3—C4—C16177.51 (12)C1—C8—C36—C4133.19 (19)
C8—N7—C6—C538.98 (18)C2—C10—C11—C12179.73 (15)
C8—N7—C6—C2291.94 (16)C15—C10—C11—C122.5 (2)
C28—N7—C6—C5130.54 (14)C2—C10—C15—C14178.55 (16)
C28—N7—C6—C2298.54 (16)C11—C10—C15—C141.2 (2)
C6—N7—C8—C145.97 (17)C10—C11—C12—C131.8 (3)
C6—N7—C8—C3683.00 (15)C11—C12—C13—C140.3 (3)
C28—N7—C8—C1123.21 (14)C12—C13—C14—C151.5 (3)
C28—N7—C8—C36107.82 (15)C13—C14—C15—C100.8 (3)
C6—N7—C28—O296.5 (2)C4—C16—C17—C18178.47 (18)
C6—N7—C28—C30171.66 (13)C21—C16—C17—C181.0 (3)
C8—N7—C28—O29175.93 (14)C4—C16—C21—C20179.09 (18)
C8—N7—C28—C302.3 (2)C17—C16—C21—C200.4 (3)
C8—C1—C2—S365.46 (15)C16—C17—C18—C190.7 (3)
C8—C1—C2—C1061.43 (18)C17—C18—C19—C200.3 (4)
C9—C1—C2—S359.55 (15)C18—C19—C20—C210.9 (4)
C9—C1—C2—C10173.56 (13)C19—C20—C21—C160.5 (3)
C2—C1—C8—N771.00 (16)C6—C22—C23—C24179.22 (17)
C2—C1—C8—C36160.77 (12)C27—C22—C23—C241.2 (3)
C9—C1—C8—N755.39 (16)C6—C22—C27—C26179.54 (18)
C9—C1—C8—C3672.84 (16)C23—C22—C27—C260.9 (3)
C2—C1—C9—C567.19 (16)C22—C23—C24—C251.2 (3)
C8—C1—C9—C561.64 (16)C23—C24—C25—C260.8 (4)
S3—C2—C10—C11138.76 (14)C24—C25—C26—C270.4 (4)
S3—C2—C10—C1544.09 (17)C25—C26—C27—C220.5 (3)
C1—C2—C10—C119.5 (2)O29—C28—C30—C31110.16 (19)
C1—C2—C10—C15173.34 (14)O29—C28—C30—C3568.9 (2)
S3—C4—C5—C659.83 (16)N7—C28—C30—C3171.6 (2)
S3—C4—C5—C966.87 (15)N7—C28—C30—C35109.29 (18)
C16—C4—C5—C666.23 (18)C28—C30—C31—C32179.70 (16)
C16—C4—C5—C9167.08 (14)C35—C30—C31—C321.2 (3)
S3—C4—C16—C1737.0 (2)C28—C30—C35—C34179.28 (17)
S3—C4—C16—C21142.51 (15)C31—C30—C35—C341.6 (3)
C5—C4—C16—C1790.3 (2)C30—C31—C32—C330.0 (3)
C5—C4—C16—C2190.2 (2)C31—C32—C33—C340.8 (3)
C4—C5—C6—N781.46 (16)C32—C33—C34—C350.4 (3)
C4—C5—C6—C22149.29 (14)C33—C34—C35—C300.8 (3)
C9—C5—C6—N742.75 (18)C8—C36—C37—C38173.43 (15)
C9—C5—C6—C2286.51 (17)C41—C36—C37—C381.0 (2)
C4—C5—C9—C170.44 (16)C8—C36—C41—C40173.51 (15)
C6—C5—C9—C156.34 (17)C37—C36—C41—C400.9 (2)
N7—C6—C22—C23103.55 (19)C36—C37—C38—C390.3 (3)
N7—C6—C22—C2776.87 (19)C37—C38—C39—C400.5 (3)
C5—C6—C22—C2325.7 (2)C38—C39—C40—C410.6 (3)
C5—C6—C22—C27153.88 (16)C39—C40—C41—C360.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···O29i0.932.533.431 (3)162
C39—H39···O29ii0.932.583.395 (3)146
C1—H1···Cg1iii0.982.993.903 (3)155
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y1, z; (iii) x+2, y, z+2.
(II) 2-phenyl-1-(r-2,c-4,t-6,t-8-tetraphenyl-3-thia-7-azabicyclo[3.3.1]nonan-7-yl)ethanone top
Crystal data top
C39H35NOSF(000) = 1200
Mr = 565.75Dx = 1.222 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8894 reflections
a = 16.8724 (7) Åθ = 2.4–25.2°
b = 9.4863 (3) ŵ = 0.14 mm1
c = 19.2376 (8) ÅT = 293 K
β = 93.245 (1)°Prism, colourless
V = 3074.2 (2) Å30.24 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6045 independent reflections
Radiation source: fine-focus sealed tube4500 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and ϕ scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
[SADABS (Bruker, 2004; Blessing, 1995)]
h = 2020
Tmin = 0.968, Tmax = 0.976k = 1111
29474 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0542P)2 + 1.2416P]
where P = (Fo2 + 2Fc2)/3
6045 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C39H35NOSV = 3074.2 (2) Å3
Mr = 565.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.8724 (7) ŵ = 0.14 mm1
b = 9.4863 (3) ÅT = 293 K
c = 19.2376 (8) Å0.24 × 0.20 × 0.18 mm
β = 93.245 (1)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6045 independent reflections
Absorption correction: multi-scan
[SADABS (Bruker, 2004; Blessing, 1995)]
4500 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.976Rint = 0.029
29474 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.05Δρmax = 0.83 e Å3
6045 reflectionsΔρmin = 0.20 e Å3
379 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S30.89583 (3)0.97493 (6)0.58434 (3)0.0545 (2)
O290.69118 (9)0.89333 (17)0.66310 (7)0.0624 (5)
N70.74493 (9)0.77418 (16)0.57538 (7)0.0406 (4)
C10.84872 (11)0.7641 (2)0.48802 (9)0.0456 (6)
C20.89182 (12)0.9070 (2)0.49573 (10)0.0486 (6)
C40.93113 (12)0.8170 (2)0.62982 (10)0.0484 (6)
C50.88196 (11)0.6841 (2)0.60947 (10)0.0461 (6)
C60.79485 (11)0.6926 (2)0.62746 (9)0.0441 (6)
C80.75942 (11)0.77090 (19)0.50032 (9)0.0418 (6)
C90.88949 (12)0.6505 (2)0.53268 (10)0.0501 (6)
C100.85747 (12)1.0171 (2)0.44534 (10)0.0496 (6)
C110.81835 (15)1.1365 (2)0.46602 (12)0.0670 (8)
C120.78521 (17)1.2308 (3)0.41785 (13)0.0791 (10)
C130.78934 (16)1.2065 (3)0.34857 (13)0.0749 (9)
C140.82864 (16)1.0897 (3)0.32687 (12)0.0722 (9)
C150.86323 (14)0.9959 (3)0.37470 (11)0.0616 (8)
C160.93808 (11)0.8452 (2)0.70715 (10)0.0466 (6)
C170.99827 (13)0.7783 (3)0.74648 (12)0.0626 (8)
C181.00846 (16)0.7999 (3)0.81707 (13)0.0752 (9)
C190.96014 (15)0.8903 (3)0.84986 (11)0.0679 (9)
C200.89922 (15)0.9556 (3)0.81242 (12)0.0655 (8)
C210.88784 (13)0.9327 (2)0.74139 (11)0.0569 (7)
C220.75756 (12)0.5501 (2)0.64317 (9)0.0495 (6)
C230.68564 (14)0.5494 (3)0.67535 (12)0.0659 (8)
C240.64934 (17)0.4228 (3)0.69187 (13)0.0801 (10)
C250.68465 (19)0.2964 (3)0.67800 (13)0.0812 (10)
C260.75507 (18)0.2954 (3)0.64661 (12)0.0736 (9)
C270.79070 (15)0.4207 (2)0.62895 (11)0.0608 (8)
C280.69321 (11)0.8694 (2)0.60090 (9)0.0459 (6)
C300.63500 (12)0.9420 (2)0.54938 (10)0.0525 (7)
C310.55902 (11)0.9811 (2)0.58182 (10)0.0470 (6)
C320.50801 (15)0.8789 (2)0.60316 (14)0.0722 (9)
C330.43786 (16)0.9134 (3)0.63196 (16)0.0860 (10)
C340.41812 (16)1.0507 (3)0.64054 (14)0.0793 (10)
C350.46691 (15)1.1533 (3)0.61936 (13)0.0719 (9)
C360.53730 (13)1.1190 (2)0.58962 (11)0.0570 (7)
C370.71118 (11)0.6604 (2)0.45813 (9)0.0448 (6)
C380.71698 (12)0.6558 (2)0.38627 (10)0.0529 (7)
C390.67066 (14)0.5661 (3)0.34477 (11)0.0633 (8)
C400.61678 (16)0.4796 (2)0.37417 (13)0.0694 (9)
C410.61004 (15)0.4825 (2)0.44497 (13)0.0688 (9)
C420.65671 (13)0.5725 (2)0.48663 (11)0.0561 (7)
H10.852900.734800.439500.0550*
H20.946800.891000.483800.0580*
H40.985100.799700.615500.0580*
H50.905800.605200.636100.0550*
H60.794500.746600.670900.0530*
H80.741300.862400.481900.0500*
H9A0.945100.645300.522700.0600*
H9B0.865300.559700.521800.0600*
H110.814201.153800.513300.0800*
H120.759901.311300.433000.0950*
H130.765701.268600.316200.0900*
H140.832201.073100.279500.0870*
H150.890600.918000.359200.0740*
H171.032400.717600.724700.0750*
H181.048600.752500.842600.0900*
H190.968500.907600.897300.0810*
H200.865301.015500.834800.0790*
H210.845900.976900.716600.0680*
H230.661600.634300.685900.0790*
H240.600800.424000.712500.0960*
H250.660700.212100.689900.0970*
H260.779300.210100.637000.0880*
H270.838300.417800.606900.0730*
H30A0.659401.026400.531900.0630*
H30B0.623100.879600.510200.0630*
H320.521200.784400.598000.0870*
H330.403900.842700.645600.1030*
H340.371201.074100.660900.0950*
H350.453101.247400.624800.0860*
H360.570101.190400.574800.0680*
H380.753000.714700.365700.0630*
H390.676000.564300.296900.0760*
H400.585000.419500.346400.0830*
H410.573800.423500.465100.0830*
H420.651200.573600.534500.0670*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S30.0709 (4)0.0499 (3)0.0425 (3)0.0017 (2)0.0026 (2)0.0014 (2)
O290.0637 (9)0.0831 (11)0.0404 (8)0.0234 (8)0.0039 (6)0.0136 (7)
N70.0429 (8)0.0446 (8)0.0347 (7)0.0054 (7)0.0062 (6)0.0026 (6)
C10.0499 (11)0.0507 (11)0.0369 (9)0.0067 (9)0.0099 (8)0.0040 (8)
C20.0481 (11)0.0570 (12)0.0415 (10)0.0034 (9)0.0103 (8)0.0013 (9)
C40.0438 (10)0.0551 (11)0.0466 (11)0.0063 (9)0.0045 (8)0.0007 (9)
C50.0481 (11)0.0454 (10)0.0451 (10)0.0097 (8)0.0046 (8)0.0017 (8)
C60.0477 (10)0.0488 (10)0.0360 (9)0.0054 (8)0.0039 (8)0.0002 (8)
C80.0486 (10)0.0430 (10)0.0345 (9)0.0076 (8)0.0077 (8)0.0003 (7)
C90.0508 (11)0.0532 (11)0.0470 (11)0.0112 (9)0.0094 (9)0.0041 (9)
C100.0498 (11)0.0564 (12)0.0433 (10)0.0059 (9)0.0095 (8)0.0061 (9)
C110.0876 (17)0.0639 (14)0.0502 (12)0.0111 (12)0.0095 (12)0.0049 (11)
C120.102 (2)0.0657 (15)0.0690 (16)0.0167 (14)0.0006 (14)0.0092 (12)
C130.0895 (18)0.0677 (16)0.0655 (15)0.0048 (14)0.0129 (13)0.0186 (12)
C140.0917 (18)0.0816 (17)0.0431 (12)0.0132 (14)0.0022 (12)0.0105 (11)
C150.0715 (14)0.0678 (14)0.0464 (11)0.0011 (11)0.0124 (10)0.0037 (10)
C160.0427 (10)0.0512 (11)0.0456 (10)0.0042 (8)0.0011 (8)0.0038 (8)
C170.0515 (12)0.0699 (14)0.0653 (14)0.0045 (11)0.0056 (10)0.0052 (11)
C180.0689 (15)0.0906 (19)0.0634 (15)0.0093 (14)0.0191 (12)0.0180 (14)
C190.0782 (16)0.0833 (17)0.0415 (11)0.0329 (14)0.0021 (11)0.0080 (11)
C200.0767 (16)0.0695 (15)0.0520 (13)0.0127 (12)0.0180 (12)0.0057 (11)
C210.0573 (12)0.0641 (13)0.0495 (11)0.0037 (10)0.0049 (10)0.0028 (10)
C220.0577 (12)0.0551 (12)0.0354 (9)0.0011 (9)0.0008 (9)0.0044 (8)
C230.0678 (15)0.0738 (15)0.0568 (13)0.0053 (12)0.0100 (11)0.0091 (11)
C240.0776 (17)0.100 (2)0.0630 (15)0.0246 (16)0.0077 (13)0.0155 (14)
C250.111 (2)0.0713 (17)0.0594 (15)0.0303 (16)0.0120 (15)0.0106 (13)
C260.110 (2)0.0561 (14)0.0536 (13)0.0085 (14)0.0062 (14)0.0008 (11)
C270.0810 (16)0.0535 (12)0.0476 (12)0.0012 (11)0.0020 (11)0.0019 (9)
C280.0464 (10)0.0516 (11)0.0401 (10)0.0049 (9)0.0063 (8)0.0050 (8)
C300.0526 (11)0.0607 (12)0.0448 (11)0.0124 (10)0.0070 (9)0.0012 (9)
C310.0468 (11)0.0506 (11)0.0434 (10)0.0086 (9)0.0005 (8)0.0041 (8)
C320.0730 (16)0.0497 (12)0.0963 (19)0.0069 (11)0.0260 (14)0.0024 (12)
C330.0677 (16)0.0802 (18)0.113 (2)0.0010 (14)0.0314 (15)0.0196 (16)
C340.0629 (15)0.097 (2)0.0802 (17)0.0298 (15)0.0235 (13)0.0116 (15)
C350.0716 (16)0.0639 (15)0.0802 (17)0.0284 (13)0.0040 (13)0.0078 (12)
C360.0559 (12)0.0501 (11)0.0645 (13)0.0070 (10)0.0020 (10)0.0025 (10)
C370.0492 (11)0.0442 (10)0.0411 (10)0.0111 (8)0.0034 (8)0.0029 (8)
C380.0546 (12)0.0604 (12)0.0438 (10)0.0117 (10)0.0046 (9)0.0058 (9)
C390.0730 (15)0.0699 (15)0.0463 (11)0.0203 (12)0.0038 (11)0.0150 (11)
C400.0849 (17)0.0531 (13)0.0679 (15)0.0045 (12)0.0160 (13)0.0157 (11)
C410.0820 (17)0.0553 (13)0.0678 (15)0.0133 (12)0.0061 (12)0.0007 (11)
C420.0693 (14)0.0532 (12)0.0454 (11)0.0037 (10)0.0009 (10)0.0004 (9)
Geometric parameters (Å, º) top
S3—C21.820 (2)C37—C381.392 (3)
S3—C41.818 (2)C37—C421.378 (3)
O29—C281.220 (2)C38—C391.379 (3)
N7—C61.489 (2)C39—C401.370 (3)
N7—C81.478 (2)C40—C411.373 (4)
N7—C281.366 (2)C41—C421.386 (3)
C1—C21.542 (3)C1—H10.9800
C1—C81.540 (3)C2—H20.9800
C1—C91.519 (3)C4—H40.9800
C2—C101.518 (3)C5—H50.9800
C4—C51.547 (3)C6—H60.9800
C4—C161.510 (3)C8—H80.9800
C5—C61.531 (3)C9—H9A0.9700
C5—C91.524 (3)C9—H9B0.9700
C6—C221.528 (3)C11—H110.9300
C8—C371.531 (3)C12—H120.9300
C10—C111.381 (3)C13—H130.9300
C10—C151.383 (3)C14—H140.9300
C11—C121.383 (3)C15—H150.9300
C12—C131.358 (4)C17—H170.9300
C13—C141.369 (4)C18—H180.9300
C14—C151.385 (4)C19—H190.9300
C16—C171.386 (3)C20—H200.9300
C16—C211.380 (3)C21—H210.9300
C17—C181.375 (3)C23—H230.9300
C18—C191.362 (4)C24—H240.9300
C19—C201.369 (4)C25—H250.9300
C20—C211.386 (3)C26—H260.9300
C22—C231.393 (3)C27—H270.9300
C22—C271.383 (3)C30—H30A0.9700
C23—C241.393 (4)C30—H30B0.9700
C24—C251.372 (4)C32—H320.9300
C25—C261.363 (4)C33—H330.9300
C26—C271.383 (4)C34—H340.9300
C28—C301.520 (3)C35—H350.9300
C30—C311.504 (3)C36—H360.9300
C31—C321.375 (3)C38—H380.9300
C31—C361.369 (3)C39—H390.9300
C32—C331.375 (4)C40—H400.9300
C33—C341.357 (4)C41—H410.9300
C34—C351.352 (4)C42—H420.9300
C35—C361.386 (3)
C2—C1—C8114.13 (15)S3—C4—H4107.00
C2—C1—C9111.93 (15)C5—C4—H4107.00
C8—C1—C9111.02 (15)C16—C4—H4107.00
S3—C2—C1113.19 (13)C4—C5—H5107.00
S3—C2—C10110.32 (13)C6—C5—H5107.00
C1—C2—C10112.50 (16)C9—C5—H5107.00
S3—C4—C5113.16 (13)N7—C6—H6106.00
S3—C4—C16109.47 (13)C5—C6—H6106.00
C5—C4—C16113.85 (16)C22—C6—H6106.00
C4—C5—C6114.06 (16)N7—C8—H8106.00
C4—C5—C9110.05 (15)C1—C8—H8106.00
C6—C5—C9111.35 (15)C37—C8—H8106.00
N7—C6—C5112.89 (15)C1—C9—H9A110.00
N7—C6—C22111.67 (15)C1—C9—H9B110.00
C5—C6—C22114.16 (16)C5—C9—H9A110.00
N7—C8—C1111.61 (14)C5—C9—H9B110.00
N7—C8—C37114.82 (15)H9A—C9—H9B108.00
C1—C8—C37112.66 (15)C10—C11—H11119.00
C1—C9—C5109.89 (15)C12—C11—H11119.00
C2—C10—C11123.51 (18)C11—C12—H12120.00
C2—C10—C15118.83 (19)C13—C12—H12120.00
C11—C10—C15117.6 (2)C12—C13—H13120.00
C10—C11—C12121.3 (2)C14—C13—H13120.00
C11—C12—C13120.4 (3)C13—C14—H14120.00
C12—C13—C14119.3 (2)C15—C14—H14120.00
C13—C14—C15120.7 (2)C10—C15—H15120.00
C10—C15—C14120.6 (2)C14—C15—H15120.00
C4—C16—C17118.08 (18)C16—C17—H17119.00
C4—C16—C21124.15 (18)C18—C17—H17119.00
C17—C16—C21117.77 (19)C17—C18—H18120.00
C16—C17—C18121.2 (2)C19—C18—H18120.00
C17—C18—C19120.4 (2)C18—C19—H19120.00
C18—C19—C20119.5 (2)C20—C19—H19120.00
C19—C20—C21120.4 (2)C19—C20—H20120.00
C16—C21—C20120.7 (2)C21—C20—H20120.00
C6—C22—C23118.08 (19)C16—C21—H21120.00
C6—C22—C27124.79 (18)C20—C21—H21120.00
C23—C22—C27117.1 (2)C22—C23—H23120.00
C22—C23—C24120.7 (2)C24—C23—H23120.00
C23—C24—C25120.5 (3)C23—C24—H24120.00
C24—C25—C26119.4 (3)C25—C24—H24120.00
C25—C26—C27120.3 (3)C24—C25—H25120.00
C22—C27—C26121.9 (2)C26—C25—H25120.00
O29—C28—N7121.95 (17)C25—C26—H26120.00
O29—C28—C30120.14 (17)C27—C26—H26120.00
C2—S3—C498.79 (9)C22—C27—H27119.00
C6—N7—C8121.86 (14)C26—C27—H27119.00
C6—N7—C28116.77 (14)C28—C30—H30A109.00
C8—N7—C28120.61 (14)C28—C30—H30B109.00
N7—C28—C30117.87 (15)C31—C30—H30A109.00
C28—C30—C31112.07 (16)C31—C30—H30B109.00
C30—C31—C32120.86 (18)H30A—C30—H30B108.00
C30—C31—C36121.40 (18)C31—C32—H32119.00
C32—C31—C36117.72 (19)C33—C32—H32119.00
C31—C32—C33121.4 (2)C32—C33—H33120.00
C32—C33—C34120.0 (2)C34—C33—H33120.00
C33—C34—C35119.8 (3)C33—C34—H34120.00
C34—C35—C36120.4 (2)C35—C34—H34120.00
C31—C36—C35120.7 (2)C34—C35—H35120.00
C8—C37—C38118.86 (16)C36—C35—H35120.00
C8—C37—C42123.36 (16)C31—C36—H36120.00
C38—C37—C42117.53 (18)C35—C36—H36120.00
C37—C38—C39121.66 (19)C37—C38—H38119.00
C38—C39—C40119.9 (2)C39—C38—H38119.00
C39—C40—C41119.4 (2)C38—C39—H39120.00
C40—C41—C42120.6 (2)C40—C39—H39120.00
C37—C42—C41120.9 (2)C39—C40—H40120.00
C2—C1—H1106.00C41—C40—H40120.00
C8—C1—H1106.00C40—C41—H41120.00
C9—C1—H1106.00C42—C41—H41120.00
S3—C2—H2107.00C37—C42—H42120.00
C1—C2—H2107.00C41—C42—H42120.00
C10—C2—H2107.00
C4—S3—C2—C148.78 (15)N7—C8—C37—C38175.80 (16)
C4—S3—C2—C10175.84 (14)N7—C8—C37—C421.7 (3)
C2—S3—C4—C550.62 (15)C1—C8—C37—C3854.9 (2)
C2—S3—C4—C16178.77 (14)C1—C8—C37—C42130.90 (19)
C8—N7—C6—C535.0 (2)C2—C10—C11—C12177.3 (2)
C8—N7—C6—C2295.26 (19)C15—C10—C11—C120.8 (3)
C28—N7—C6—C5135.00 (17)C2—C10—C15—C14176.3 (2)
C28—N7—C6—C2294.77 (19)C11—C10—C15—C141.9 (3)
C6—N7—C8—C136.6 (2)C10—C11—C12—C131.1 (4)
C6—N7—C8—C3793.2 (2)C11—C12—C13—C141.9 (4)
C28—N7—C8—C1133.01 (17)C12—C13—C14—C150.7 (4)
C28—N7—C8—C3797.2 (2)C13—C14—C15—C101.2 (4)
C6—N7—C28—O294.5 (3)C4—C16—C17—C18179.5 (2)
C6—N7—C28—C30173.18 (16)C21—C16—C17—C181.0 (3)
C8—N7—C28—O29165.67 (18)C4—C16—C21—C20178.6 (2)
C8—N7—C28—C3016.7 (2)C17—C16—C21—C202.0 (3)
C8—C1—C2—S366.47 (18)C16—C17—C18—C191.3 (4)
C8—C1—C2—C1059.4 (2)C17—C18—C19—C202.5 (4)
C9—C1—C2—S360.69 (19)C18—C19—C20—C211.5 (4)
C9—C1—C2—C10173.41 (16)C19—C20—C21—C160.7 (4)
C2—C1—C8—N779.14 (19)C6—C22—C23—C24179.1 (2)
C2—C1—C8—C37149.97 (15)C27—C22—C23—C240.3 (3)
C9—C1—C8—N748.5 (2)C6—C22—C27—C26177.8 (2)
C9—C1—C8—C3782.40 (18)C23—C22—C27—C260.9 (3)
C2—C1—C9—C567.1 (2)C22—C23—C24—C251.3 (4)
C8—C1—C9—C561.7 (2)C23—C24—C25—C261.2 (4)
S3—C2—C10—C1113.9 (3)C24—C25—C26—C270.1 (4)
S3—C2—C10—C15168.03 (17)C25—C26—C27—C221.0 (4)
C1—C2—C10—C11113.5 (2)O29—C28—C30—C3127.1 (3)
C1—C2—C10—C1564.5 (2)N7—C28—C30—C31150.55 (17)
S3—C4—C5—C662.51 (19)C28—C30—C31—C3266.7 (3)
S3—C4—C5—C963.45 (18)C28—C30—C31—C36114.9 (2)
C16—C4—C5—C663.3 (2)C30—C31—C32—C33179.1 (2)
C16—C4—C5—C9170.71 (16)C36—C31—C32—C330.6 (4)
S3—C4—C16—C17146.46 (18)C30—C31—C36—C35179.7 (2)
S3—C4—C16—C2134.1 (2)C32—C31—C36—C351.3 (3)
C5—C4—C16—C1785.8 (2)C31—C32—C33—C340.7 (4)
C5—C4—C16—C2193.7 (2)C32—C33—C34—C351.4 (4)
C4—C5—C6—N780.62 (19)C33—C34—C35—C360.7 (4)
C4—C5—C6—C22150.42 (16)C34—C35—C36—C310.7 (4)
C9—C5—C6—N744.7 (2)C8—C37—C38—C39175.0 (2)
C9—C5—C6—C2284.30 (19)C42—C37—C38—C390.5 (3)
C4—C5—C9—C167.9 (2)C8—C37—C42—C41174.65 (19)
C6—C5—C9—C159.6 (2)C38—C37—C42—C410.4 (3)
N7—C6—C22—C2365.0 (2)C37—C38—C39—C400.6 (4)
N7—C6—C22—C27116.2 (2)C38—C39—C40—C410.6 (4)
C5—C6—C22—C23165.40 (18)C39—C40—C41—C420.4 (3)
C5—C6—C22—C2713.3 (3)C40—C41—C42—C370.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg1i0.932.953.811 (3)155
C14—H14···Cg2ii0.932.883.593 (3)135
C35—H35···Cg1iii0.932.713.473 (3)140
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z1/2; (iii) x+1, y+2, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC38H33NOSC39H35NOS
Mr551.72565.75
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)293293
a, b, c (Å)16.139 (5), 10.145 (5), 17.453 (5)16.8724 (7), 9.4863 (3), 19.2376 (8)
β (°) 92.046 (5) 93.245 (1)
V3)2855.8 (19)3074.2 (2)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.150.14
Crystal size (mm)0.30 × 0.22 × 0.180.24 × 0.20 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Bruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
[SADABS (Bruker, 2004; Blessing, 1995)]
Multi-scan
[SADABS (Bruker, 2004; Blessing, 1995)]
Tmin, Tmax0.957, 0.9740.968, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
27638, 5605, 4267 29474, 6045, 4500
Rint0.0340.029
(sin θ/λ)max1)0.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.05 0.044, 0.131, 1.05
No. of reflections56056045
No. of parameters370379
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.240.83, 0.20

Computer programs: , APEX2 (Bruker, 2004) and SAINT (Bruker, 2004), SAINT (Bruker, 2004) and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-32 (Farrugia, 1997) and PLATON (Spek, 2009), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) for (I) top
S3—C21.8338 (19)N7—C61.485 (2)
S3—C41.8186 (19)N7—C81.470 (2)
O29—C281.227 (2)N7—C281.355 (2)
C2—C1—C9111.47 (12)C1—C9—C5110.08 (13)
C8—C1—C9108.77 (12)O29—C28—N7122.25 (14)
S3—C2—C1113.12 (10)O29—C28—C30119.28 (15)
S3—C4—C5111.87 (12)C2—S3—C498.37 (7)
C4—C5—C9108.56 (13)C6—N7—C8120.12 (12)
C6—C5—C9113.20 (13)C6—N7—C28117.93 (12)
N7—C6—C5111.90 (12)C8—N7—C28121.10 (12)
N7—C8—C1111.32 (12)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C25—H25···O29i0.93002.53003.431 (3)162.00
C39—H39···O29ii0.93002.58003.395 (3)146.00
C1—H1···Cg1iii0.98002.99003.903 (3)155.00
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y1, z; (iii) x+2, y, z+2.
Selected geometric parameters (Å, º) for (II) top
S3—C21.820 (2)N7—C61.489 (2)
S3—C41.818 (2)N7—C81.478 (2)
O29—C281.220 (2)N7—C281.366 (2)
C2—C1—C9111.93 (15)C1—C9—C5109.89 (15)
S3—C2—C1113.19 (13)O29—C28—N7121.95 (17)
S3—C4—C5113.16 (13)O29—C28—C30120.14 (17)
C4—C5—C9110.05 (15)C2—S3—C498.79 (9)
C6—C5—C9111.35 (15)C6—N7—C8121.86 (14)
N7—C6—C5112.89 (15)C6—N7—C28116.77 (14)
N7—C8—C1111.61 (14)C8—N7—C28120.61 (14)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg1i0.93002.95003.811 (3)155.00
C14—H14···Cg2ii0.93002.88003.593 (3)135.00
C35—H35···Cg1iii0.93002.71003.473 (3)140.00
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z1/2; (iii) x+1, y+2, z+1.
Comparision of torsion angles (°) in (I), (II) and TABN top
Angle(I)(II)TABNa
Thiapyrane_ring
S3-C4-C5-C966.87 (15)63.45 (18)65.1
C9-C1-C2-S3-59.55 (15)-60.69 (19)-59.6
C2-S3-C4-C5-53.26 (13)-50.62 (15)-54.1
C4-S3-C2-C149.37 (12)48.78 (15)51.5
C2-C1-C9-C567.19 (16)67.1 (2)68.1
C4-C5-C9-C1-70.44 (16)-67.9 (2)-71.1
Piperidine_ring
C9-C1-C8-N755.39 (16)48.5 (2)2.3
C9-C5-C6-N7-42.75 (18)-44.7 (2)4.8
C6-N7-C8-C1-45.97 (17)-36.6 (2)59.1
C8-N7-C6-C538.98 (18)35.0 (2)-63.2
C6-C5-C9-C156.34 (17)59.6 (2)53.6
C8-C1-C9-C5-61.64 (16)-61.7 (2)-57.7
N-Acyl_group
C6-N7-C28-O29-6.5 (2)4.5 (3)
C8-N7-C28-O29-175.93 (14)-165.67 (18)
(a) From Pantaleo et al. (1981).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds