Download citation
Download citation
link to html
In streptidinium sulfate monohydrate {systematic name: 1,1′-[(1S,3R,4S,6R)-2,4,5,6-tetra­hydroxy­cyclo­hexane-1,3-di­yl]di­guan­idinium sulfate monohydrate}, C8H20N6O42+·SO42−·H2O, at 100 (2) K, the components are arranged in double helices based on hydrogen bonds. One helix contains streptidinium cations and the other contains disordered sulfate anions and solvent water mol­ecules. The helices are linked into a three-dimensional hydrogen-bonded network by O—H...O and N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109015650/gd3283sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109015650/gd3283Isup2.hkl
Contains datablock I

CCDC reference: 742182

Comment top

Streptidine {N,N'''-[(1S,3R,4S,6R)-2,4,5,6-tetrahydroxycyclohexane-1,3-diyl]diguanidine} is a substrate in the biosynthesis of aminoglycosides as streptomycin, dihydrostreptomycin and bluensomycin. Streptidine is a derivative of cyclohexane which is substituted with four hydroxyl groups and two basic guanidine groups, and it has been shown to be one of the eight meso forms of 1,3-diguanido-2,4,5,6-tetrahydroxycyclohexane (Carter et al., 1947). Streptidine is responsible for the Sakaguchi reaction given by streptomycin, whereby guanidines in alkaline solution develop an intense red colour when treated with α-naphthol and sodium hypochlorite; this is a qualitative test for arginine, whether free or combined within a protein. Electrometric titration of streptidine dihydrochloride showed it to be a very strong base (Fried et al., 1946).

Streptidine is a `decoy acceptor' which allows the antibiotic activity of streptomycin to recover against the Escherichia coli strain overexpressing the aminoglycoside-modifying enzyme 6-O-adenyl transferase. It could be a good starting compound for the design of more efficient `decoy acceptors' of aminoglycoside-modifying enzymes (Latorre et al., 2007). Streptidine is a metabolite but not the antibiotic itself. It is a potential contributor to ototoxicity after prolonged antibiotic administration since it acts as a damaging agent for the inner ear (Meza & Granados, 2005). The only previous structural study of this compound employed X-ray powder diffraction (Rose, 1954). Here, we report a single-crystal study of the title compound, (I) (Fig. 1), at 100 K.

The sulfate anions of (I) are doubly charged but the water molecule is not protonated. The stoichoimetry of the crystal structure requires the streptidinium cation to carry two positive charges, which are located on the guanidine groups. The planarity of these groups and their relative closeness to the sulfate anions suggest that they must in fact be protonated. The sulfate anion is disordered over two sets of atomic sites, with occupancies of 0.795 (4) and 0.205 (5).

The central cyclohexane ring adopts a classical chair conformation. All H atoms occupy axial positions, while hydroxyl groups and protonated guanidine groups occupy equatorial positions. Streptidine is present in a cationic form and the protonation is on the CNH N atom in both guanidine fragments. The same type of protonation was found in the crystal structure of streptomycin oxime selenate tetrahydrate (Neidle et al., 1978). From this result, the protonation on the C—NH2 group of streptidine, as proposed by Latorre et al. (2007), seems to be incorrect.

In both guanidine moieties, the N atoms have a planar geometry. The C—N bond lengths are in the range 1.320–1.347 Å, intermediate between double (1.28 Å; Reference for standard value?) and single (1.47 Å; Reference for standard value?) bonds, indicating the delocalization of the double CN bond over all three C—N bonds. Both guanidine groups, N1–N3/C7 and N4–N6/C8, are planar to within 0.003 (3) and 0.006 (3) Å, respectively. The dihedral angles between the central cyclohexane ring (C1–C6) and the guanidine moieties are 112.3 (1) (plane of N1–N3/C7) and 100.8 (1)° (plane of N4–N6/C8). For comparison, the respective dihedral angles in streptomycin oxime selenate tetrahydrate are 97.5 and 109.2° (Neidle et al., 1978).

The crystal structure of (I) is stabilized by N—H···O and O—H···O hydrogen bonds and electrostatic interactions. The molecules are arranged in double helices based on hydrogen bonds, one of streptidinium cations, and the second of sulfate anions and water molecules (Fig. 2). Between the helices, O—H···O and N—H···O hydrogen bonds occur, and a three-dimensional hydrogen-bonding network is built up through the entire crystal structure. Hydrogen bonds linking the sulfate anion, the streptidinium cation and the water molecule are summarized in Table 1 and shown in Fig. 3. The geometries of all the hydrogen bonds are within accepted limits (Desiraju & Steiner, 1999). The streptidinium cation is involved in 156 [15 ?] hydrogen bonds of O—H···O and N—H···O types with adjacent streptidinium cations (three bonds), water molecules (two bonds) and sulfate ions (ten bonds). The sulfate anion accepts eight hydrogen bonds from the streptidinium cation and one from the water molecule. Finally, the water molecule is involved in four O—H···O bonds, two to a streptidinium cation as an acceptor and two to a sulfate anion as a donor. There are no intramolecular hydrogen bonds in the streptidinium cation.

Experimental top

Streptidine crystals were obtained while attempting to crystallize a molecular complex of streptomycin sulfate with p-sulfonatocalix[4]arene from an aqueous solution [Please give brief details of quantities, reaction conditions etc.]. Due to acidic hydrolysis of streptomycin to streptidine and dihydrostreptobiosaminidine, instead of the desired complex crystals of streptidinium sulfate monohydrate, (I), were obtained.

Refinement top

Due to the not very satisfactory geometry of sulfate anion the SADI instruction in SHELXL program was applied in order to rationalize the bond lengths. The anisotropic displacement parameters of oxygen atoms of the minor component in disordered anion were kept the same as the corresponding atoms of the major component. All H atoms were located in difference maps. H atoms attached to C atoms were then treated as riding atoms in geometrically calculated positions, with C—H = 1.00 Å, and Uiso(H) = 1.5Ueq(C). For H atoms bonded to N or O atoms, the atomic corrdinates were refined with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O), to give distances in the ranges N—H = 0.79 (4)–0.94 (4) Å and O—H = 0.78 (5)–0.93 (5) Å. Friedel opposites were kept unmerged, and the value of the Flack x parameter (Flack, 1983) confirmed that the space group was P32.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor 1997) and SCALEPACK (Otwinowski & Minor 1997); data reduction: DENZO (Otwinowski & Minor 1997) and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Burnett & Johnson,1996); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Only the major component of the sulfate anion is shown. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The double helical arrangement of streptidinium cations (white), sulfate anions (grey) and water molecules (black) around the 32 crystallographic axis.
[Figure 3] Fig. 3. The packing of (I) along the c axis, with hydrogen bonds shown as dashed lines. Water molecules are represented as spheres.
{[(1S,3R,4S,6R)-2,4,5,6-tetrahydroxycyclohexane- 1,3-diyl]diimino}bis(aminomethaniminium) sulfate monohydrate top
Crystal data top
C8H20N6O42+·SO42·H2ODx = 1.614 Mg m3
Mr = 378.38Mo Kα radiation, λ = 0.71073 Å
Trigonal, P32Cell parameters from 1276 reflections
Hall symbol: P 32θ = 2.6–27.5°
a = 9.1105 (5) ŵ = 0.27 mm1
c = 16.2506 (7) ÅT = 100 K
V = 1168.1 (1) Å3Trigonal pyramid, colourless
Z = 30.50 × 0.40 × 0.35 mm
F(000) = 600
Data collection top
Nonius Kappa APEXII
diffractometer
2547 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 27.5°, θmin = 2.9°
Detector resolution: 8.3 pixels mm-1h = 1111
ϕ and ω scansk = 011
4125 measured reflectionsl = 1521
2645 independent reflections
Refinement top
Refinement on F2Hydrogen site location: geom and difmap
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0172P)2 + 2.4698P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max = 0.002
S = 1.05Δρmax = 0.67 e Å3
2645 reflectionsΔρmin = 0.59 e Å3
279 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
29 restraintsExtinction coefficient: 0.007 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.08 (12)
Crystal data top
C8H20N6O42+·SO42·H2OZ = 3
Mr = 378.38Mo Kα radiation
Trigonal, P32µ = 0.27 mm1
a = 9.1105 (5) ÅT = 100 K
c = 16.2506 (7) Å0.50 × 0.40 × 0.35 mm
V = 1168.1 (1) Å3
Data collection top
Nonius Kappa APEXII
diffractometer
2547 reflections with I > 2σ(I)
4125 measured reflectionsRint = 0.028
2645 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100Δρmax = 0.67 e Å3
S = 1.05Δρmin = 0.59 e Å3
2645 reflectionsAbsolute structure: Flack (1983)
279 parametersAbsolute structure parameter: 0.08 (12)
29 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4926 (5)0.4670 (4)0.8515 (2)0.0173 (7)
H10.46850.55430.87500.021*
C20.6612 (5)0.5597 (5)0.8052 (2)0.0184 (7)
H20.69290.47530.78540.022*
C30.6461 (4)0.6551 (4)0.7317 (2)0.0145 (7)
H30.61470.73940.75210.017*
C40.5089 (4)0.5338 (5)0.6728 (2)0.0165 (7)
H40.53620.44600.65340.020*
C50.3393 (4)0.4481 (4)0.7193 (2)0.0160 (7)
H50.31170.53660.73710.019*
C60.3447 (5)0.3514 (5)0.7950 (3)0.0186 (8)
H60.36470.25870.77540.022*
C70.5080 (4)0.4061 (5)0.9983 (2)0.0177 (7)
C80.9247 (5)0.9068 (5)0.7015 (3)0.0206 (8)
O10.7849 (4)0.6716 (3)0.86210 (18)0.0229 (6)
H1O0.874 (7)0.684 (6)0.852 (3)0.034*
O20.5009 (3)0.6269 (3)0.60419 (19)0.0217 (6)
H2O0.452 (7)0.553 (7)0.566 (3)0.033*
O30.2097 (3)0.3318 (3)0.66622 (18)0.0232 (6)
H3O0.141 (7)0.365 (6)0.659 (3)0.035*
O40.1874 (4)0.2743 (3)0.83795 (19)0.0242 (6)
H4O0.178 (7)0.348 (7)0.853 (3)0.036*
N10.5027 (5)0.3684 (4)0.9196 (2)0.0230 (7)
H1A0.509 (6)0.267 (6)0.902 (3)0.028*
N20.5040 (6)0.5414 (5)1.0236 (3)0.0333 (9)
H2A0.510 (7)0.639 (7)0.992 (3)0.040*
H2B0.516 (7)0.566 (7)1.079 (3)0.040*
N30.5165 (4)0.3002 (4)1.0542 (2)0.0202 (7)
H3A0.503 (6)0.206 (6)1.036 (3)0.024*
H3B0.496 (6)0.309 (6)1.110 (3)0.024*
N40.8068 (4)0.7456 (4)0.6879 (2)0.0171 (7)
H4A0.825 (5)0.697 (6)0.647 (3)0.021*
N51.0663 (4)0.9756 (5)0.6586 (3)0.0265 (8)
H5A1.128 (6)1.095 (6)0.663 (3)0.032*
H5B1.075 (7)0.915 (7)0.622 (3)0.032*
N60.8990 (4)0.9996 (4)0.7570 (2)0.0239 (7)
H6A0.812 (6)0.945 (6)0.794 (3)0.029*
H6B0.994 (6)1.110 (6)0.774 (3)0.029*
S10.43923 (11)0.46653 (11)0.24761 (4)0.0219 (2)
O1S0.5553 (5)0.6048 (4)0.1917 (2)0.0347 (9)0.786 (3)
O2S0.2591 (3)0.4094 (5)0.2327 (3)0.0316 (9)0.786 (3)
O3S0.4931 (5)0.5230 (5)0.33338 (15)0.0261 (8)0.786 (3)
O4S0.4715 (5)0.3241 (4)0.2324 (2)0.0278 (9)0.786 (3)
O1S'0.4024 (18)0.5609 (15)0.1843 (6)0.0347 (9)0.214 (3)
O2S'0.3081 (13)0.4522 (18)0.3063 (7)0.0316 (9)0.214 (3)
O3S'0.6076 (8)0.5825 (14)0.2834 (8)0.0261 (8)0.214 (3)
O4S'0.3720 (19)0.2907 (7)0.2180 (8)0.0278 (9)0.214 (3)
O1W0.3210 (4)0.4019 (4)0.4808 (2)0.0271 (7)
H1W0.229 (7)0.397 (7)0.493 (4)0.041*
H2W0.365 (7)0.427 (7)0.426 (4)0.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0278 (19)0.0147 (16)0.0138 (17)0.0139 (15)0.0001 (15)0.0006 (14)
C20.0239 (19)0.0173 (17)0.0151 (18)0.0112 (15)0.0032 (15)0.0037 (15)
C30.0136 (16)0.0130 (16)0.0148 (18)0.0051 (13)0.0042 (14)0.0013 (13)
C40.0178 (16)0.0147 (16)0.0142 (18)0.0061 (14)0.0030 (14)0.0044 (14)
C50.0161 (16)0.0091 (15)0.0195 (19)0.0037 (13)0.0026 (15)0.0017 (14)
C60.0190 (17)0.0120 (16)0.0196 (19)0.0038 (14)0.0021 (15)0.0014 (14)
C70.0138 (16)0.0225 (18)0.0153 (18)0.0078 (14)0.0002 (14)0.0035 (15)
C80.0171 (17)0.0178 (17)0.024 (2)0.0069 (15)0.0005 (15)0.0023 (16)
O10.0197 (13)0.0275 (14)0.0208 (15)0.0112 (12)0.0056 (12)0.0058 (12)
O20.0226 (14)0.0177 (13)0.0180 (14)0.0049 (11)0.0024 (12)0.0041 (11)
O30.0175 (13)0.0190 (13)0.0249 (15)0.0031 (11)0.0042 (12)0.0008 (11)
O40.0253 (14)0.0147 (13)0.0263 (16)0.0053 (11)0.0117 (12)0.0002 (11)
N10.041 (2)0.0194 (16)0.0137 (16)0.0189 (15)0.0011 (15)0.0006 (13)
N20.059 (3)0.038 (2)0.0171 (19)0.034 (2)0.0095 (18)0.0122 (17)
N30.0253 (17)0.0225 (16)0.0123 (16)0.0115 (14)0.0011 (13)0.0022 (13)
N40.0178 (15)0.0154 (14)0.0178 (17)0.0080 (12)0.0048 (13)0.0000 (13)
N50.0183 (16)0.0226 (18)0.033 (2)0.0060 (14)0.0055 (15)0.0001 (16)
N60.0209 (16)0.0150 (15)0.031 (2)0.0054 (13)0.0012 (15)0.0045 (14)
S10.0245 (5)0.0203 (5)0.0144 (4)0.0062 (4)0.0012 (4)0.0009 (4)
O1S0.039 (2)0.0243 (18)0.025 (2)0.0037 (16)0.0045 (18)0.0049 (16)
O2S0.0236 (18)0.034 (2)0.038 (2)0.0152 (16)0.0080 (16)0.0030 (17)
O3S0.0314 (19)0.0327 (19)0.018 (2)0.0186 (16)0.0034 (15)0.0068 (15)
O4S0.041 (2)0.035 (2)0.0161 (18)0.026 (2)0.0007 (18)0.0021 (16)
O1S'0.039 (2)0.0243 (18)0.025 (2)0.0037 (16)0.0045 (18)0.0049 (16)
O2S'0.0236 (18)0.034 (2)0.038 (2)0.0152 (16)0.0080 (16)0.0030 (17)
O3S'0.0314 (19)0.0327 (19)0.018 (2)0.0186 (16)0.0034 (15)0.0068 (15)
O4S'0.041 (2)0.035 (2)0.0161 (18)0.026 (2)0.0007 (18)0.0021 (16)
O1W0.0337 (16)0.0267 (15)0.0216 (16)0.0155 (13)0.0014 (13)0.0025 (13)
Geometric parameters (Å, º) top
C1—N11.456 (5)O1—H1O0.78 (6)
C1—C21.531 (5)O2—H2O0.85 (5)
C1—C61.533 (5)O3—H3O0.83 (5)
C1—H11.0000O4—H4O0.76 (6)
C2—O11.420 (4)N1—H1A1.00 (5)
C2—C31.523 (5)N2—H2A1.01 (6)
C2—H21.0000N2—H2B0.92 (6)
C3—N41.457 (4)N3—H3A0.85 (5)
C3—C41.523 (5)N3—H3B0.93 (5)
C3—H31.0000N4—H4A0.86 (5)
C4—O21.425 (4)N5—H5A0.95 (5)
C4—C51.537 (5)N5—H5B0.84 (5)
C4—H41.0000N6—H6A0.91 (5)
C5—O31.418 (4)N6—H6B0.99 (5)
C5—C61.527 (5)S1—O2S1.473 (2)
C5—H51.0000S1—O3S'1.479 (2)
C6—O41.424 (5)S1—O4S'1.480 (2)
C6—H61.0000S1—O3S1.482 (2)
C7—N21.318 (5)S1—O1S1.483 (2)
C7—N11.319 (5)S1—O1S'1.483 (2)
C7—N31.355 (5)S1—O2S'1.483 (2)
C8—N51.318 (5)S1—O4S1.487 (2)
C8—N41.334 (5)O1W—H1W0.85 (6)
C8—N61.335 (5)O1W—H2W0.95 (6)
N1—C1—C2111.0 (3)N5—C8—N4119.6 (4)
N1—C1—C6109.6 (3)N5—C8—N6119.8 (4)
C2—C1—C6112.3 (3)N4—C8—N6120.6 (3)
N1—C1—H1107.9C2—O1—H1O111 (4)
C2—C1—H1107.9C4—O2—H2O105 (3)
C6—C1—H1107.9C5—O3—H3O108 (4)
O1—C2—C3111.5 (3)C6—O4—H4O105 (4)
O1—C2—C1107.0 (3)C7—N1—C1125.5 (3)
C3—C2—C1110.4 (3)C7—N1—H1A120 (3)
O1—C2—H2109.3C1—N1—H1A114 (3)
C3—C2—H2109.3C7—N2—H2A131 (3)
C1—C2—H2109.3C7—N2—H2B119 (3)
N4—C3—C2110.7 (3)H2A—N2—H2B110 (4)
N4—C3—C4109.3 (3)C7—N3—H3A117 (3)
C2—C3—C4110.7 (3)C7—N3—H3B120 (3)
N4—C3—H3108.7H3A—N3—H3B119 (4)
C2—C3—H3108.7C8—N4—C3124.7 (3)
C4—C3—H3108.7C8—N4—H4A116 (3)
O2—C4—C3109.1 (3)C3—N4—H4A119 (3)
O2—C4—C5110.5 (3)C8—N5—H5A113 (3)
C3—C4—C5108.1 (3)C8—N5—H5B117 (4)
O2—C4—H4109.7H5A—N5—H5B127 (5)
C3—C4—H4109.7C8—N6—H6A118 (3)
C5—C4—H4109.7C8—N6—H6B120 (3)
O3—C5—C6108.3 (3)H6A—N6—H6B116 (4)
O3—C5—C4109.3 (3)O3S'—S1—O4S'128.4 (8)
C6—C5—C4112.0 (3)O2S—S1—O3S113.2 (2)
O3—C5—H5109.1O2S—S1—O1S113.3 (2)
C6—C5—H5109.1O3S—S1—O1S108.1 (2)
C4—C5—H5109.1O3S'—S1—O1S'108.3 (8)
O4—C6—C5111.4 (3)O4S'—S1—O1S'108.1 (8)
O4—C6—C1111.5 (3)O3S'—S1—O2S'108.2 (8)
C5—C6—C1110.9 (3)O4S'—S1—O2S'103.6 (8)
O4—C6—H6107.6O1S'—S1—O2S'95.3 (8)
C5—C6—H6107.6O2S—S1—O4S109.6 (2)
C1—C6—H6107.6O3S—S1—O4S106.5 (2)
N2—C7—N1122.2 (4)O1S—S1—O4S105.8 (2)
N2—C7—N3119.6 (4)H1W—O1W—H2W121 (5)
N1—C7—N3118.2 (3)
N1—C1—C2—O161.3 (4)O3—C5—C6—O460.1 (4)
C6—C1—C2—O1175.6 (3)C4—C5—C6—O4179.3 (3)
N1—C1—C2—C3177.2 (3)O3—C5—C6—C1175.1 (3)
C6—C1—C2—C354.1 (4)C4—C5—C6—C154.5 (4)
O1—C2—C3—N460.4 (4)N1—C1—C6—O459.8 (4)
C1—C2—C3—N4179.2 (3)C2—C1—C6—O4176.4 (3)
O1—C2—C3—C4178.2 (3)N1—C1—C6—C5175.5 (3)
C1—C2—C3—C459.3 (4)C2—C1—C6—C551.6 (4)
N4—C3—C4—O256.6 (4)N2—C7—N1—C10.3 (6)
C2—C3—C4—O2178.8 (3)N3—C7—N1—C1179.7 (4)
N4—C3—C4—C5176.7 (3)C2—C1—N1—C7107.6 (4)
C2—C3—C4—C561.0 (4)C6—C1—N1—C7127.9 (4)
O2—C4—C5—O361.8 (4)N5—C8—N4—C3179.5 (4)
C3—C4—C5—O3178.9 (3)N6—C8—N4—C31.8 (6)
O2—C4—C5—C6178.2 (3)C2—C3—N4—C893.3 (4)
C3—C4—C5—C658.9 (4)C4—C3—N4—C8144.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O1Wi0.78 (6)2.00 (6)2.775 (4)170 (5)
O2—H2O···O1W0.85 (5)1.90 (5)2.748 (4)171 (5)
O3—H3O···O3Sii0.83 (5)1.79 (5)2.590 (12)162 (5)
O3—H3O···O3Sii0.83 (5)2.00 (5)2.801 (5)160 (5)
O3—H3O···O1Sii0.83 (5)2.56 (5)3.155 (5)130 (4)
O4—H4O···O2ii0.76 (6)2.15 (6)2.876 (4)158 (5)
N1—H1A···O3Siii1.00 (5)2.07 (5)2.863 (12)135 (4)
N1—H1A···O4Siii1.00 (5)2.27 (5)3.136 (5)145 (4)
N2—H2B···O1Siv0.92 (6)1.87 (6)2.782 (5)174 (5)
N2—H2B···O1Siv0.92 (6)1.99 (6)2.805 (14)147 (5)
N2—H2A···O2Sv1.01 (6)1.85 (6)2.811 (8)158 (4)
N2—H2A···O2Sv1.01 (6)2.25 (6)3.220 (6)161 (4)
N3—H3A···O3Siii0.85 (5)2.00 (5)2.774 (12)150 (4)
N3—H3A···O3Siii0.85 (5)2.12 (5)2.978 (5)176 (4)
N3—H3B···O4Siv0.93 (5)2.02 (5)2.949 (5)174 (4)
N3—H3B···O4Siv0.93 (5)2.05 (5)2.952 (14)161 (4)
N4—H4A···O4Si0.86 (5)2.02 (5)2.865 (14)168 (4)
N4—H4A···O4Si0.86 (5)2.14 (5)2.976 (5)167 (4)
N5—H5A···O3vi0.95 (5)1.90 (5)2.831 (5)169 (4)
N5—H5B···O2Si0.84 (5)2.22 (5)3.009 (5)157 (5)
N5—H5B···O2Si0.84 (5)2.43 (5)3.019 (14)127 (4)
N5—H5B···O4Si0.84 (5)2.54 (6)3.258 (15)144 (5)
N6—H6B···O4vi0.99 (5)1.94 (5)2.884 (4)159 (4)
N6—H6B···O3vi0.99 (5)2.66 (5)3.284 (4)122 (3)
N6—H6A···O4Sv0.91 (5)2.40 (5)3.021 (13)125 (4)
N6—H6A···O2Sv0.91 (5)2.45 (5)3.358 (5)170 (4)
O1W—H1W···O1Sii0.85 (6)1.95 (6)2.784 (5)166 (5)
O1W—H1W···O1Sii0.85 (6)2.25 (6)2.894 (12)133 (5)
O1W—H2W···O3S0.95 (6)1.84 (6)2.772 (5)166 (5)
O1W—H2W···O2S0.95 (6)2.06 (6)2.884 (12)144 (5)
Symmetry codes: (i) x+y+1, x+1, z+1/3; (ii) x+y, x+1, z+1/3; (iii) y+1, xy, z+2/3; (iv) x, y, z+1; (v) y+1, xy+1, z+2/3; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H20N6O42+·SO42·H2O
Mr378.38
Crystal system, space groupTrigonal, P32
Temperature (K)100
a, c (Å)9.1105 (5), 16.2506 (7)
V3)1168.1 (1)
Z3
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.50 × 0.40 × 0.35
Data collection
DiffractometerNonius Kappa APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4125, 2645, 2547
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.100, 1.05
No. of reflections2645
No. of parameters279
No. of restraints29
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.59
Absolute structureFlack (1983)
Absolute structure parameter0.08 (12)

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor 1997) and SCALEPACK (Otwinowski & Minor 1997), DENZO (Otwinowski & Minor 1997) and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Burnett & Johnson,1996), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O1Wi0.78 (6)2.00 (6)2.775 (4)170 (5)
O2—H2O···O1W0.85 (5)1.90 (5)2.748 (4)171 (5)
O3—H3O···O3S'ii0.83 (5)1.79 (5)2.590 (12)162 (5)
O3—H3O···O3Sii0.83 (5)2.00 (5)2.801 (5)160 (5)
O3—H3O···O1Sii0.83 (5)2.56 (5)3.155 (5)130 (4)
O4—H4O···O2ii0.76 (6)2.15 (6)2.876 (4)158 (5)
N1—H1A···O3S'iii1.00 (5)2.07 (5)2.863 (12)135 (4)
N1—H1A···O4Siii1.00 (5)2.27 (5)3.136 (5)145 (4)
N2—H2B···O1Siv0.92 (6)1.87 (6)2.782 (5)174 (5)
N2—H2B···O1S'iv0.92 (6)1.99 (6)2.805 (14)147 (5)
N2—H2A···O2S'v1.01 (6)1.85 (6)2.811 (8)158 (4)
N2—H2A···O2Sv1.01 (6)2.25 (6)3.220 (6)161 (4)
N3—H3A···O3S'iii0.85 (5)2.00 (5)2.774 (12)150 (4)
N3—H3A···O3Siii0.85 (5)2.12 (5)2.978 (5)176 (4)
N3—H3B···O4Siv0.93 (5)2.02 (5)2.949 (5)174 (4)
N3—H3B···O4S'iv0.93 (5)2.05 (5)2.952 (14)161 (4)
N4—H4A···O4S'i0.86 (5)2.02 (5)2.865 (14)168 (4)
N4—H4A···O4Si0.86 (5)2.14 (5)2.976 (5)167 (4)
N5—H5A···O3vi0.95 (5)1.90 (5)2.831 (5)169 (4)
N5—H5B···O2Si0.84 (5)2.22 (5)3.009 (5)157 (5)
N5—H5B···O2S'i0.84 (5)2.43 (5)3.019 (14)127 (4)
N5—H5B···O4S'i0.84 (5)2.54 (6)3.258 (15)144 (5)
N6—H6B···O4vi0.99 (5)1.94 (5)2.884 (4)159 (4)
N6—H6B···O3vi0.99 (5)2.66 (5)3.284 (4)122 (3)
N6—H6A···O4S'v0.91 (5)2.40 (5)3.021 (13)125 (4)
N6—H6A···O2Sv0.91 (5)2.45 (5)3.358 (5)170 (4)
O1W—H1W···O1Sii0.85 (6)1.95 (6)2.784 (5)166 (5)
O1W—H1W···O1S'ii0.85 (6)2.25 (6)2.894 (12)133 (5)
O1W—H2W···O3S0.95 (6)1.84 (6)2.772 (5)166 (5)
O1W—H2W···O2S'0.95 (6)2.06 (6)2.884 (12)144 (5)
Symmetry codes: (i) x+y+1, x+1, z+1/3; (ii) x+y, x+1, z+1/3; (iii) y+1, xy, z+2/3; (iv) x, y, z+1; (v) y+1, xy+1, z+2/3; (vi) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds