Download citation
Download citation
link to html
Two polymorphs of the title compound [systematic name: 1-(2,4-dihydroxy­phenyl)ethanone], C8H8O3, were investigated. The known structure [designated (I-M); P21/c, Z = 4; previously investigated at room temperature by Robert, Moore, Eichhorn & Rillema (2007). Acta Cryst. E63, o4252] was redetermined at low temperature, and a new form [(I-O); P212121, Z = 12] was discovered in the same sample. In both forms, the mol­ecules are planar (apart from the methyl H atoms) and they contain intra­molecular O—H...O=C hydrogen bonds. In polymorph (I-M), mol­ecules are linked into chains by a single inter­molecular O—H...O hydrogen bond, and the chains are linked into sheets by two C—H...O hydrogen bonds. Three O—H...O hydrogen bonds link the mol­ecules of polymorph (I-O) into chains and neighbouring chains are connected by one C—H...O inter­action to form an offset layer structure. Two weak methyl C—H...O inter­actions link the layers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109017715/gd3292sup1.cif
Contains datablocks IM, IO, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109017715/gd3292IMsup2.hkl
Contains datablock IM

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109017715/gd3292IOsup3.hkl
Contains datablock IO

CCDC references: 742186; 742187

Comment top

In the course of synthetic approaches to coronand systems, the title compound was obtained in crystalline form as an unexpected product. The sample consisted of two types of crystal, large blocks and a smaller quantity of fine needles. Data were measured for a block and corresponded to the known structure of 4-acetylresorcinol, (I) (monoclinic, space group P21/c, Z = 4; Robert et al., 2007). The needles were also measured and it was clear that the asymmetric unit was much larger, but it proved to contain three independent molecules of the same compound (P212121, Z = 12). This is a new polymorph of (I). In view of our interest in the structures of polymorphs (see e.g. Jones & Lozano, 2003a,b; Ossowski et al., 2006; Kuś et al., 2009), and because the structure of Robert et al. (2007) was based on room-temperature data, we retained the low-temperature data of the known polymorph and present here a comparison of the two forms.

The molecule of the monoclinic form, henceforth form (IM), is shown in Fig. 1. Except for the methyl H atoms, it is planar (r.m.s. deviation 0.03 Å). Bond lengths and angles may be regarded as normal. There is an intramolecular O2—H12···O3 hydrogen bond.

The three molecules of the orthorhombic polymorph, henceforth form (IO), connected within the asymmetric unit by hydrogen bonds, are shown in Fig. 2. The molecules are again planar (r.m.s. deviations excluding methyl H atoms 0.03, 0.03, 0.02 Å) and approximately parallel [interplanar angles between molecules 1 and 2 16.27 (4)°, and between molecules 2 and 3 8.27 (3)°]. They are closely similar to each other and to the molecule of the monoclinic form, but there is one important conformational difference: the OH groups are oriented in the same sense in form (IM) (anticlockwise in the plane of Fig. 1), but in the opposite sense in all three molecules of form (IO). Furthermore, the third molecule of form (IO) has the opposite rotational sense in the common plane to the other two (see e.g. the ring atoms, which are clockwise 1–6 for the third molecule but anticlockwise for molecules 1 and 2).

The packing of form (IM) was described briefly by Robert et al. (2007) and the intermolecular O2—H12···O3 hydrogen bond was recognized. The extended packing (Fig. 3) consists of layers parallel to (102), in which the classical hydrogen bonds link the molecules into zigzag chains parallel to [201]. Two C—H···O interactions from ring H atoms to the hydroxyl groups (Table 1) provide the crosslinking.

The crystal structure of form (IO) contains chains of molecules parallel to the c axis, generated by O—H···O hydrogen bonds (Fig. 4, Table 2). The C22—H22···O31 interaction crosslinks the chains to form a layer structure. In contrast with form (IM), however, neighbouring chains are displaced in the third dimension. Chains are weakly linked to those above and below by C—H···O contacts (not shown in Fig. 4) involving the methyl H atoms H18C and H28C.

It is tempting to regard the almost exactly planar layer structure of form (IM) as the energy minimum for the packing of (I), whereas the offset layer structure of form (IO) could be regarded as a kinetic stopping-off point on the way to form (IM). This is consistent with the slightly higher density of form (IM), 1.430 Mg m-3, versus 1.424 Mg m-3 for form (IO). However, more detailed theoretical and physical studies would be necessary to prove this supposition.

Experimental top

From an unsuccessful reaction intended to produce a coronand, flash chromatography using as eluant a dichloromethane–methanol mixture (99:1, v/v) gave a series of fractions which were combined and then allowed to evaporate at ambient temperature, giving after 48 h crystals of 4-acetylresorcinol (one of the starting materials) which were suitable for single-crystal X-ray diffraction.

Refinement top

Hydroxyl H atoms were located in difference maps and refined freely. Methyl H toms were located in difference maps, idealized to C—H = 0.98 Å and H—C—H = 109.5°, and refined as rigid groups which were allowed to rotate but not to tilt, with Uiso(H) = 1.5Ueq(C). Other H atoms were treated as riding atoms in calculated positions with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). For the orthorhombic form, which crystallizes in a Sohncke space group, the Flack x parameter (Flack, 1983) was 0.48 (10), indicating either insignificant anomalous dispersion or an inversion twin with approximately equal components. Friedel opposite reflections were therefore merged, so that the Flack parameter was indeterminate. To counteract the necessarily rather poor data/parameter ratio (although the data are 99.3% complete to 2θ = 135°), the displacement parameters were restrained using the SHELXL (Sheldrick, 2008) commands SIMU and DELU [Please rephrase this using non-software-specific terms].

Computing details top

Data collection: CrysAlis CCD (Version 1.171.32.24; Oxford Diffraction, 2008) for (IM); CrysAlis CCD (Version 1.171.32.15; Oxford Diffraction, 2008) for (IO). Cell refinement: CrysAlis RED (Version 1.171.32.24; Oxford Diffraction, 2008) for (IM); CrysAlis RED (Version 1.171.32.15; Oxford Diffraction, 2008) for (IO). Data reduction: CrysAlis RED (Version 1.171.32.24; Oxford Diffraction, (2008) for (IM); CrysAlis RED (Version 1.171.32.15; Oxford Diffraction, (2008) for (IO). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule of the monoclinic polymorph of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The three independent molecules of the orthorhombic polymorph of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Intramolecular hydrogen bonds are represented as thin dashed lines and intermolecular hydrogen bonds as thick dashed lines.
[Figure 3] Fig. 3. Packing of the monoclinic polymorph, viewed perpendicular to (102). The hydrogen bonds are numbered according to their order in Table 1 (intramolecular hydrogen bond No. 2 is not shown).
[Figure 4] Fig. 4. Packing of the orthorhombic polymorph, viewed parallel to the a axis. The three independent molecules are numbered 1–3, and the reference molecules at (x, y, z) are those so marked within the unit cell. Intramolecular hydrogen bonds are not shown.
(IM) 1-(2,4-dihydroxyphenyl)ethanone top
Crystal data top
C8H8O3F(000) = 320
Mr = 152.14Dx = 1.430 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4165 reflections
a = 7.1194 (3) Åθ = 2.8–32.5°
b = 13.6690 (6) ŵ = 0.11 mm1
c = 7.2695 (4) ÅT = 100 K
β = 92.859 (6)°Tablet, colourless
V = 706.55 (6) Å30.40 × 0.40 × 0.25 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur S
diffractometer
1508 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.042
Graphite monochromatorθmax = 30.5°, θmin = 2.9°
Detector resolution: 16.1057 pixels mm-1h = 1010
ω scansk = 1919
12428 measured reflectionsl = 1010
2149 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0639P)2]
where P = (Fo2 + 2Fc2)/3
2149 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C8H8O3V = 706.55 (6) Å3
Mr = 152.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1194 (3) ŵ = 0.11 mm1
b = 13.6690 (6) ÅT = 100 K
c = 7.2695 (4) Å0.40 × 0.40 × 0.25 mm
β = 92.859 (6)°
Data collection top
Oxford Diffraction Xcalibur S
diffractometer
1508 reflections with I > 2σ(I)
12428 measured reflectionsRint = 0.042
2149 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.43 e Å3
2149 reflectionsΔρmin = 0.25 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.81081 (13)0.14406 (7)0.06216 (15)0.0125 (2)
C20.72889 (14)0.23477 (8)0.08849 (14)0.0124 (2)
H20.79000.29280.05130.015*
C30.55653 (14)0.23995 (7)0.16981 (14)0.0108 (2)
C40.46483 (14)0.15387 (7)0.22750 (14)0.0110 (2)
C50.55579 (14)0.06396 (7)0.20224 (14)0.0124 (2)
H50.49790.00550.24180.015*
C60.72581 (14)0.05823 (7)0.12202 (15)0.0137 (2)
H60.78520.00330.10730.016*
C70.28447 (15)0.15935 (8)0.31220 (15)0.0129 (2)
C80.18931 (15)0.06830 (8)0.37512 (16)0.0175 (2)
H8A0.07270.08590.43330.026*
H8B0.27300.03370.46420.026*
H8C0.16000.02580.26890.026*
O10.97457 (10)0.13328 (6)0.02234 (12)0.0176 (2)
H111.027 (2)0.1902 (14)0.059 (3)0.059 (6)*
O20.47987 (11)0.32938 (5)0.19053 (11)0.01532 (19)
H120.374 (2)0.3192 (12)0.249 (3)0.051 (5)*
O30.20646 (10)0.23996 (5)0.33314 (11)0.0177 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0102 (5)0.0150 (5)0.0123 (5)0.0001 (4)0.0020 (4)0.0002 (4)
C20.0129 (5)0.0107 (5)0.0136 (5)0.0019 (4)0.0021 (4)0.0013 (4)
C30.0131 (5)0.0084 (4)0.0108 (5)0.0015 (3)0.0001 (4)0.0007 (4)
C40.0109 (5)0.0104 (4)0.0118 (5)0.0002 (4)0.0017 (4)0.0004 (4)
C50.0129 (5)0.0097 (5)0.0146 (5)0.0005 (4)0.0009 (4)0.0007 (4)
C60.0134 (5)0.0093 (5)0.0186 (6)0.0021 (4)0.0023 (4)0.0002 (4)
C70.0115 (5)0.0162 (5)0.0111 (5)0.0000 (4)0.0003 (4)0.0003 (4)
C80.0135 (5)0.0187 (5)0.0208 (6)0.0030 (4)0.0052 (4)0.0024 (4)
O10.0136 (4)0.0149 (4)0.0252 (5)0.0008 (3)0.0101 (3)0.0010 (3)
O20.0169 (4)0.0088 (4)0.0208 (4)0.0029 (3)0.0057 (3)0.0007 (3)
O30.0153 (4)0.0160 (4)0.0223 (5)0.0031 (3)0.0062 (3)0.0013 (3)
Geometric parameters (Å, º) top
C1—O11.3527 (12)C7—C81.4994 (14)
C1—C21.3875 (14)C2—H20.9500
C1—C61.3994 (13)C5—H50.9500
C2—C31.3902 (13)C6—H60.9500
C3—O21.3501 (12)C8—H8A0.9800
C3—C41.4191 (14)C8—H8B0.9800
C4—C51.4055 (14)C8—H8C0.9800
C4—C71.4534 (14)O1—H110.908 (19)
C5—C61.3717 (14)O2—H120.896 (18)
C7—O31.2467 (12)
O1—C1—C2122.53 (9)C1—C2—H2120.3
O1—C1—C6116.47 (9)C3—C2—H2120.3
C2—C1—C6121.00 (9)C6—C5—H5119.1
C1—C2—C3119.36 (9)C4—C5—H5119.1
O2—C3—C2117.64 (9)C5—C6—H6120.4
O2—C3—C4121.54 (9)C1—C6—H6120.4
C2—C3—C4120.81 (9)C7—C8—H8A109.5
C5—C4—C3117.69 (9)C7—C8—H8B109.5
C5—C4—C7121.53 (9)H8A—C8—H8B109.5
C3—C4—C7120.78 (9)C7—C8—H8C109.5
C6—C5—C4121.84 (9)H8A—C8—H8C109.5
C5—C6—C1119.26 (9)H8B—C8—H8C109.5
O3—C7—C4120.37 (9)C1—O1—H11114.4 (11)
O3—C7—C8119.06 (9)C3—O2—H12105.5 (11)
C4—C7—C8120.57 (9)
O1—C1—C2—C3177.41 (9)C7—C4—C5—C6179.85 (10)
C6—C1—C2—C32.27 (16)C4—C5—C6—C10.51 (16)
C1—C2—C3—O2178.99 (9)O1—C1—C6—C5177.47 (10)
C1—C2—C3—C40.61 (15)C2—C1—C6—C52.23 (16)
O2—C3—C4—C5179.39 (9)C5—C4—C7—O3179.99 (10)
C2—C3—C4—C51.03 (15)C3—C4—C7—O30.96 (16)
O2—C3—C4—C70.30 (15)C5—C4—C7—C80.17 (15)
C2—C3—C4—C7179.89 (9)C3—C4—C7—C8179.21 (9)
C3—C4—C5—C61.08 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O3i0.908 (19)1.807 (18)2.6466 (10)152.7 (17)
O2—H12···O30.896 (18)1.743 (18)2.5610 (11)150.5 (16)
C6—H6···O1ii0.952.563.4759 (13)161
C5—H5···O2iii0.952.463.3127 (13)149
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x+2, y, z; (iii) x+1, y1/2, z+1/2.
(IO) 1-(2,4-dihydroxyphenyl)ethanone top
Crystal data top
C8H8O3F(000) = 960
Mr = 152.14Dx = 1.424 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 13155 reflections
a = 6.7640 (3) Åθ = 3.4–71.0°
b = 13.1193 (6) ŵ = 0.92 mm1
c = 23.9936 (9) ÅT = 103 K
V = 2129.17 (16) Å3Needle, colourless
Z = 120.25 × 0.08 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur Nova O
diffractometer
2327 independent reflections
Radiation source: Nova (Cu) X-ray Source2185 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 8.3648 pixels mm-1θmax = 71.1°, θmin = 3.8°
ω scansh = 68
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1516
Tmin = 0.780, Tmax = 0.964l = 2828
20232 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.066P)2 + 0.1332P]
where P = (Fo2 + 2Fc2)/3
2327 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.21 e Å3
276 restraintsΔρmin = 0.21 e Å3
Crystal data top
C8H8O3V = 2129.17 (16) Å3
Mr = 152.14Z = 12
Orthorhombic, P212121Cu Kα radiation
a = 6.7640 (3) ŵ = 0.92 mm1
b = 13.1193 (6) ÅT = 103 K
c = 23.9936 (9) Å0.25 × 0.08 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur Nova O
diffractometer
2327 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
2185 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.964Rint = 0.027
20232 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030276 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.21 e Å3
2327 reflectionsΔρmin = 0.21 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.3400 (3)0.40128 (12)0.20314 (6)0.0208 (3)
C120.3354 (3)0.46415 (11)0.24983 (7)0.0216 (3)
H120.31590.53550.24570.026*
C130.3594 (2)0.42244 (12)0.30239 (6)0.0203 (3)
C140.3906 (2)0.31620 (12)0.30962 (6)0.0200 (3)
C150.3956 (3)0.25564 (12)0.26135 (7)0.0217 (3)
H150.41640.18430.26510.026*
C160.3715 (3)0.29584 (11)0.20895 (6)0.0222 (4)
H160.37610.25300.17700.027*
C170.4108 (2)0.27223 (12)0.36493 (6)0.0207 (3)
C180.4389 (3)0.15947 (12)0.37181 (7)0.0259 (4)
H18A0.45880.14360.41130.039*
H18B0.55490.13750.35050.039*
H18C0.32140.12360.35810.039*
O110.31297 (19)0.44485 (9)0.15300 (5)0.0258 (3)
H1110.313 (3)0.3981 (17)0.1284 (10)0.035 (6)*
O120.3520 (2)0.48663 (8)0.34677 (5)0.0262 (3)
H1120.368 (4)0.4509 (19)0.3773 (12)0.051 (7)*
O130.40316 (19)0.32726 (9)0.40723 (5)0.0260 (3)
C210.4359 (3)0.28363 (12)0.55851 (7)0.0205 (3)
C220.4373 (3)0.32412 (12)0.61192 (7)0.0214 (3)
H220.45490.39530.61720.026*
C230.4131 (2)0.26072 (11)0.65741 (6)0.0198 (3)
C240.3873 (2)0.15368 (11)0.65035 (6)0.0188 (3)
C250.3838 (3)0.11589 (12)0.59548 (6)0.0213 (3)
H250.36460.04490.58970.026*
C260.4074 (3)0.17867 (12)0.54997 (6)0.0221 (3)
H260.40440.15140.51330.027*
C270.3664 (2)0.08772 (12)0.69875 (7)0.0209 (3)
C280.3508 (3)0.02619 (12)0.69194 (7)0.0273 (4)
H28A0.35580.05880.72870.041*
H28B0.46090.05070.66910.041*
H28C0.22540.04310.67370.041*
O210.4635 (2)0.34990 (8)0.51629 (5)0.0273 (3)
H1210.452 (4)0.317 (2)0.4864 (11)0.044 (6)*
O220.4129 (2)0.30461 (9)0.70836 (5)0.0256 (3)
H1220.392 (4)0.255 (2)0.7314 (11)0.051 (7)*
O230.36192 (19)0.12502 (9)0.74660 (4)0.0249 (3)
C310.3192 (3)0.11514 (12)0.88848 (6)0.0198 (3)
C320.3163 (3)0.08269 (11)0.94379 (6)0.0207 (3)
H320.31780.01190.95220.025*
C330.3112 (2)0.15340 (12)0.98649 (6)0.0194 (3)
C340.3090 (3)0.25978 (12)0.97507 (6)0.0187 (3)
C350.3095 (3)0.28943 (12)0.91848 (6)0.0211 (3)
H350.30640.36000.90970.025*
C360.3144 (3)0.22004 (12)0.87595 (6)0.0217 (3)
H360.31460.24240.83830.026*
C370.3087 (2)0.33376 (12)1.02014 (7)0.0202 (3)
C380.3085 (3)0.44614 (11)1.00702 (7)0.0245 (4)
H38A0.30480.48521.04180.037*
H38B0.19190.46280.98450.037*
H38C0.42840.46350.98620.037*
O310.32632 (19)0.04311 (8)0.84877 (5)0.0242 (3)
H1310.328 (4)0.0703 (18)0.8167 (11)0.041 (6)*
O320.3096 (2)0.11749 (9)1.03946 (4)0.0249 (3)
H1320.313 (4)0.171 (2)1.0595 (11)0.048 (7)*
O330.3097 (2)0.30534 (8)1.06971 (4)0.0235 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0190 (8)0.0227 (7)0.0207 (7)0.0030 (6)0.0011 (7)0.0017 (6)
C120.0224 (8)0.0170 (6)0.0253 (8)0.0015 (7)0.0014 (7)0.0008 (6)
C130.0188 (8)0.0204 (7)0.0217 (7)0.0014 (6)0.0010 (7)0.0023 (6)
C140.0171 (8)0.0212 (7)0.0218 (7)0.0012 (6)0.0003 (6)0.0009 (6)
C150.0221 (8)0.0183 (7)0.0247 (7)0.0016 (7)0.0014 (7)0.0011 (6)
C160.0245 (9)0.0192 (7)0.0227 (7)0.0002 (7)0.0010 (7)0.0051 (6)
C170.0150 (8)0.0250 (7)0.0221 (7)0.0013 (7)0.0007 (6)0.0014 (6)
C180.0270 (9)0.0236 (8)0.0270 (8)0.0007 (7)0.0008 (7)0.0042 (6)
O110.0359 (7)0.0224 (5)0.0190 (5)0.0009 (5)0.0018 (5)0.0005 (5)
O120.0380 (7)0.0205 (5)0.0201 (5)0.0007 (5)0.0004 (5)0.0034 (4)
O130.0302 (7)0.0269 (6)0.0209 (5)0.0019 (5)0.0003 (5)0.0005 (4)
C210.0195 (8)0.0205 (7)0.0214 (7)0.0015 (7)0.0013 (7)0.0005 (6)
C220.0199 (8)0.0182 (7)0.0262 (8)0.0003 (6)0.0011 (7)0.0012 (6)
C230.0166 (8)0.0212 (7)0.0214 (7)0.0020 (6)0.0008 (6)0.0040 (6)
C240.0185 (8)0.0177 (7)0.0202 (7)0.0015 (6)0.0001 (6)0.0005 (6)
C250.0224 (9)0.0185 (7)0.0230 (7)0.0007 (7)0.0018 (7)0.0028 (6)
C260.0252 (9)0.0222 (7)0.0188 (7)0.0012 (7)0.0006 (7)0.0025 (6)
C270.0174 (8)0.0228 (7)0.0223 (7)0.0018 (7)0.0002 (7)0.0000 (6)
C280.0325 (10)0.0209 (7)0.0283 (8)0.0006 (7)0.0030 (8)0.0043 (6)
O210.0428 (8)0.0209 (5)0.0182 (5)0.0004 (6)0.0026 (5)0.0019 (4)
O220.0371 (7)0.0214 (5)0.0184 (5)0.0009 (5)0.0012 (5)0.0038 (4)
O230.0294 (7)0.0253 (5)0.0199 (5)0.0029 (5)0.0002 (5)0.0012 (4)
C310.0174 (8)0.0203 (7)0.0217 (7)0.0004 (7)0.0002 (6)0.0000 (6)
C320.0224 (8)0.0167 (6)0.0230 (7)0.0004 (7)0.0005 (7)0.0020 (6)
C330.0182 (8)0.0195 (7)0.0206 (7)0.0011 (7)0.0001 (7)0.0034 (6)
C340.0177 (8)0.0188 (7)0.0196 (7)0.0002 (7)0.0000 (6)0.0016 (6)
C350.0224 (8)0.0179 (7)0.0231 (7)0.0002 (7)0.0006 (7)0.0036 (6)
C360.0250 (8)0.0219 (7)0.0183 (7)0.0003 (7)0.0006 (7)0.0031 (6)
C370.0162 (8)0.0221 (7)0.0222 (7)0.0006 (7)0.0005 (7)0.0011 (6)
C380.0314 (9)0.0181 (7)0.0241 (7)0.0014 (7)0.0022 (7)0.0018 (6)
O310.0345 (7)0.0199 (5)0.0184 (5)0.0002 (5)0.0009 (5)0.0004 (4)
O320.0376 (7)0.0189 (5)0.0183 (5)0.0005 (6)0.0006 (5)0.0031 (4)
O330.0270 (6)0.0227 (5)0.0208 (5)0.0001 (5)0.0007 (5)0.0005 (4)
Geometric parameters (Å, º) top
C11—O111.3445 (19)C34—C371.453 (2)
C11—C121.392 (2)C35—C361.368 (2)
C11—C161.407 (2)C37—O331.246 (2)
C12—C131.384 (2)C37—C381.508 (2)
C13—O121.3584 (19)C12—H120.9500
C13—C141.420 (2)C15—H150.9500
C14—C151.405 (2)C16—H160.9500
C14—C171.454 (2)C18—H18A0.9800
C15—C161.373 (2)C18—H18B0.9800
C17—O131.247 (2)C18—H18C0.9800
C17—C181.501 (2)O11—H1110.85 (2)
C21—O211.3480 (19)O12—H1120.88 (3)
C21—C221.387 (2)C22—H220.9500
C21—C261.405 (2)C25—H250.9500
C22—C231.382 (2)C26—H260.9500
C23—O221.3513 (18)C28—H28A0.9800
C23—C241.425 (2)C28—H28B0.9800
C24—C251.407 (2)C28—H28C0.9800
C24—C271.455 (2)O21—H1210.84 (3)
C25—C261.377 (2)O22—H1220.86 (3)
C27—O231.2484 (19)C32—H320.9500
C27—C281.507 (2)C35—H350.9500
C31—O311.3427 (19)C36—H360.9500
C31—C321.394 (2)C38—H38A0.9800
C31—C361.409 (2)C38—H38B0.9800
C32—C331.382 (2)C38—H38C0.9800
C33—O321.3555 (18)O31—H1310.85 (3)
C33—C341.422 (2)O32—H1320.85 (3)
C34—C351.412 (2)
O11—C11—C12117.74 (13)C34—C37—C38119.87 (14)
O11—C11—C16121.83 (13)C13—C12—H12120.1
C12—C11—C16120.44 (14)C11—C12—H12120.1
C13—C12—C11119.77 (14)C16—C15—H15118.8
O12—C13—C12117.68 (13)C14—C15—H15118.8
O12—C13—C14121.22 (14)C15—C16—H16120.4
C12—C13—C14121.10 (14)C11—C16—H16120.4
C15—C14—C13117.26 (14)C17—C18—H18A109.5
C15—C14—C17121.73 (13)C17—C18—H18B109.5
C13—C14—C17120.99 (14)H18A—C18—H18B109.5
C16—C15—C14122.33 (14)C17—C18—H18C109.5
C15—C16—C11119.10 (14)H18A—C18—H18C109.5
O13—C17—C14120.63 (14)H18B—C18—H18C109.5
O13—C17—C18119.13 (14)C11—O11—H111108.3 (15)
C14—C17—C18120.23 (14)C13—O12—H112108.6 (17)
O21—C21—C22116.51 (14)C23—C22—H22120.1
O21—C21—C26122.77 (15)C21—C22—H22120.1
C22—C21—C26120.72 (15)C26—C25—H25119.0
C23—C22—C21119.89 (14)C24—C25—H25119.0
O22—C23—C22117.27 (13)C25—C26—H26120.5
O22—C23—C24121.82 (14)C21—C26—H26120.5
C22—C23—C24120.91 (14)C27—C28—H28A109.5
C25—C24—C23117.41 (14)C27—C28—H28B109.5
C25—C24—C27122.39 (13)H28A—C28—H28B109.5
C23—C24—C27120.20 (14)C27—C28—H28C109.5
C26—C25—C24121.96 (14)H28A—C28—H28C109.5
C25—C26—C21119.09 (14)H28B—C28—H28C109.5
O23—C27—C24120.21 (14)C21—O21—H121107.3 (17)
O23—C27—C28119.13 (14)C23—O22—H122105.1 (17)
C24—C27—C28120.66 (14)C33—C32—H32120.0
O31—C31—C32117.45 (13)C31—C32—H32120.0
O31—C31—C36122.47 (14)C36—C35—H35118.9
C32—C31—C36120.08 (14)C34—C35—H35118.9
C33—C32—C31120.06 (14)C35—C36—H36120.3
O32—C33—C32117.50 (13)C31—C36—H36120.3
O32—C33—C34121.43 (14)C37—C38—H38A109.5
C32—C33—C34121.06 (14)C37—C38—H38B109.5
C35—C34—C33117.09 (14)H38A—C38—H38B109.5
C35—C34—C37122.10 (14)C37—C38—H38C109.5
C33—C34—C37120.81 (14)H38A—C38—H38C109.5
C36—C35—C34122.27 (14)H38B—C38—H38C109.5
C35—C36—C31119.43 (14)C31—O31—H131110.4 (16)
O33—C37—C34120.68 (14)C33—O32—H132104.3 (17)
O33—C37—C38119.46 (14)
O11—C11—C12—C13178.99 (16)C27—C24—C25—C26178.77 (16)
C16—C11—C12—C130.9 (3)C24—C25—C26—C210.0 (3)
C11—C12—C13—O12179.40 (15)O21—C21—C26—C25178.83 (15)
C11—C12—C13—C140.6 (3)C22—C21—C26—C251.0 (3)
O12—C13—C14—C15179.87 (15)C25—C24—C27—O23176.94 (16)
C12—C13—C14—C150.1 (3)C23—C24—C27—O233.3 (2)
O12—C13—C14—C171.5 (3)C25—C24—C27—C283.3 (3)
C12—C13—C14—C17178.46 (15)C23—C24—C27—C28176.47 (16)
C13—C14—C15—C160.1 (3)O31—C31—C32—C33179.27 (15)
C17—C14—C15—C16178.28 (16)C36—C31—C32—C330.8 (3)
C14—C15—C16—C110.2 (3)C31—C32—C33—O32179.65 (16)
O11—C11—C16—C15179.15 (15)C31—C32—C33—C340.1 (3)
C12—C11—C16—C150.7 (3)O32—C33—C34—C35179.58 (15)
C15—C14—C17—O13178.99 (16)C32—C33—C34—C350.8 (3)
C13—C14—C17—O130.7 (3)O32—C33—C34—C371.1 (3)
C15—C14—C17—C180.3 (2)C32—C33—C34—C37178.44 (15)
C13—C14—C17—C18178.56 (16)C33—C34—C35—C360.8 (3)
O21—C21—C22—C23178.99 (15)C37—C34—C35—C36178.47 (16)
C26—C21—C22—C230.8 (3)C34—C35—C36—C310.0 (3)
C21—C22—C23—O22179.05 (15)O31—C31—C36—C35179.24 (15)
C21—C22—C23—C240.2 (3)C32—C31—C36—C350.8 (3)
O22—C23—C24—C25178.11 (15)C35—C34—C37—O33179.47 (15)
C22—C23—C24—C251.2 (2)C33—C34—C37—O330.2 (3)
O22—C23—C24—C272.1 (3)C35—C34—C37—C380.1 (3)
C22—C23—C24—C27178.63 (15)C33—C34—C37—C38179.39 (16)
C23—C24—C25—C261.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H111···O33i0.85 (2)1.86 (2)2.7101 (16)175 (2)
O12—H112···O130.88 (3)1.79 (3)2.5682 (16)147 (2)
O21—H121···O130.84 (3)1.93 (3)2.6650 (16)145 (2)
O22—H122···O230.86 (3)1.76 (3)2.5519 (16)152 (2)
O31—H131···O230.85 (3)1.84 (3)2.6875 (15)174 (2)
O32—H132···O330.85 (3)1.79 (3)2.5691 (15)153 (2)
C28—H28C···O12ii0.982.683.537 (2)147
C18—H18C···O31iii0.982.423.254 (2)143
C22—H22···O31iv0.952.573.421 (2)149
Symmetry codes: (i) x, y, z1; (ii) x1/2, y+1/2, z+1; (iii) x+1/2, y, z1/2; (iv) x+1, y+1/2, z+3/2.

Experimental details

(IM)(IO)
Crystal data
Chemical formulaC8H8O3C8H8O3
Mr152.14152.14
Crystal system, space groupMonoclinic, P21/cOrthorhombic, P212121
Temperature (K)100103
a, b, c (Å)7.1194 (3), 13.6690 (6), 7.2695 (4)6.7640 (3), 13.1193 (6), 23.9936 (9)
α, β, γ (°)90, 92.859 (6), 9090, 90, 90
V3)706.55 (6)2129.17 (16)
Z412
Radiation typeMo KαCu Kα
µ (mm1)0.110.92
Crystal size (mm)0.40 × 0.40 × 0.250.25 × 0.08 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur S
diffractometer
Oxford Diffraction Xcalibur Nova O
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.780, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
12428, 2149, 1508 20232, 2327, 2185
Rint0.0420.027
(sin θ/λ)max1)0.7140.614
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.105, 0.95 0.030, 0.083, 1.04
No. of reflections21492327
No. of parameters109325
No. of restraints0276
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.250.21, 0.21

Computer programs: CrysAlis CCD (Version 1.171.32.24; Oxford Diffraction, 2008), CrysAlis CCD (Version 1.171.32.15; Oxford Diffraction, 2008), CrysAlis RED (Version 1.171.32.24; Oxford Diffraction, 2008), CrysAlis RED (Version 1.171.32.15; Oxford Diffraction, 2008), CrysAlis RED (Version 1.171.32.24; Oxford Diffraction, (2008), CrysAlis RED (Version 1.171.32.15; Oxford Diffraction, (2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994).

Hydrogen-bond geometry (Å, º) for (IM) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O3i0.908 (19)1.807 (18)2.6466 (10)152.7 (17)
O2—H12···O30.896 (18)1.743 (18)2.5610 (11)150.5 (16)
C6—H6···O1ii0.952.563.4759 (13)161.3
C5—H5···O2iii0.952.463.3127 (13)149.2
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x+2, y, z; (iii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (IO) top
D—H···AD—HH···AD···AD—H···A
O11—H111···O33i0.85 (2)1.86 (2)2.7101 (16)175 (2)
O12—H112···O130.88 (3)1.79 (3)2.5682 (16)147 (2)
O21—H121···O130.84 (3)1.93 (3)2.6650 (16)145 (2)
O22—H122···O230.86 (3)1.76 (3)2.5519 (16)152 (2)
O31—H131···O230.85 (3)1.84 (3)2.6875 (15)174 (2)
O32—H132···O330.85 (3)1.79 (3)2.5691 (15)153 (2)
C28—H28C···O12ii0.982.683.537 (2)146.7
C18—H18C···O31iii0.982.423.254 (2)143.2
C22—H22···O31iv0.952.573.421 (2)148.8
Symmetry codes: (i) x, y, z1; (ii) x1/2, y+1/2, z+1; (iii) x+1/2, y, z1/2; (iv) x+1, y+1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds