Download citation
Download citation
link to html
The structures of the anhydrous 1:1 proton-transfer com­pounds of 4,5-dichloro­phthalic acid (DCPA) with the mono­cyclic heteroaromatic Lewis bases 2-amino­pyrimidine, 3-(am­ino­carb­onyl)pyridine (nicotinamide) and 4-(amino­carbon­yl)pyridine (isonicotinamide), namely 2-amino­pyrimidinium 2-carb­oxy-4,5-dichloro­benzoate, C4H6N3+·C8H3Cl2O4, (I), 3-(amino­carbon­yl)pyridinium 2-carb­oxy-4,5-dichloro­benzoate, C6H7N2O+·C8H3Cl2O4, (II), and the unusual salt adduct 4-(amino­carbon­yl)pyridinium 2-carb­oxy-4,5-dichloro­benzo­ate–­methyl 2-carb­oxy-4,5-dichloro­benzoate (1/1), C6H7N2O+·C8H3Cl2O4·C9H6Cl2O4, (III), have been determined at 130 K. Compound (I) forms discrete centrosymmetric hydrogen-bonded cyclic bis­(cation–anion) units having both R22(8) and R12(4) N—H...O inter­actions. In (II), the primary N—H...O-linked cation–anion units are extended into a two-dimensional sheet structure via amide–carboxyl and amide–carbonyl N—H...O inter­actions. The structure of (III) reveals the presence of an unusual and unexpected self-synthesized methyl monoester of the acid as an adduct mol­ecule, giving one-dimensional hydrogen-bonded chains. In all three structures, the hydrogen phthalate anions are essentially planar with short intra­molecular carboxyl–carboxylate O—H...O hydrogen bonds [O...O = 2.393 (8)–2.410 (2) Å]. This work provides examples of low-dimensional 1:1 hydrogen-bonded DCPA structure types, and includes the first example of a discrete cyclic `hetero­tetra­mer.' This low dimensionality in the structures of the 1:1 aromatic Lewis base salts of the parent acid is generally associated with the planar DCPA anion species.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109004405/gd3270sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109004405/gd3270Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109004405/gd3270IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109004405/gd3270IIIsup4.hkl
Contains datablock III

CCDC references: 728214; 728215; 728216

Comment top

The 1:1 proton-transfer compounds of the acid salts of 4,5-dichlorophthalic acid (DCPA) with aromatic and heteroaromatic nitrogen Lewis bases generally show low-dimensional hydrogen-bonded structure types (Smith et al., 2008a), with the occurrence of three-dimensional structures limited to the compounds with the bifunctional examples 3- and 4-aminobenzoic acid (Smith et al., 2008b). In these two examples the primary hydrogen-bonded cation–anion `heterodimer' (Etter & Adsmond, 1990) is extended into sheet substructures through further anion–cation interactions, then into a three-dimensional framework via cyclic R22(8) cation carboxylic acid hydrogen bonds (Etter et al., 1990). In these examples the DCPA anions are non-planar whereas in the low-dimensional structure types the DCPA anion species are essentially planar with the planarity achieved through short intramolecular carboxylic acid O—H···Ocarboxyl hydrogen bonds [typically 2.441 (3) in the brucinium DCPA compound (Smith et al., 2007)]. There is also a low incidence of hydrates among the structures of the (1:1) proton-transfer compounds of DCPA when prepared in aqueous alcohol solution, with the only three known examples limited to the salts with quinaldic acid (a monohydrate) (Smith et al., 2008a), 2-aminobenzoic acid (a dihydrate) (Smith et al., 2008b), hexamethylenetetramine (a monohydrate) (Smith et al., 2009) and the drug quinacrine (a tetrahydrate) (Smith & Wermuth, 2009).

The 1:1 stoichiometric reaction of DCPA with the substituted monocyclic heteroaromatic bases 2-aminopyrimidine, 3-(aminocarbonyl)pyridine (nicotinamide) and 4-(aminocarbonyl)pyridine (isonicotinamide) in methanol gave the anhydrous compounds 2-aminopyrimidinium 2-carboxy-4,5-dichlorobenzoate C4H6N3+ C8H3Cl2O4-, (I), 3-(aminocarbonyl)pyridinium 2-carboxy-4,5-dichlorobenzoate C7H8NO2+ C8H3Cl2O4-, (II), and the unusual adduct 4-(aminocarbonyl)pyridinium 2-carboxy-4,5-dichlorobenzoate 2-carboxymethyl-4,5-dichlorobenzoic acid (1/1/1) C6H7N2O+ C8H3Cl2O4-. C9H6Cl2O4, (III). This set of compounds shows examples of zero-, one- and two-dimensional hydrogen-bonded structures.

All three compounds have at least one direct hetero-ring N+—H···Ocarboxyl hydrogen-bonding interaction (Figs. 1–3 and Tables 1–3), and all show low-dimensional hydrogen-bonded overall structures, two- in (II), one- in (III) and the first example of a cyclic zero-dimensional bis(cation–anion) species in (I) (Figs. 4–6). Associated with all of these DCPA structure types is the essentially planar monoanion species which is found in ca 50% of the known 1:1 acid salts of DCPA with aromatic Lewis bases (Smith et al., 2008a). However structures (I)–(III) are sufficiently different as to be described separately.

With compound (I), the primary cation–anion association is an asymmetric cyclic R22(8) pyrimidine hetero-N···O,O'carboxyl association (Fig. 1). This is the high-probability Type 4 hydrogen-bonding structural motif described by Allen et al. (1998). The cation-anion pairs so formed repeat across inversion centres via cyclic three-centre R12(4) amine –N+—H···O,O'carboxyl associations, enclosing R66(12) rings, giving discrete four-molecule 'heterotetramer' structural units (Fig. 4). Although other zero-dimensional structures are known among the DCPA proton-transfer compounds [others being discrete cation–anion `heterodimers' (Etter & Adsmond, 1990), with brucine (Smith et al., 2007), hexamethylenetetramine and 1,10-phenanthroline (Smith et al., 2009), the formation of this bis-(cation–anion) structure type is driven more by the interactive features of the 2-aminopyrimidine molecular synthon and finds a small incidence among its 1:1 salts with the aromatic acids, e.g. (3,4-dichlorophenoxy)acetic acid (Lynch et al., 1994) and phthalic acid (Smith et al., 1995).

With (II), the nicotinamide cations form chain structures through homomeric amide N31—H···Ocarbonyl interactions. These chains are linked along the b cell direction by associations involving proton donors of both the amide N and the primary pyridinium groups to carboxyl O acceptors of the anions (Table 3), giving a sheet parallel to (100) (Fig. 5).

Compound (III) is an example of a (1:1:1) cation–anion adduct structure with the adduct molecule an unexpected methyl monoester of DCPA, arising from self-synthesis in the methanol solvent under the conditions of the reaction. This phenomenon has no precedence among the proton-transfer compounds prepared under similar conditions in our laboratory. In (III), the primary hetero N+—H···Ocarboxyl hydrogen-bonded unit is extended into a zigzag chain along [101] via an amide N—H···Ocarboxyl association (Fig. 6). The second amide N atom, together with the amide carbonyl O atom, is involved in an asymmetric cyclic R22(8) association with the peripherally linked DCPA methyl monoester adduct molecule (B).

There is an absence in (I)–(III) of short intermolecular Cl···Cl interactions such as has been found in the DCPA compounds with 3- and 4-aminobenzoic acids (Smith et al., 2008a; please check; this reference appears to be for different compounds). The occurrence of this phenomenon, particularly in dichloro-substituted aromatic compounds, has previously been described (Sarma & Desiraju, 1986). However, in all three structures there are short Cl···Ocarboxyl associations [for (I), Cl4···O32ii = 3.0683 (14) Å; symmetry code: (ii) -x + 1, -y + 2, -z + 1; for (II), Cl4···O11ii = 3.1582 (15) Å; symmetry code: (iii) -x + 1, y + 1/2, -z + 5/2; for (III), Cl4···O22iii = 2.982 (5) Å; symmetry code: (iii) x, -y + 1, z - 1/2.]

With the DCPA anions in this series the essential planarity is the result of the presence of short intramolecular hydrogen bonds between the carboxyl groups [2.393 (8) Å in (III)–2.410 (2) Å in (II)]. The torsion angles associated with these groups (C2—C1—C11—O11 and C1—C2—C21—O22) are, for (I), -170.16 (16) and -179.70 (16)°; for (II), -178.68 (19) and 172.58 (18)°; and, for (III), 173.0 (7) and -175.6</span><span style=" font-weight:600;">(6)° [-178.5 (7)?], respectively. The planarity also means that there are short intramolecular aromatic ring C—H···Ocarboxyl interactions [typically C6—H6···O12 = 2.676 (2) Å and C3—H3···O22 = 2.643 (2) Å in (I)]. With the methyl ester adduct molecule in (III), the carboxylic acid group provides hydrogen-bonding links to the cation–anion chain structure rather than forming an intramolecular hydrogen bond and is therefore rotated out of the molecular plane [C2B—C1B—C11B—O11B = -151.6 (6)°].

This present series provides a set of low-dimensional hydrogen- bonded structure types in the series of 1:1 proton-transfer compounds of 4,5-dichlorophthalic acid with aromatic Lewis bases. This low dimensionality is largely associated with planarity in the internally hydrogen-bonded hydrogen phthalate anion species.

Related literature top

For related literature, see: Allen et al. (1998); Etter & Adsmond (1990); Etter, MacDonald & Bernstein (1990); Flack (1983); Lynch et al. (1994); Sarma & Desiraju (1986); Smith & Wermuth (2009); Smith et al. (1995, 2007, 2008a, 2008b); Smith, Wermuth & White (2009).

Experimental top

Compounds (I)–(III) were synthesized by heating together for 10 min under reflux, 1 mmol quantities of 4,5-dichlorophthalic acid and, respectively, 2-aminopyrimidine, nicotinic acid and isonicotinic acid in 50 ml of methanol. All compounds were obtained as small colourless plates or prisms [`needles' in CIF?] [m.p. (I) 334 K; (II) 455–457 K; (III) 433–434 K], after partial room-temperature evaporation of solvent.

Refinement top

H atoms potentially involved in hydrogen-bonding interactions in all compounds were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were included at calculated positions [C—H = 0.93 Å (0.96 Å for methyl H atoms)] and treated as riding [with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C)]. For compound (III), the correct orientation of the structure with respect to the polar axis directions was established by means of the Flack (1983) x parameter.

Computing details top

For all compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for the 2-aminopyrimidinium cation and the 2-carboxy-4,5-dichlorobenzoate anion in (I), showing the cyclic R22(8) inter-species hydrogen-bonding associations as dashed lines. Non-H atoms are shown as 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular configuration and atom-numbering scheme for the 3-(aminocarbony)pyridinium cations and the 2-carboxy-4,5-dichlorobenzoate anion in (II). The dashed lines indicate the inter-species hydrogen bonds, while non-H atoms are shown as 50% probability displacement ellipsoids.
[Figure 3] Fig. 3. Molecular configuration and atom-numbering scheme for the 4-(aminocarbonyl)pyridinium cation, the 2-carboxy-4,5-dichlorobenzoate anion and the 2-(carboxymethyl)-4,5-dichlorobenzoic acid adduct molecule in (III). The dashed lines indicate the inter-species hydrogen bonds, while non-H atoms are shown as 50% probability displacement ellipsoids.
[Figure 4] Fig. 4. Hydrogen-bonding in the discrete cyclic centrosymmetric bis(cation–anion) `heterotetramer' structural units in (I), shown as dashed lines. Non-interactive H atoms ahave been omitted. (For symmetry code, see Table 1.)
[Figure 5] Fig. 5. The hydrogen-bonding in the homomeric cation chains and the peripheral cation–anion extensions in the sheet structure of in a perspective view of the unit cell of (II). Non-interactive H atoms have been omitted, and hydrogen bonds are shown as dashed lines. (For symmetry codes, see Table 2.)
[Figure 6] Fig. 6. The zigzag hydrogen-bonded chains formed by extension of the cation–anion pairs and the peripherally attached methyl monoester adduct B molecules, in the structure of (III), in a perspective view of the unit cell. Non-interactive H atoms have been omitted. [Symmetry code: (ii) x - 1/2, y + 3/2, z - 1/2. For symmetry code (i), see Table 3.]
(I) 2-aminopyrimidininium 2-carboxy-4,5-dichlorobenzoate top
Crystal data top
C4H6N3+·C8H3Cl2O4Z = 2
Mr = 330.12F(000) = 336
Triclinic, P1Dx = 1.685 Mg m3
Hall symbol: -P 1Melting point: 337 K
a = 6.9738 (4) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.4413 (4) ÅCell parameters from 3656 reflections
c = 10.8900 (7) Åθ = 4.2–73.2°
α = 97.420 (4)°µ = 4.70 mm1
β = 100.527 (5)°T = 180 K
γ = 109.473 (5)°Plate, colourless
V = 650.50 (7) Å30.40 × 0.25 × 0.06 mm
Data collection top
Oxford Diffraction Gemini-S Ultra CCD-detector
diffractometer
2542 independent reflections
Radiation source: Enhance (Cu) X-ray tube2300 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 73.3°, θmin = 4.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.263, Tmax = 0.750k = 119
4955 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0638P)2 + 0.0923P]
where P = (Fo2 + 2Fc2)/3
2542 reflections(Δ/σ)max = 0.001
206 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C4H6N3+·C8H3Cl2O4γ = 109.473 (5)°
Mr = 330.12V = 650.50 (7) Å3
Triclinic, P1Z = 2
a = 6.9738 (4) ÅCu Kα radiation
b = 9.4413 (4) ŵ = 4.70 mm1
c = 10.8900 (7) ÅT = 180 K
α = 97.420 (4)°0.40 × 0.25 × 0.06 mm
β = 100.527 (5)°
Data collection top
Oxford Diffraction Gemini-S Ultra CCD-detector
diffractometer
2542 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2300 reflections with I > 2σ(I)
Tmin = 0.263, Tmax = 0.750Rint = 0.020
4955 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.33 e Å3
2542 reflectionsΔρmin = 0.27 e Å3
206 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl40.45906 (6)1.22867 (4)0.51774 (4)0.0267 (1)
Cl50.08646 (7)1.35528 (4)0.47231 (4)0.0275 (1)
O110.50174 (19)0.92708 (14)0.14526 (13)0.0296 (4)
O120.45627 (18)0.70762 (13)0.11433 (12)0.0253 (4)
O210.17727 (18)0.61141 (13)0.15572 (12)0.0252 (3)
O220.15213 (18)0.68947 (13)0.26292 (12)0.0265 (4)
C10.1727 (2)0.93013 (17)0.25534 (15)0.0182 (4)
C20.0092 (2)0.87302 (17)0.27900 (15)0.0169 (4)
C30.1830 (2)0.97005 (18)0.35952 (15)0.0192 (4)
C40.2158 (2)1.11762 (18)0.41903 (15)0.0196 (4)
C50.0539 (3)1.17249 (17)0.39877 (15)0.0197 (4)
C60.1366 (3)1.07938 (18)0.31709 (16)0.0199 (4)
C110.3912 (2)0.85223 (19)0.16635 (16)0.0201 (5)
C210.0111 (2)0.71330 (18)0.22830 (15)0.0183 (4)
N1A0.1949 (2)0.42610 (15)0.18145 (13)0.0197 (4)
N3A0.0629 (2)0.17310 (15)0.05974 (14)0.0215 (4)
N21A0.1428 (2)0.31986 (17)0.05611 (15)0.0259 (4)
C2A0.0384 (3)0.30646 (17)0.09894 (15)0.0192 (4)
C4A0.2454 (3)0.16388 (18)0.10567 (16)0.0215 (4)
C5A0.4133 (3)0.28319 (19)0.19192 (17)0.0234 (5)
C6A0.3821 (3)0.41541 (18)0.22853 (15)0.0211 (5)
H30.292700.934300.373600.0230*
H60.244101.117300.302800.0240*
H120.335 (5)0.669 (3)0.130 (3)0.066 (9)*
H1A0.180 (3)0.512 (2)0.209 (2)0.023 (5)*
H4A0.264200.072800.079400.0260*
H5A0.540100.272400.222600.0280*
H6A0.488600.497900.285500.0250*
H21A0.239 (4)0.244 (3)0.001 (2)0.039 (6)*
H22A0.163 (4)0.410 (3)0.077 (2)0.036 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl40.0242 (2)0.0172 (2)0.0292 (2)0.0047 (2)0.0041 (2)0.0049 (2)
Cl50.0369 (3)0.0143 (2)0.0309 (2)0.0122 (2)0.0066 (2)0.0023 (2)
O110.0238 (6)0.0231 (6)0.0394 (7)0.0119 (5)0.0024 (5)0.0033 (5)
O120.0192 (6)0.0200 (6)0.0316 (7)0.0068 (5)0.0013 (5)0.0006 (5)
O210.0208 (6)0.0143 (5)0.0352 (7)0.0067 (4)0.0005 (5)0.0039 (5)
O220.0236 (6)0.0181 (6)0.0343 (7)0.0111 (5)0.0009 (5)0.0048 (5)
C10.0208 (8)0.0153 (7)0.0190 (7)0.0070 (6)0.0049 (6)0.0045 (6)
C20.0204 (7)0.0120 (7)0.0173 (7)0.0054 (6)0.0042 (6)0.0015 (5)
C30.0209 (8)0.0160 (7)0.0208 (8)0.0086 (6)0.0031 (6)0.0019 (6)
C40.0211 (8)0.0139 (7)0.0191 (8)0.0035 (6)0.0012 (6)0.0002 (6)
C50.0273 (8)0.0122 (7)0.0201 (8)0.0081 (6)0.0066 (6)0.0013 (6)
C60.0223 (8)0.0180 (7)0.0235 (8)0.0118 (6)0.0063 (6)0.0054 (6)
C110.0192 (8)0.0195 (8)0.0215 (8)0.0074 (6)0.0037 (6)0.0047 (6)
C210.0193 (7)0.0137 (7)0.0209 (8)0.0062 (6)0.0046 (6)0.0005 (6)
N1A0.0218 (7)0.0124 (6)0.0231 (7)0.0066 (5)0.0034 (5)0.0001 (5)
N3A0.0226 (7)0.0143 (6)0.0259 (7)0.0072 (5)0.0037 (5)0.0001 (5)
N21A0.0224 (7)0.0189 (7)0.0324 (8)0.0098 (6)0.0011 (6)0.0038 (6)
C2A0.0217 (8)0.0152 (7)0.0207 (8)0.0071 (6)0.0056 (6)0.0018 (6)
C4A0.0261 (8)0.0157 (7)0.0248 (8)0.0105 (6)0.0070 (7)0.0027 (6)
C5A0.0222 (8)0.0210 (8)0.0286 (9)0.0102 (6)0.0052 (7)0.0055 (7)
C6A0.0198 (8)0.0181 (8)0.0213 (8)0.0045 (6)0.0021 (6)0.0010 (6)
Geometric parameters (Å, º) top
Cl4—C41.7290 (16)C1—C111.527 (2)
Cl5—C51.7282 (17)C1—C21.413 (2)
O11—C111.219 (2)C1—C61.399 (2)
O12—C111.298 (2)C2—C31.396 (2)
O21—C211.272 (2)C2—C211.532 (2)
O22—C211.235 (2)C3—C41.383 (2)
O12—H121.02 (4)C4—C51.386 (3)
N1A—C6A1.354 (3)C5—C61.384 (3)
N1A—C2A1.354 (2)C3—H30.9300
N3A—C4A1.315 (3)C6—H60.9300
N3A—C2A1.352 (2)C4A—C5A1.403 (3)
N21A—C2A1.318 (3)C5A—C6A1.360 (3)
N1A—H1A0.87 (2)C4A—H4A0.9300
N21A—H21A0.86 (2)C5A—H5A0.9300
N21A—H22A0.92 (3)C6A—H6A0.9300
C11—O12—H12109.9 (16)O12—C11—C1119.55 (14)
C21—O21—H12111.1 (12)O11—C11—O12121.06 (15)
C2A—N1A—C6A120.74 (15)O11—C11—C1119.39 (15)
C2A—N3A—C4A117.20 (15)O21—C21—C2119.98 (14)
C6A—N1A—H1A116.7 (14)O22—C21—C2117.05 (14)
C2A—N1A—H1A122.5 (14)O21—C21—O22122.95 (15)
C2A—N21A—H22A121.6 (17)C4—C3—H3119.00
C2A—N21A—H21A118 (2)C2—C3—H3119.00
H21A—N21A—H22A120 (3)C5—C6—H6119.00
C6—C1—C11112.63 (15)C1—C6—H6119.00
C2—C1—C11128.90 (14)N1A—C2A—N3A121.65 (18)
C2—C1—C6118.45 (15)N1A—C2A—N21A119.26 (16)
C1—C2—C21128.72 (14)N3A—C2A—N21A119.10 (16)
C1—C2—C3118.39 (14)N3A—C4A—C5A123.95 (17)
C3—C2—C21112.89 (13)C4A—C5A—C6A116.90 (19)
C2—C3—C4122.20 (14)N1A—C6A—C5A119.56 (16)
Cl4—C4—C3118.76 (12)N3A—C4A—H4A118.00
C3—C4—C5119.53 (15)C5A—C4A—H4A118.00
Cl4—C4—C5121.72 (13)C4A—C5A—H5A122.00
C4—C5—C6119.23 (15)C6A—C5A—H5A122.00
Cl5—C5—C6119.55 (16)N1A—C6A—H6A120.00
Cl5—C5—C4121.22 (14)C5A—C6A—H6A120.00
C1—C6—C5122.16 (18)
C2A—N1A—C6A—C5A0.3 (2)C3—C2—C21—O220.2 (2)
C6A—N1A—C2A—N3A0.5 (2)C3—C2—C21—O21178.59 (15)
C6A—N1A—C2A—N21A179.15 (16)C1—C2—C3—C41.8 (2)
C4A—N3A—C2A—N1A0.3 (2)C21—C2—C3—C4177.74 (14)
C4A—N3A—C2A—N21A179.35 (16)C1—C2—C21—O210.9 (3)
C2A—N3A—C4A—C5A0.1 (3)C1—C2—C21—O22179.70 (16)
C6—C1—C2—C21177.35 (15)C2—C3—C4—Cl4179.66 (12)
C2—C1—C11—O129.8 (3)C2—C3—C4—C50.1 (2)
C6—C1—C11—O118.2 (2)Cl4—C4—C5—C6178.95 (13)
C11—C1—C2—C3176.19 (15)Cl4—C4—C5—Cl50.4 (2)
C11—C1—C2—C214.3 (3)C3—C4—C5—Cl5179.31 (13)
C2—C1—C6—C50.8 (2)C3—C4—C5—C61.3 (2)
C11—C1—C6—C5177.79 (15)C4—C5—C6—C11.0 (3)
C2—C1—C11—O11170.16 (16)Cl5—C5—C6—C1179.66 (13)
C6—C1—C11—O12171.81 (15)N3A—C4A—C5A—C6A0.2 (3)
C6—C1—C2—C32.1 (2)C4A—C5A—C6A—N1A0.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···O211.02 (4)1.38 (3)2.4037 (19)177 (3)
N1A—H1A···O220.87 (2)1.79 (2)2.6609 (19)178.8 (19)
N21A—H21A···O11i0.86 (2)2.18 (3)3.038 (2)173 (3)
N21A—H21A···O12i0.86 (2)2.47 (3)2.971 (2)117 (2)
N21A—H22A···O210.92 (3)2.02 (3)2.929 (2)169.4 (19)
C3—H3···O220.932.262.643 (2)104
C4A—H4A···O11ii0.932.533.301 (2)141
C6—H6···O110.932.312.679 (2)103
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y1, z.
(II) 3-(aminocarbonyl)pyridinium 2-carboxy-4,5-dichlorobenzoate top
Crystal data top
C6H7N2O+·C8H3Cl2O4F(000) = 728
Mr = 357.14Dx = 1.656 Mg m3
Monoclinic, P21/cMelting point = 455–457 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54184 Å
a = 11.4303 (3) ÅCell parameters from 3546 reflections
b = 13.7933 (3) Åθ = 3.2–72.9°
c = 9.2082 (2) ŵ = 4.36 mm1
β = 99.454 (2)°T = 130 K
V = 1432.06 (6) Å3Plate, colourless
Z = 40.50 × 0.25 × 0.07 mm
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2798 independent reflections
Radiation source: Enhance (Cu) X-ray Source2237 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 72.9°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1312
Tmin = 0.340, Tmax = 0.740k = 1617
6939 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0656P)2]
where P = (Fo2 + 2Fc2)/3
2798 reflections(Δ/σ)max = 0.001
224 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C6H7N2O+·C8H3Cl2O4V = 1432.06 (6) Å3
Mr = 357.14Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.4303 (3) ŵ = 4.36 mm1
b = 13.7933 (3) ÅT = 130 K
c = 9.2082 (2) Å0.50 × 0.25 × 0.07 mm
β = 99.454 (2)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2798 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2237 reflections with I > 2σ(I)
Tmin = 0.340, Tmax = 0.740Rint = 0.026
6939 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.34 e Å3
2798 reflectionsΔρmin = 0.22 e Å3
224 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl40.41142 (4)0.30096 (3)1.33710 (5)0.0255 (1)
Cl50.40646 (4)0.06833 (3)1.33348 (6)0.0319 (2)
O110.72056 (13)0.02599 (10)1.03383 (16)0.0320 (4)
O120.82117 (14)0.09368 (11)0.96028 (18)0.0394 (5)
O210.83088 (13)0.26806 (10)0.97448 (17)0.0359 (5)
O220.72470 (13)0.38895 (9)1.03689 (17)0.0324 (4)
C10.66260 (16)0.13098 (13)1.1000 (2)0.0218 (5)
C20.66584 (15)0.23339 (13)1.1034 (2)0.0209 (5)
C30.58640 (16)0.28245 (14)1.17702 (19)0.0225 (5)
C40.50620 (15)0.23418 (13)1.2473 (2)0.0219 (5)
C50.50315 (16)0.13317 (13)1.2450 (2)0.0229 (5)
C60.58049 (16)0.08316 (13)1.17111 (19)0.0232 (5)
C110.73836 (17)0.06060 (13)1.0264 (2)0.0244 (5)
C210.74647 (16)0.30070 (13)1.0326 (2)0.0239 (5)
O31A0.87437 (12)0.81161 (9)0.71542 (14)0.0246 (4)
N1A0.85072 (13)0.49722 (11)0.89564 (17)0.0235 (5)
N31A0.82644 (15)0.80007 (11)0.94426 (18)0.0264 (5)
C2A0.82812 (16)0.59268 (13)0.9002 (2)0.0223 (5)
C3A0.89223 (16)0.65743 (14)0.83085 (19)0.0210 (5)
C4A0.98051 (16)0.62190 (13)0.7572 (2)0.0231 (5)
C5A1.00311 (17)0.52280 (14)0.7553 (2)0.0260 (5)
C6A0.93541 (17)0.46186 (14)0.8258 (2)0.0248 (5)
C31A0.86413 (15)0.76412 (13)0.8265 (2)0.0216 (5)
H30.587600.351301.178800.0270*
H60.577500.014301.168800.0280*
H120.825 (4)0.165 (3)0.966 (4)0.067 (9)*
H1A0.804 (2)0.4581 (18)0.950 (4)0.044 (7)*
H2A0.767900.615500.951400.0270*
H4A1.025300.665400.708200.0280*
H5A1.063800.497900.706500.0310*
H6A0.948900.393900.825000.0300*
H31A0.833 (2)0.7639 (16)1.024 (3)0.032 (6)*
H32A0.806 (2)0.8622 (19)0.946 (3)0.041 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl40.0228 (2)0.0248 (2)0.0306 (3)0.0026 (2)0.0092 (2)0.0038 (2)
Cl50.0339 (3)0.0256 (3)0.0410 (3)0.0017 (2)0.0202 (2)0.0038 (2)
O110.0366 (8)0.0203 (7)0.0428 (8)0.0021 (6)0.0173 (6)0.0027 (6)
O120.0462 (9)0.0261 (7)0.0543 (10)0.0027 (7)0.0332 (8)0.0009 (7)
O210.0350 (8)0.0275 (8)0.0509 (10)0.0018 (6)0.0244 (7)0.0009 (6)
O220.0355 (7)0.0217 (7)0.0444 (9)0.0007 (6)0.0199 (6)0.0032 (6)
C10.0226 (8)0.0206 (9)0.0223 (9)0.0018 (7)0.0043 (7)0.0004 (7)
C20.0210 (8)0.0206 (9)0.0209 (9)0.0003 (7)0.0028 (7)0.0003 (7)
C30.0236 (9)0.0203 (9)0.0234 (9)0.0006 (7)0.0030 (7)0.0011 (7)
C40.0218 (8)0.0199 (9)0.0241 (9)0.0039 (7)0.0038 (7)0.0024 (7)
C50.0243 (9)0.0208 (9)0.0246 (10)0.0024 (7)0.0072 (8)0.0027 (7)
C60.0272 (9)0.0178 (9)0.0254 (9)0.0001 (7)0.0064 (8)0.0010 (7)
C110.0260 (9)0.0234 (9)0.0242 (9)0.0027 (8)0.0056 (7)0.0006 (7)
C210.0231 (9)0.0238 (10)0.0251 (9)0.0029 (7)0.0046 (7)0.0001 (7)
O31A0.0301 (7)0.0207 (6)0.0250 (7)0.0018 (5)0.0101 (5)0.0021 (5)
N1A0.0251 (8)0.0201 (8)0.0256 (8)0.0018 (6)0.0052 (6)0.0015 (6)
N31A0.0375 (9)0.0204 (8)0.0232 (8)0.0025 (7)0.0107 (7)0.0010 (6)
C2A0.0223 (9)0.0221 (9)0.0228 (9)0.0010 (7)0.0043 (7)0.0012 (7)
C3A0.0236 (8)0.0206 (9)0.0184 (8)0.0009 (7)0.0023 (7)0.0009 (7)
C4A0.0242 (9)0.0219 (9)0.0243 (9)0.0001 (7)0.0071 (7)0.0013 (7)
C5A0.0267 (9)0.0247 (9)0.0279 (10)0.0043 (8)0.0080 (8)0.0005 (8)
C6A0.0279 (9)0.0189 (9)0.0271 (9)0.0028 (7)0.0035 (8)0.0009 (7)
C31A0.0219 (9)0.0185 (9)0.0246 (9)0.0026 (7)0.0045 (7)0.0014 (7)
Geometric parameters (Å, º) top
Cl4—C41.7321 (18)C2—C31.394 (3)
Cl5—C51.7265 (19)C2—C211.528 (3)
O11—C111.215 (2)C3—C41.377 (3)
O12—C111.290 (3)C4—C51.394 (3)
O21—C211.261 (2)C5—C61.385 (3)
O22—C211.244 (2)C3—H30.9500
O12—H120.99 (4)C6—H60.9500
O31A—C31A1.236 (2)C2A—C3A1.377 (3)
N1A—C6A1.339 (2)C3A—C4A1.394 (3)
N1A—C2A1.344 (2)C3A—C31A1.505 (3)
N31A—C31A1.327 (2)C4A—C5A1.392 (3)
N1A—H1A0.96 (3)C5A—C6A1.375 (3)
N31A—H32A0.89 (3)C2A—H2A0.9500
N31A—H31A0.88 (3)C4A—H4A0.9500
C1—C21.413 (3)C5A—H5A0.9500
C1—C111.531 (3)C6A—H6A0.9500
C1—C61.395 (3)
C11—O12—H12111 (3)O21—C21—C2121.43 (16)
C21—O21—H12110.3 (18)O22—C21—C2116.31 (16)
C2A—N1A—C6A121.99 (16)O21—C21—O22122.26 (17)
C6A—N1A—H1A123.8 (15)C4—C3—H3119.00
C2A—N1A—H1A114.2 (16)C2—C3—H3119.00
C31A—N31A—H32A119.8 (17)C1—C6—H6119.00
H31A—N31A—H32A121 (2)C5—C6—H6119.00
C31A—N31A—H31A118.4 (15)N1A—C2A—C3A120.09 (17)
C2—C1—C11128.97 (16)C2A—C3A—C31A121.26 (16)
C6—C1—C11112.39 (15)C2A—C3A—C4A118.72 (17)
C2—C1—C6118.64 (16)C4A—C3A—C31A119.94 (16)
C1—C2—C3118.62 (16)C3A—C4A—C5A120.14 (17)
C3—C2—C21113.53 (16)C4A—C5A—C6A118.31 (18)
C1—C2—C21127.84 (16)N1A—C6A—C5A120.75 (18)
C2—C3—C4122.05 (17)O31A—C31A—C3A119.42 (16)
C3—C4—C5119.54 (17)N31A—C31A—C3A116.11 (16)
Cl4—C4—C3118.94 (14)O31A—C31A—N31A124.45 (17)
Cl4—C4—C5121.52 (14)N1A—C2A—H2A120.00
C4—C5—C6119.27 (17)C3A—C2A—H2A120.00
Cl5—C5—C6118.92 (14)C3A—C4A—H4A120.00
Cl5—C5—C4121.80 (14)C5A—C4A—H4A120.00
C1—C6—C5121.87 (17)C4A—C5A—H5A121.00
O11—C11—C1119.08 (17)C6A—C5A—H5A121.00
O12—C11—C1119.79 (16)N1A—C6A—H6A120.00
O11—C11—O12121.11 (18)C5A—C6A—H6A120.00
C2A—N1A—C6A—C5A0.0 (3)C2—C3—C4—Cl4179.58 (14)
C6A—N1A—C2A—C3A0.5 (3)C2—C3—C4—C50.3 (3)
C6—C1—C2—C30.3 (3)Cl4—C4—C5—C6179.73 (14)
C11—C1—C2—C210.4 (3)Cl4—C4—C5—Cl51.0 (2)
C6—C1—C2—C21179.28 (17)C3—C4—C5—Cl5178.91 (14)
C11—C1—C6—C5179.91 (17)C3—C4—C5—C60.4 (3)
C2—C1—C11—O11178.73 (19)C4—C5—C6—C10.7 (3)
C2—C1—C11—O122.6 (3)Cl5—C5—C6—C1178.62 (14)
C6—C1—C11—O111.0 (2)N1A—C2A—C3A—C31A176.36 (16)
C11—C1—C2—C3179.36 (17)N1A—C2A—C3A—C4A0.3 (3)
C6—C1—C11—O12177.68 (17)C2A—C3A—C4A—C5A0.4 (3)
C2—C1—C6—C50.4 (3)C2A—C3A—C31A—O31A144.00 (18)
C21—C2—C3—C4179.74 (16)C2A—C3A—C31A—N31A34.3 (3)
C1—C2—C21—O218.1 (3)C4A—C3A—C31A—O31A32.6 (3)
C3—C2—C21—O21172.92 (17)C4A—C3A—C31A—N31A149.07 (18)
C3—C2—C21—O226.5 (2)C31A—C3A—C4A—C5A177.07 (17)
C1—C2—C3—C40.7 (3)C3A—C4A—C5A—C6A0.8 (3)
C1—C2—C21—O22172.53 (18)C4A—C5A—C6A—N1A0.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···O210.99 (4)1.43 (4)2.410 (2)180 (6)
N1A—H1A···O220.96 (3)1.62 (3)2.571 (2)178 (3)
N31A—H31A···O31Ai0.88 (3)2.04 (3)2.908 (2)171 (2)
N31A—H32A···O11ii0.89 (3)2.06 (3)2.869 (2)151 (2)
C3—H3···O220.952.262.644 (2)103
C5A—H5A···O12iii0.952.553.200 (3)126
C6—H6···O110.952.282.663 (2)103
C6A—H6A···O31Aiv0.952.403.072 (2)128
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1, z; (iii) x+2, y+1/2, z+3/2; (iv) x+2, y1/2, z+3/2.
(III) 4-(aminocarbonyl)pyridinium 2-carboxy-4,5-dichlorobenzoate– methyl 2-carboxy-4,5-dichlorobenzoate (1/1) top
Crystal data top
C6H7N2O+·C8H3Cl2O4·C9H6Cl2O4F(000) = 1232
Mr = 606.18Dx = 1.638 Mg m3
Monoclinic, CcMelting point = 433–434 K
Hall symbol: C -2ycCu Kα radiation, λ = 1.54178 Å
a = 11.9645 (4) ÅCell parameters from 2767 reflections
b = 26.1393 (6) Åθ = 3.4–72.5°
c = 9.3213 (3) ŵ = 4.90 mm1
β = 122.509 (3)°T = 130 K
V = 2458.39 (15) Å3Needle, colourless
Z = 40.56 × 0.14 × 0.07 mm
Data collection top
Oxford Diffraction Gemini-S Ultra CCD-detector
diffractometer
3034 independent reflections
Radiation source: Enhance (Cu) X-ray source2530 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 72.9°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1412
Tmin = 0.454, Tmax = 0.710k = 3131
6097 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128 CALC W = 1/[Σ2(FO2) + (0.0961P)2] WHERE P = (FO2 + 2FC2)/3
S = 0.97(Δ/σ)max = 0.002
3034 reflectionsΔρmax = 0.32 e Å3
363 parametersΔρmin = 0.43 e Å3
1 restraintAbsolute structure: Flack (1983); 576 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (2)
Crystal data top
C6H7N2O+·C8H3Cl2O4·C9H6Cl2O4V = 2458.39 (15) Å3
Mr = 606.18Z = 4
Monoclinic, CcCu Kα radiation
a = 11.9645 (4) ŵ = 4.90 mm1
b = 26.1393 (6) ÅT = 130 K
c = 9.3213 (3) Å0.56 × 0.14 × 0.07 mm
β = 122.509 (3)°
Data collection top
Oxford Diffraction Gemini-S Ultra CCD-detector
diffractometer
3034 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2530 reflections with I > 2σ(I)
Tmin = 0.454, Tmax = 0.710Rint = 0.045
6097 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128Δρmax = 0.32 e Å3
S = 0.97Δρmin = 0.43 e Å3
3034 reflectionsAbsolute structure: Flack (1983); 576 Friedel pairs
363 parametersAbsolute structure parameter: 0.03 (2)
1 restraint
Special details top

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl4B0.40099 (18)0.87331 (8)1.1063 (2)0.0506 (6)
Cl5B0.42914 (18)0.97992 (7)0.9639 (2)0.0491 (5)
O11B0.6757 (4)0.92532 (14)0.6596 (5)0.0354 (16)
O12B0.5878 (5)0.84818 (15)0.5513 (6)0.0357 (14)
O21B0.7299 (4)0.78825 (14)0.8452 (6)0.0361 (14)
O22B0.5392 (5)0.74628 (17)0.7536 (7)0.0462 (16)
C1B0.5708 (6)0.8805 (2)0.7768 (7)0.0283 (17)
C2B0.5599 (6)0.8339 (2)0.8391 (7)0.0304 (17)
C3B0.5061 (6)0.8318 (3)0.9413 (8)0.0359 (17)
C4B0.4665 (6)0.8773 (3)0.9803 (8)0.037 (2)
C5B0.4777 (6)0.9236 (2)0.9188 (8)0.0331 (17)
C6B0.5322 (6)0.9249 (2)0.8184 (8)0.0319 (17)
C11B0.6144 (6)0.8825 (2)0.6520 (8)0.0279 (17)
C21B0.6050 (6)0.7844 (2)0.8061 (8)0.0322 (17)
C22B0.7803 (8)0.7459 (2)0.7948 (10)0.047 (3)
Cl40.65337 (16)0.50963 (5)0.01060 (19)0.0372 (4)
Cl50.76492 (14)0.60359 (5)0.11578 (17)0.0335 (4)
O110.7303 (5)0.75401 (15)0.2059 (6)0.0416 (16)
O120.6159 (8)0.73933 (17)0.3181 (10)0.082 (3)
O210.5251 (6)0.66858 (16)0.3856 (8)0.062 (2)
O220.4967 (5)0.58620 (14)0.3436 (6)0.0388 (15)
C10.6530 (6)0.6691 (2)0.1780 (7)0.0280 (17)
C20.5978 (6)0.62739 (18)0.2173 (8)0.0260 (16)
C30.6000 (6)0.57945 (19)0.1548 (8)0.0273 (16)
C40.6546 (6)0.5706 (2)0.0582 (7)0.0258 (16)
C50.7031 (6)0.6118 (2)0.0142 (7)0.0264 (17)
C60.7032 (6)0.6601 (2)0.0753 (7)0.0254 (16)
C110.6694 (7)0.7242 (2)0.2387 (9)0.036 (2)
C210.5363 (6)0.62770 (19)0.3231 (8)0.0304 (16)
O41A0.7480 (4)0.93127 (13)0.4354 (5)0.0325 (14)
N1A0.9145 (5)0.91166 (17)0.0534 (6)0.0271 (14)
N41A0.7358 (5)0.84580 (16)0.3910 (6)0.0319 (16)
C2A0.8628 (6)0.9520 (2)0.0862 (7)0.0285 (16)
C3A0.8163 (6)0.94673 (19)0.1918 (7)0.0268 (16)
C4A0.8217 (5)0.8986 (2)0.2615 (6)0.0237 (17)
C5A0.8770 (6)0.8581 (2)0.2250 (7)0.0279 (16)
C6A0.9233 (6)0.8655 (2)0.1183 (8)0.0268 (16)
C41A0.7642 (6)0.8926 (2)0.3696 (7)0.0242 (16)
H3B0.496900.800000.983100.0430*
H6B0.542700.956900.778300.0380*
H11B0.705 (7)0.927 (2)0.594 (9)0.042 (15)*
H22B0.764700.713700.835200.0700*
H23B0.875600.750400.844800.0700*
H24B0.734500.745000.670500.0700*
H30.562400.551400.179300.0330*
H60.738500.687900.046400.0300*
H120.598 (8)0.714 (3)0.352 (9)0.082 (15)*
H1A0.945 (6)0.917 (2)0.019 (8)0.034 (14)*
H2A0.858100.984200.036300.0350*
H3A0.781000.975300.217300.0320*
H5A0.883100.825300.272800.0330*
H6A0.961000.837900.092100.0320*
H41A0.694 (6)0.841 (2)0.438 (7)0.051 (13)*
H42A0.742 (8)0.823 (3)0.336 (9)0.061 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl4B0.0431 (9)0.0857 (13)0.0363 (9)0.0031 (9)0.0301 (8)0.0013 (8)
Cl5B0.0485 (9)0.0561 (9)0.0511 (10)0.0015 (8)0.0323 (8)0.0179 (8)
O11B0.049 (3)0.031 (2)0.041 (3)0.0035 (18)0.034 (2)0.0061 (17)
O12B0.048 (3)0.033 (2)0.038 (2)0.0038 (19)0.031 (2)0.0064 (18)
O21B0.038 (2)0.0294 (19)0.045 (3)0.0034 (17)0.025 (2)0.0007 (17)
O22B0.055 (3)0.037 (2)0.057 (3)0.012 (2)0.037 (3)0.010 (2)
C1B0.024 (3)0.037 (3)0.023 (3)0.004 (2)0.012 (3)0.002 (2)
C2B0.026 (3)0.035 (3)0.028 (3)0.001 (2)0.013 (3)0.003 (2)
C3B0.029 (3)0.049 (3)0.031 (3)0.000 (3)0.017 (3)0.006 (3)
C4B0.033 (4)0.058 (4)0.029 (3)0.001 (3)0.023 (3)0.006 (3)
C5B0.029 (3)0.046 (3)0.024 (3)0.003 (3)0.014 (3)0.009 (3)
C6B0.034 (3)0.037 (3)0.026 (3)0.001 (3)0.017 (3)0.001 (2)
C11B0.031 (3)0.028 (3)0.028 (3)0.003 (2)0.018 (3)0.002 (2)
C21B0.036 (3)0.034 (3)0.030 (3)0.005 (3)0.020 (3)0.001 (2)
C22B0.064 (5)0.036 (3)0.057 (5)0.003 (3)0.044 (4)0.007 (3)
Cl40.0536 (9)0.0247 (5)0.0425 (8)0.0001 (6)0.0320 (7)0.0062 (6)
Cl50.0405 (8)0.0353 (6)0.0356 (8)0.0019 (6)0.0277 (7)0.0019 (6)
O110.060 (3)0.028 (2)0.055 (3)0.009 (2)0.043 (3)0.0082 (19)
O120.157 (7)0.027 (2)0.153 (7)0.017 (3)0.143 (6)0.019 (3)
O210.113 (5)0.029 (2)0.101 (5)0.010 (3)0.096 (4)0.011 (3)
O220.058 (3)0.0252 (18)0.053 (3)0.0009 (19)0.043 (3)0.0009 (19)
C10.036 (3)0.025 (3)0.022 (3)0.003 (2)0.015 (3)0.000 (2)
C20.032 (3)0.022 (2)0.024 (3)0.004 (2)0.015 (3)0.010 (2)
C30.029 (3)0.022 (2)0.033 (3)0.002 (2)0.018 (3)0.002 (2)
C40.029 (3)0.021 (2)0.024 (3)0.004 (2)0.012 (2)0.002 (2)
C50.028 (3)0.029 (3)0.026 (3)0.003 (2)0.017 (3)0.002 (2)
C60.031 (3)0.023 (2)0.024 (3)0.000 (2)0.016 (2)0.001 (2)
C110.054 (4)0.023 (3)0.045 (4)0.000 (3)0.036 (3)0.002 (2)
C210.040 (3)0.022 (2)0.035 (3)0.005 (2)0.024 (3)0.003 (2)
O41A0.048 (3)0.0232 (19)0.037 (2)0.0045 (18)0.030 (2)0.0042 (16)
N1A0.030 (3)0.028 (2)0.025 (2)0.002 (2)0.016 (2)0.0011 (18)
N41A0.046 (3)0.023 (2)0.039 (3)0.001 (2)0.031 (3)0.002 (2)
C2A0.033 (3)0.023 (2)0.033 (3)0.002 (2)0.020 (3)0.001 (2)
C3A0.036 (3)0.019 (2)0.028 (3)0.000 (2)0.019 (3)0.001 (2)
C4A0.029 (3)0.023 (3)0.018 (3)0.004 (2)0.012 (2)0.0062 (19)
C5A0.029 (3)0.022 (2)0.030 (3)0.002 (2)0.014 (3)0.000 (2)
C6A0.030 (3)0.026 (2)0.027 (3)0.001 (2)0.017 (3)0.008 (2)
C41A0.029 (3)0.024 (2)0.025 (3)0.001 (2)0.018 (2)0.002 (2)
Geometric parameters (Å, º) top
Cl4B—C4B1.730 (8)C3B—C4B1.399 (11)
Cl5B—C5B1.716 (6)C4B—C5B1.376 (10)
Cl4—C41.715 (6)C5B—C6B1.399 (11)
Cl5—C51.739 (7)C3B—H3B0.9500
O11B—C11B1.319 (7)C6B—H6B0.9500
O12B—C11B1.211 (7)C22B—H24B0.9800
O21B—C22B1.454 (9)C22B—H22B0.9800
O21B—C21B1.338 (10)C22B—H23B0.9800
O22B—C21B1.199 (8)C1—C111.521 (8)
O11B—H11B0.85 (9)C1—C61.397 (10)
O11—C111.213 (10)C1—C21.421 (9)
O12—C111.274 (13)C2—C31.388 (7)
O21—C211.258 (8)C2—C211.515 (11)
O22—C211.239 (7)C3—C41.387 (11)
O12—H120.81 (8)C4—C51.386 (9)
O41A—C41A1.250 (7)C5—C61.385 (8)
N1A—C6A1.328 (7)C3—H30.9500
N1A—C2A1.338 (8)C6—H60.9500
N41A—C41A1.313 (7)C2A—C3A1.373 (10)
N1A—H1A0.93 (8)C3A—C4A1.401 (7)
N41A—H41A0.83 (7)C4A—C5A1.384 (9)
N41A—H42A0.82 (8)C4A—C41A1.503 (9)
C1B—C11B1.510 (10)C5A—C6A1.388 (10)
C1B—C6B1.380 (9)C2A—H2A0.9500
C1B—C2B1.385 (8)C3A—H3A0.9500
C2B—C3B1.409 (11)C5A—H5A0.9500
C2B—C21B1.496 (8)C6A—H6A0.9500
C21B—O21B—C22B116.8 (5)C6—C1—C11113.4 (6)
C11B—O11B—H11B116 (4)C1—C2—C21128.3 (5)
C11—O12—H12107 (7)C3—C2—C21113.8 (5)
C2A—N1A—C6A123.0 (6)C1—C2—C3117.9 (7)
C2A—N1A—H1A117 (3)C2—C3—C4123.0 (6)
C6A—N1A—H1A120 (3)C3—C4—C5118.7 (5)
C41A—N41A—H42A118 (6)Cl4—C4—C3119.0 (5)
H41A—N41A—H42A120 (7)Cl4—C4—C5122.2 (5)
C41A—N41A—H41A120 (4)C4—C5—C6119.7 (6)
C6B—C1B—C11B119.6 (5)Cl5—C5—C6119.5 (5)
C2B—C1B—C11B120.2 (5)Cl5—C5—C4120.9 (4)
C2B—C1B—C6B120.1 (7)C1—C6—C5122.0 (6)
C3B—C2B—C21B116.9 (6)O11—C11—O12120.3 (6)
C1B—C2B—C3B119.9 (6)O11—C11—C1119.3 (7)
C1B—C2B—C21B123.3 (6)O12—C11—C1120.4 (7)
C2B—C3B—C4B119.0 (7)O21—C21—O22121.8 (7)
Cl4B—C4B—C5B121.1 (6)O21—C21—C2121.1 (6)
Cl4B—C4B—C3B117.7 (6)O22—C21—C2117.1 (5)
C3B—C4B—C5B121.1 (7)C4—C3—H3118.00
C4B—C5B—C6B119.0 (6)C2—C3—H3119.00
Cl5B—C5B—C6B118.9 (4)C1—C6—H6119.00
Cl5B—C5B—C4B122.1 (6)C5—C6—H6119.00
C1B—C6B—C5B121.0 (5)N1A—C2A—C3A120.0 (5)
O11B—C11B—O12B125.3 (7)C2A—C3A—C4A119.1 (6)
O12B—C11B—C1B121.1 (6)C3A—C4A—C5A118.8 (6)
O11B—C11B—C1B113.6 (5)C5A—C4A—C41A122.5 (5)
O21B—C21B—O22B124.5 (6)C3A—C4A—C41A118.7 (5)
O21B—C21B—C2B110.6 (5)C4A—C5A—C6A119.8 (5)
O22B—C21B—C2B124.9 (8)N1A—C6A—C5A119.3 (6)
C4B—C3B—H3B121.00O41A—C41A—C4A119.5 (5)
C2B—C3B—H3B121.00N41A—C41A—C4A116.6 (5)
C1B—C6B—H6B120.00O41A—C41A—N41A123.9 (7)
C5B—C6B—H6B119.00N1A—C2A—H2A120.00
O21B—C22B—H24B110.00C3A—C2A—H2A120.00
O21B—C22B—H23B109.00C2A—C3A—H3A120.00
H22B—C22B—H23B109.00C4A—C3A—H3A120.00
H23B—C22B—H24B109.00C4A—C5A—H5A120.00
H22B—C22B—H24B109.00C6A—C5A—H5A120.00
O21B—C22B—H22B109.00N1A—C6A—H6A120.00
C2—C1—C6118.6 (5)C5A—C6A—H6A120.00
C2—C1—C11128.0 (6)
C22B—O21B—C21B—O22B10.2 (9)C11—C1—C6—C5176.9 (6)
C22B—O21B—C21B—C2B170.6 (5)C2—C1—C11—O11173.0 (7)
C2A—N1A—C6A—C5A0.1 (10)C2—C1—C11—O129.4 (12)
C6A—N1A—C2A—C3A0.3 (10)C6—C1—C11—O115.1 (10)
C6B—C1B—C2B—C21B177.3 (6)C11—C1—C2—C3176.3 (7)
C6B—C1B—C2B—C3B1.7 (10)C6—C1—C11—O12172.5 (7)
C2B—C1B—C6B—C5B2.1 (10)C2—C1—C6—C51.4 (10)
C11B—C1B—C6B—C5B173.0 (6)C21—C2—C3—C4178.6 (6)
C11B—C1B—C2B—C21B7.7 (10)C1—C2—C21—O212.2 (11)
C2B—C1B—C11B—O12B31.6 (10)C3—C2—C21—O21178.6 (7)
C6B—C1B—C11B—O11B33.3 (9)C3—C2—C21—O220.7 (9)
C6B—C1B—C11B—O12B143.4 (7)C1—C2—C3—C40.7 (10)
C11B—C1B—C2B—C3B173.4 (6)C1—C2—C21—O22178.5 (7)
C2B—C1B—C11B—O11B151.7 (6)C2—C3—C4—Cl4179.3 (5)
C21B—C2B—C3B—C4B178.0 (6)C2—C3—C4—C53.5 (10)
C1B—C2B—C21B—O21B51.4 (8)Cl4—C4—C5—C6179.2 (5)
C3B—C2B—C21B—O21B127.6 (6)Cl4—C4—C5—Cl50.4 (8)
C3B—C2B—C21B—O22B51.7 (9)C3—C4—C5—Cl5176.7 (5)
C1B—C2B—C3B—C4B1.0 (10)C3—C4—C5—C63.7 (10)
C1B—C2B—C21B—O22B129.3 (8)C4—C5—C6—C11.4 (10)
C2B—C3B—C4B—Cl4B179.9 (5)Cl5—C5—C6—C1179.0 (5)
C2B—C3B—C4B—C5B0.9 (10)N1A—C2A—C3A—C4A1.1 (9)
Cl4B—C4B—C5B—C6B179.6 (5)C2A—C3A—C4A—C5A1.6 (9)
C3B—C4B—C5B—Cl5B179.7 (6)C2A—C3A—C4A—C41A176.9 (6)
C3B—C4B—C5B—C6B1.3 (11)C41A—C4A—C5A—C6A177.2 (6)
Cl4B—C4B—C5B—Cl5B0.5 (9)C3A—C4A—C41A—O41A20.4 (9)
Cl5B—C5B—C6B—C1B179.0 (5)C3A—C4A—C41A—N41A160.7 (6)
C4B—C5B—C6B—C1B1.9 (10)C5A—C4A—C41A—O41A161.2 (6)
C6—C1—C2—C31.7 (9)C5A—C4A—C41A—N41A17.7 (9)
C11—C1—C2—C212.8 (12)C3A—C4A—C5A—C6A1.3 (9)
C6—C1—C2—C21179.2 (6)C4A—C5A—C6A—N1A0.4 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O22i0.93 (8)1.70 (7)2.620 (8)169 (5)
O11B—H11B···O41A0.85 (9)1.81 (8)2.661 (7)174 (8)
O12—H12···O210.81 (8)1.60 (9)2.394 (10)166 (11)
N41A—H41A···O12B0.83 (7)2.05 (8)2.866 (9)166 (5)
N41A—H42A···O110.82 (8)2.14 (8)2.935 (6)167 (10)
C2A—H2A···O41Aii0.952.483.331 (6)149
C3—H3···O220.952.252.645 (10)104
C5A—H5A···O110.952.453.191 (8)135
C6—H6···O110.952.322.681 (7)102
C6A—H6A···O21i0.952.433.134 (10)131
C6A—H6A···O22Bi0.952.543.189 (7)125
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x, y+2, z1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC4H6N3+·C8H3Cl2O4C6H7N2O+·C8H3Cl2O4C6H7N2O+·C8H3Cl2O4·C9H6Cl2O4
Mr330.12357.14606.18
Crystal system, space groupTriclinic, P1Monoclinic, P21/cMonoclinic, Cc
Temperature (K)180130130
a, b, c (Å)6.9738 (4), 9.4413 (4), 10.8900 (7)11.4303 (3), 13.7933 (3), 9.2082 (2)11.9645 (4), 26.1393 (6), 9.3213 (3)
α, β, γ (°)97.420 (4), 100.527 (5), 109.473 (5)90, 99.454 (2), 9090, 122.509 (3), 90
V3)650.50 (7)1432.06 (6)2458.39 (15)
Z244
Radiation typeCu KαCu KαCu Kα
µ (mm1)4.704.364.90
Crystal size (mm)0.40 × 0.25 × 0.060.50 × 0.25 × 0.070.56 × 0.14 × 0.07
Data collection
DiffractometerOxford Diffraction Gemini-S Ultra CCD-detector
diffractometer
Oxford Diffraction Gemini-S CCD-detector
diffractometer
Oxford Diffraction Gemini-S Ultra CCD-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.263, 0.7500.340, 0.7400.454, 0.710
No. of measured, independent and
observed [I > 2σ(I)] reflections
4955, 2542, 2300 6939, 2798, 2237 6097, 3034, 2530
Rint0.0200.0260.045
(sin θ/λ)max1)0.6210.6200.620
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.095, 1.09 0.035, 0.095, 0.96 0.046, 0.128, 0.97
No. of reflections254227983034
No. of parameters206224363
No. of restraints001
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.270.34, 0.220.32, 0.43
Absolute structure??Flack (1983); 576 Friedel pairs
Absolute structure parameter??0.03 (2)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O12—H12···O211.02 (4)1.38 (3)2.4037 (19)177 (3)
N1A—H1A···O220.87 (2)1.79 (2)2.6609 (19)178.8 (19)
N21A—H21A···O11i0.86 (2)2.18 (3)3.038 (2)173 (3)
N21A—H21A···O12i0.86 (2)2.47 (3)2.971 (2)117 (2)
N21A—H22A···O210.92 (3)2.02 (3)2.929 (2)169.4 (19)
Symmetry code: (i) x1, y+1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O12—H12···O210.99 (4)1.43 (4)2.410 (2)180 (6)
N1A—H1A···O220.96 (3)1.62 (3)2.571 (2)178 (3)
N31A—H31A···O31Ai0.88 (3)2.04 (3)2.908 (2)171 (2)
N31A—H32A···O11ii0.89 (3)2.06 (3)2.869 (2)151 (2)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O22i0.93 (8)1.70 (7)2.620 (8)169 (5)
O11B—H11B···O41A0.85 (9)1.81 (8)2.661 (7)174 (8)
O12—H12···O210.81 (8)1.60 (9)2.394 (10)166 (11)
N41A—H41A···O12B0.83 (7)2.05 (8)2.866 (9)166 (5)
N41A—H42A···O110.82 (8)2.14 (8)2.935 (6)167 (10)
C3—H3···O220.952.252.645 (10)104
C5A—H5A···O110.952.453.191 (8)135
C6—H6···O110.952.322.681 (7)102
C6A—H6A···O21i0.952.433.134 (10)131
C6A—H6A···O22Bi0.952.543.189 (7)125
Symmetry code: (i) x+1/2, y+3/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds