Download citation
Download citation
link to html
Crystals of a novel anti­mony(III)–phthalocyanine complex, [Sb(C32H16N8)]4[Sb6I22] or [SbPc]4[Sb6I22], where Pc is the phthalocyaninate(2−) macrocycle, have been obtained from the reaction of pure powdered anti­mony with phthalonitrile under oxidation conditions of iodine vapour at 533 K. The crystal structure is built up from separate but inter­acting [SbPc]+ cations and [Sb6I22]4− anions. Each Sb atom of the two independent [SbPc]+ cations is bonded to the four isoindole N atoms of the Pc macrocycle and lies 0.986 (1) Å out of the plane defined by these N atoms. The anion consists of six distorted SbI6 octa­hedra linked via bridging I atoms into a centrosymmetric [Sb6I22]4− anion. The arrangement of the oppositely charged species, viz. [SbPc]+ and [Sb6I22]4−, in the crystal structure is determined mainly by the ionic attractions between the ions, forming a centrosymmetric [(SbPc)4(Sb6I22)] unit. Neighbouring [(SbPc)4(Sb6I22)] units related by translation inter­act via π–π inter­actions between the aromatic macrocycles in a back-to-back fashion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010601910X/gd3021sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010601910X/gd3021Isup2.hkl
Contains datablock I

CCDC reference: 616273

Comment top

The present study is a continuation of our investigations on the synthesis, characterization and stereochemistry of metallophthalocyaninate complexes, which have been obtained under oxidation conditions of iodine vapour (Janczak, 2003,

and references cited therein). Although metallophthalocyaninate complexes have been known for a long time, metallophthathalocyaninate complexes with the metals of periodic group 15 have rarely been investigated. The title SbIII–phthalocyanine–iodine complex, (I), is an example of a complex containing the same metal ion in both the cation and the anion, i.e. in [SbPc]+ as well as in the [Sb6I22]4− counter-ion. A search of the Cambridge Structural Database (Version 5.24; Allen, 2002) for phthalocyaninate structures containing the same metal in both cation and anion yields only two isostructural complexes, viz. [(SbPc)4(Sb4I16)] (Janczak & Idemori, 2002) and [(BiPc)4(Bi4I16)] (Kubiak & Ejsmont, 1999), two non-isostructural comlexes, viz. [(AsPc)2(As4I14)] (Janczak & Kubiak, 2003) and [(SbPc)2(Sb4I14)] (Perpétuo & Janczak, 2005), and [(AsPc)2(As2I8)] (Janczak & Perpétuo, 2006), none of which contains an [M6I22]4− ion. Thus the present [(Sb4Pc)(Sb6I22)] structure is the first example of this type of phthalocyanine system that has been structurally characterized.

The crystal structure of (I) is built up of separate but interacting [SbPc]+ and [Sb6I22]4− units (Fig. 1). The two crystallographically independent [SbPc]+ cations have essentially the same geometry. In both [SbPc]+ cations, the phthalocyaninate(2-) macrocycle shows a saucer shaped form, as a result of the interaction of the central SbIII ion with the I atoms of the [Sb6I22]4− counter-ion (Fig. 2). The greatest deviations from the mean planes defined by the four isoindole N atoms of the Pc macrocycles are observed for the outermost C atoms of the phenyl rings C18–C23 [0.224–0.574 (1) Å] and C34–C39 [0.049–0.426 (1) Å] for the [Sb4Pc]+ and [Sb5Pc]+ cations, respectively. The positively charged Sb4 and Sb5 atoms of the [SbPc]+ cations are significantly displaced from the N4 isoindole planes toward the I atoms of the [Sb6I22]4− counter-ion, the displacements being almost equal, viz. 0.984 (1) and 0.989 (1) Å, respectively. The influence of the ionic attraction between the oppositely charged [SbPc]+ and [Sb6I22]4− ions is clearly manifested in the Sb—Nisoindole coordination, leading to the molecular symmetry of the Sb—N core being close to Cs rather than the C4v symmetry that corresponds to the conformation in solution.

The anionic part of (I) consists of six deformed SbI6 octahedra joined together by bridging I atoms into a centrosymmetric [Sb6I22]4− ion (Fig. 1b). Generally, the Sb—I bond lengths fall into two groups, namely shorter Sb—I bonds with terminal I atoms and longer Sb—I bonds involving the bridging I atoms. However, in the [Sb6I22]4− anion, two different bridging I atoms exist. Atoms I1 and I2 bridge three Sb atoms, while atoms I3, I5 and I6 bridge only two Sb atoms. The distortion of the SbI6 polyhedron from Oh symmetry is likely to be due to the electron lone pair on the SbIII ion. Looking in more detail at the differences between the Sb—I bond lengths, as well as in the coordination geometry around atoms Sb1, Sb2 and Sb3, it is clear that they are coordindated to the I atoms through forces of different strength. Atom Sb1 links two I atoms with relatively short Sb—I bonds, two I atoms with intermediate Sb—I values and two I atoms with relatively long Sb—I bonds, the longest being the Sb1—I1i bond (Table 1). In the coordination environments of atoms Sb2 and Sb3, three short Sb—I bonds and three relatively long Sb—I bonds are observed. Thus the [Sb6I22]4− ion can be regarded as being composed of three symmetrically equivalent pairs of units, viz. one [SbI5]2− and two crystallographically independent [SbI3] units. Atom Sb1 in the [SbI5]2− unit has distorted square-pyramidal coordination, formed by four I atoms in the basal plane and one apical I atom with a relatively short Sb—I bond. The relatively long Sb1—I1i bond in a position trans to the apical I atom indicates the stereochemical effect of the electron lone pair (Gillespie, 1992). In the coordination environments of atoms Sb2 and Sb3, it is not clear in which direction the electron lone pair points, since the three relatively long Sb—I bonds are very similar. However, the mutual orientation of the [SbI5]2− and two [SbI3] units related by an inversion centre leads to the formation of an [Sb6I22]4− counter-ion, in which all Sb atoms have a distorted octahedral coordination environment. A similar pattern concerning the Sb—I bond lengths is also observed in the [Sb4I16]4− (Janczak & Idemori, 2002) and [Sb4I14]2− (Perpétuo & Janczak, 2005) counter-ions of two antimony(III)–phthalocyanine complexes. In the first complex, the [Sb4I16]4− ion consists of four distorted SbI6 octahedra, while in the second, the [Sb4I14]2− ion consists of two pairs of deformed SbI6 octahedra and distorted square-pyramidal SbI5 polyhedra.

In the unit cell (Fig. 2), there seems to be significant ionic attraction between the [SbPc]+ cations and [Sb6I22]4− counter-ions. The basic packing unit includes two pairs of [SbPc]+ macrocycles associated by an inversion centre and a [Sb6I22]4− counter-ion, thus each anion is surrounded by four [SbPc]+ cations. Atoms Sb4 and Sb5 of two crystallographically independent [SbPc]+ cations each interact with three I atoms of the [Sb6I22]4− counter-ion (Sb4 with I1, I2 and I3, and Sb5 with I6, I7 and I11), since the Sb—I contacts are considerable shorter than the sum of the van der Waals radii of Sb and I of 4.35 Å (Shannon, 1976). The centrosymmetric [(SbPc)4(Sb6I22)] aggregates in the crystal structure form stacks along [111], with ππ interactions between adjacent back-to-back-oriented pairs of Pc macrocycles. The interplanar N4-isoindole–N4-isondole distance within the stack is ~3.4 Å. The value indicates a strong ππ interaction and overlapping of the π clouds of the phthalocyanine macrocycle, since this distance is comparable to the van der Waals distance of 3.4 Å for aromatic C atoms (Pauling, 1960). Strong ππ interaction is a common feature in the structures of phthalocyanine and its metal complexes, and determines their crystal architectures. The ππ interactions also play an important role in association of metallophthalocyanines in solution (Nevin et al., 1987; Terekhov et al., 1996; Isago et al., 1997, 1998).

Although the crystal structure of (I) is built up from oppositely charged [SbPc]+ and [Sb6I22]4− species, the compound does not possess the characteristic properties of ionic crystals. The solubility of this compound in polar solvents, such as water, methanol and ethanol, is insignificant, and it is only slightly soluble in pyridine, dimethylformamide, dimethyl sulfoxide, chloronaphthalene, quinoline and diazabicycloundecane. As can be seen from the crystal structure architecture (Fig. 2), both hydrophilic parts of this complex are surrounded by the hydrophobic peripheral phenyl rings of the Pc macrocycle.

The electronic spectrum of this salt in pyridine solution exhibits two bands characteristic of the (phthalocyaninate)2− macrocycle, viz. at 680 nm (Q-band) and at 350 nm (B-band) (Stillman & Nyokong, 1989). The electrical conductivity of (I), measured on a single-crystal along the stacking direction of [(SbPc)4(Sb6I22)] aggregates (along the [111] direction), exhibits non-metallic character (dσ/dT > 0). At room temperature, the conductivity is ~1.7–2.2 × 10−7 Ω−1 cm−1.

Experimental top

Crystals of the title compound were obtained by the direct reaction of pure powdered antimony with phthalonitrile (Kubiak & Janczak, 1993) under a stream of iodine vapour at 533 K.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 Å) and treated as riding, with Uiso(H) values of 1.2Ueq(C). The structure contains voids of 187 and 84 Å3 at (0, 1/2, 1/2) and (1/2, 0, 1/2), respectively. Since the crystals were obtained directly from phthalonitrile and powdered antimony under iodine vapour, no solvents are expected. This is confirmed by the experimental and X-ray densities.

Computing details top

Data collection: KM-4 CCD Software (Kuma, 2002); cell refinement: KM-4 CCD Software; data reduction: KM-4 CCD Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1990b); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Views of the molecular structures of (a) the two independent [SbPc]+ cations and (b) the [Sb6I22]4− unit with the atom labelling. Displacement ellipsoids are shown at the 50% probability level. [Symmetry code: (i) −x, −y, −z.]
[Figure 2] Fig. 2. The molecular packing in the unit cell, showing the Sb···I and back-to-back ππ interactions. [Symmetry codes: (i) −x, −y, −z; (ii) x + 1, y + 1, z + 1; (iii) −x + 1, −y + 1, −z + 1.]
Tetrakis[phthalocyaninato(2-)antimony(III)] docosaiodohexaantimony(III) top
Crystal data top
[Sb(C32H16N8)]4[Sb6I22]Z = 1
Mr = 6059.42F(000) = 2732
Triclinic, P1Dx = 2.564 Mg m3
Dm = 2.56 Mg m3
Dm measured by flotation
Hall symbol: -P 1Melting point: decomposition K
a = 14.708 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.633 (3) ÅCell parameters from 3544 reflections
c = 19.158 (4) Åθ = 3.4–28.3°
α = 94.99 (3)°µ = 6.08 mm1
β = 96.62 (3)°T = 295 K
γ = 114.88 (3)°Parallelepiped, black–violet
V = 3924.4 (18) Å30.23 × 0.15 × 0.12 mm
Data collection top
Kuma KM-4
diffractometer with CCD detector
19326 independent reflections
Radiation source: fine-focus sealed tube10908 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 1024x1024 with blocks 2x2 pixels mm-1θmax = 28.3°, θmin = 3.4°
ω scanh = 1919
Absorption correction: analytical
face-indexed (SHELXTL; Sheldrick, 1990b)
k = 2018
Tmin = 0.334, Tmax = 0.527l = 2525
34137 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0181P)2]
where P = (Fo2 + 2Fc2)/3
19326 reflections(Δ/σ)max = 0.001
865 parametersΔρmax = 1.65 e Å3
0 restraintsΔρmin = 1.15 e Å3
Crystal data top
[Sb(C32H16N8)]4[Sb6I22]γ = 114.88 (3)°
Mr = 6059.42V = 3924.4 (18) Å3
Triclinic, P1Z = 1
a = 14.708 (3) ÅMo Kα radiation
b = 15.633 (3) ŵ = 6.08 mm1
c = 19.158 (4) ÅT = 295 K
α = 94.99 (3)°0.23 × 0.15 × 0.12 mm
β = 96.62 (3)°
Data collection top
Kuma KM-4
diffractometer with CCD detector
19326 independent reflections
Absorption correction: analytical
face-indexed (SHELXTL; Sheldrick, 1990b)
10908 reflections with I > 2σ(I)
Tmin = 0.334, Tmax = 0.527Rint = 0.035
34137 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.02Δρmax = 1.65 e Å3
19326 reflectionsΔρmin = 1.15 e Å3
865 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.04565 (3)0.09385 (3)0.06919 (2)0.03287 (11)
I20.21207 (3)0.02925 (3)0.14465 (2)0.04029 (11)
I30.23179 (3)0.22663 (3)0.02387 (2)0.03870 (12)
I40.02419 (4)0.26525 (3)0.09759 (3)0.05507 (14)
I50.07303 (3)0.09047 (3)0.22415 (2)0.04839 (12)
I60.13066 (3)0.23325 (3)0.27861 (2)0.05026 (13)
I70.40122 (3)0.33513 (3)0.18066 (2)0.05394 (14)
I80.15376 (4)0.39939 (4)0.12507 (3)0.06570 (16)
Sb10.01045 (3)0.10398 (3)0.08832 (2)0.03463 (11)
Sb20.18666 (3)0.23963 (3)0.13822 (2)0.04002 (12)
Sb30.16400 (3)0.03402 (3)0.31235 (2)0.06231 (12)
I90.17451 (4)0.13752 (4)0.31927 (3)0.06824 (17)
I100.09206 (5)0.04845 (5)0.43757 (3)0.0854 (2)
I110.37124 (4)0.13887 (4)0.36682 (4)0.08041 (19)
Sb40.31567 (3)0.03451 (3)0.02077 (3)0.04263 (12)
N10.4260 (4)0.0295 (4)0.0639 (3)0.0468 (15)
N20.3446 (5)0.1376 (4)0.0753 (4)0.0592 (17)
N30.2979 (4)0.1122 (4)0.0440 (3)0.0488 (15)
N40.2169 (4)0.1491 (4)0.1683 (3)0.0537 (16)
N50.3192 (4)0.0225 (4)0.1343 (3)0.0469 (15)
N60.4106 (4)0.1900 (4)0.1458 (3)0.0486 (15)
N70.4522 (4)0.1637 (4)0.0276 (3)0.0426 (14)
N80.5325 (4)0.2016 (4)0.0982 (3)0.0480 (15)
C10.4909 (5)0.1102 (5)0.1099 (4)0.0481 (18)
C20.5145 (5)0.0850 (5)0.1773 (4)0.0484 (19)
C30.5724 (5)0.1406 (6)0.2433 (4)0.061 (2)
H30.60790.20650.24700.073*
C40.5754 (6)0.0962 (6)0.3014 (4)0.066 (2)
H40.61360.13030.34520.079*
C50.5182 (7)0.0030 (7)0.2919 (5)0.077 (3)
H50.52080.03270.33160.093*
C60.4610 (6)0.0590 (6)0.2327 (5)0.068 (3)
H60.42470.12460.23060.081*
C70.4583 (5)0.0130 (5)0.1729 (4)0.0457 (18)
C80.4047 (5)0.0467 (5)0.1014 (4)0.0498 (19)
C90.2969 (5)0.1668 (5)0.0095 (5)0.0490 (19)
C100.2358 (6)0.2652 (5)0.0192 (5)0.060 (2)
C110.2042 (6)0.3508 (6)0.0088 (5)0.068 (2)
H110.22810.35010.05600.081*
C120.1404 (7)0.4334 (6)0.0311 (6)0.085 (3)
H120.12120.48940.01120.102*
C130.1028 (7)0.4377 (6)0.1001 (6)0.086 (3)
H130.05770.49680.12560.103*
C140.1294 (6)0.3547 (6)0.1361 (5)0.079 (3)
H140.10500.35650.18340.094*
C150.1962 (6)0.2720 (6)0.0906 (5)0.063 (2)
C160.2364 (6)0.1717 (5)0.1053 (5)0.057 (2)
C170.2579 (5)0.0600 (6)0.1824 (4)0.054 (2)
C180.2468 (6)0.0327 (6)0.2508 (5)0.060 (2)
C190.1922 (6)0.0861 (6)0.3164 (5)0.077 (3)
H190.15160.15140.32090.092*
C200.2005 (7)0.0387 (8)0.3743 (5)0.081 (3)
H200.16590.07280.41890.098*
C210.2587 (7)0.0577 (8)0.3676 (5)0.081 (3)
H210.26200.08760.40780.097*
C220.3131 (6)0.1123 (6)0.3024 (4)0.070 (2)
H220.35360.17760.29830.084*
C230.3039 (6)0.0658 (5)0.2454 (4)0.057 (2)
C240.3507 (5)0.1002 (5)0.1702 (4)0.0465 (18)
C250.4560 (5)0.2190 (5)0.0797 (4)0.0418 (17)
C260.5206 (5)0.3180 (5)0.0506 (3)0.0451 (18)
C270.5483 (5)0.4027 (5)0.0813 (4)0.055 (2)
H270.52830.40140.12940.066*
C280.6062 (5)0.4867 (5)0.0364 (4)0.061 (2)
H280.62160.54390.05410.074*
C290.6423 (6)0.4896 (6)0.0339 (5)0.071 (2)
H290.68370.54830.06160.086*
C300.6180 (5)0.4059 (5)0.0644 (4)0.0525 (19)
H300.64090.40690.11190.063*
C310.5566 (5)0.3204 (5)0.0181 (4)0.057 (2)
C320.5127 (5)0.2244 (5)0.0341 (4)0.0469 (18)
Sb50.39332 (3)0.38147 (3)0.36588 (2)0.04219 (12)
N110.5009 (4)0.3797 (4)0.4557 (3)0.0481 (15)
N120.6457 (4)0.4174 (4)0.3945 (3)0.0517 (16)
N130.5400 (4)0.4901 (4)0.3476 (3)0.0433 (14)
N140.4843 (5)0.5864 (4)0.2793 (3)0.0519 (16)
N150.3567 (4)0.5004 (4)0.3497 (3)0.0513 (16)
N160.2059 (4)0.4536 (4)0.4056 (3)0.0519 (16)
N170.3182 (4)0.3884 (4)0.4555 (3)0.0493 (15)
N180.3819 (5)0.3044 (4)0.5344 (3)0.0473 (15)
C330.4668 (6)0.3254 (5)0.5089 (3)0.0476 (19)
C340.5391 (5)0.2895 (5)0.5316 (4)0.0460 (18)
C350.5416 (6)0.2318 (6)0.5808 (4)0.070 (3)
H350.49230.21240.60990.085*
C360.6196 (6)0.2024 (6)0.5868 (4)0.071 (2)
H360.62150.16260.61980.085*
C370.6969 (7)0.2331 (6)0.5425 (5)0.079 (3)
H370.74680.21110.54510.094*
C380.6957 (6)0.2958 (6)0.4961 (4)0.070 (2)
H380.74720.32020.46930.083*
C390.6160 (5)0.3214 (5)0.4905 (4)0.056 (2)
C400.5895 (6)0.3788 (5)0.4436 (4)0.0494 (19)
C410.6228 (5)0.4728 (5)0.3515 (4)0.0497 (19)
C420.6893 (6)0.5235 (5)0.3043 (4)0.0515 (19)
C430.7766 (6)0.5263 (5)0.2891 (4)0.069 (2)
H430.80690.49170.31090.083*
C440.8214 (6)0.5847 (6)0.2377 (5)0.075 (3)
H440.88210.58800.22550.090*
C450.7770 (6)0.6357 (6)0.2062 (4)0.066 (2)
H450.80710.67190.17200.079*
C460.6894 (6)0.6348 (5)0.2238 (4)0.061 (2)
H460.66150.67280.20450.074*
C470.6419 (6)0.5731 (5)0.2732 (4)0.0516 (19)
C480.5499 (6)0.5541 (5)0.3001 (4)0.0457 (18)
C490.3972 (6)0.5643 (5)0.3016 (4)0.0482 (19)
C500.3239 (5)0.5979 (5)0.2783 (4)0.0506 (19)
C510.3250 (6)0.6598 (5)0.2300 (4)0.056 (2)
H510.37980.68720.20640.067*
C520.2422 (7)0.6787 (6)0.2186 (4)0.066 (2)
H520.24120.72080.18740.079*
C530.1584 (7)0.6359 (5)0.2532 (4)0.068 (2)
H530.10240.64870.24290.081*
C540.1566 (6)0.5760 (5)0.3016 (4)0.060 (2)
H540.10170.54890.32520.072*
C550.2423 (6)0.5577 (5)0.3134 (4)0.0527 (19)
C560.2654 (6)0.4984 (5)0.3606 (4)0.052 (2)
C570.2331 (6)0.4039 (5)0.4487 (4)0.0493 (19)
C580.1674 (6)0.3561 (5)0.5025 (4)0.060 (2)
C590.0786 (6)0.3495 (6)0.5150 (5)0.072 (2)
H590.04550.37920.48950.087*
C600.0363 (7)0.2973 (7)0.5668 (5)0.079 (3)
H600.02640.29120.57680.106*
C610.0879 (6)0.2537 (6)0.6043 (4)0.068 (2)
H610.05850.21770.63880.082*
C620.1828 (6)0.2630 (5)0.5909 (4)0.063 (2)
H620.21770.23510.61680.076*
C630.2230 (6)0.3144 (5)0.5388 (4)0.0506 (19)
C640.3111 (6)0.3359 (5)0.5102 (4)0.0478 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0357 (2)0.0348 (3)0.0346 (3)0.0119 (2)0.0051 (2)0.0061 (2)
I20.0347 (2)0.0455 (3)0.0362 (3)0.0127 (2)0.0070 (2)0.0084 (2)
I30.0338 (2)0.0344 (3)0.0415 (3)0.0126 (2)0.0059 (2)0.0057 (2)
I40.0649 (3)0.0437 (3)0.0626 (3)0.0293 (3)0.0074 (3)0.0125 (3)
I50.0451 (3)0.0560 (3)0.0389 (3)0.0154 (2)0.0131 (2)0.0075 (2)
I60.0552 (3)0.0491 (3)0.0420 (3)0.0175 (2)0.0110 (2)0.0081 (2)
I70.0414 (3)0.0594 (3)0.0419 (3)0.0054 (2)0.0024 (2)0.0049 (3)
I80.0860 (4)0.0485 (3)0.0694 (4)0.0342 (3)0.0144 (3)0.0150 (3)
Sb10.0353 (2)0.0311 (2)0.0337 (2)0.0119 (2)0.0051 (2)0.0062 (2)
Sb20.0386 (3)0.0361 (3)0.0377 (3)0.0107 (2)0.0045 (2)0.0056 (2)
Sb30.0706 (3)0.0584 (3)0.0533 (3)0.0145 (2)0.0069 (2)0.0078 (2)
I90.0755 (4)0.0486 (3)0.0806 (4)0.0276 (3)0.0031 (3)0.0201 (3)
I100.1028 (5)0.1039 (5)0.0438 (3)0.0356 (4)0.0293 (3)0.0098 (3)
I110.0544 (3)0.0552 (3)0.1079 (5)0.0127 (3)0.0126 (3)0.0141 (3)
Sb40.0386 (3)0.0360 (3)0.0554 (3)0.0142 (2)0.0191 (2)0.0128 (2)
N10.035 (3)0.042 (4)0.068 (4)0.016 (3)0.019 (3)0.024 (3)
N20.053 (4)0.045 (4)0.082 (5)0.021 (3)0.016 (4)0.020 (4)
N30.048 (4)0.039 (4)0.065 (4)0.020 (3)0.024 (3)0.006 (3)
N40.063 (4)0.044 (4)0.056 (4)0.021 (3)0.027 (3)0.003 (3)
N50.043 (3)0.038 (3)0.056 (4)0.012 (3)0.020 (3)0.001 (3)
N60.050 (4)0.049 (4)0.053 (4)0.023 (3)0.022 (3)0.016 (3)
N70.037 (3)0.041 (3)0.052 (4)0.012 (3)0.025 (3)0.017 (3)
N80.041 (3)0.058 (4)0.045 (4)0.017 (3)0.013 (3)0.021 (3)
C10.044 (4)0.048 (5)0.058 (5)0.022 (4)0.013 (4)0.016 (4)
C20.035 (4)0.046 (5)0.072 (6)0.020 (4)0.020 (4)0.025 (4)
C30.053 (5)0.065 (5)0.068 (6)0.027 (4)0.008 (4)0.024 (5)
C40.070 (6)0.081 (7)0.048 (5)0.033 (5)0.012 (4)0.020 (5)
C50.063 (6)0.094 (7)0.094 (8)0.042 (6)0.021 (5)0.057 (7)
C60.045 (5)0.050 (5)0.096 (7)0.008 (4)0.001 (5)0.040 (5)
C70.032 (4)0.052 (5)0.067 (5)0.028 (4)0.018 (4)0.016 (4)
C80.039 (4)0.044 (5)0.079 (6)0.024 (4)0.027 (4)0.019 (5)
C90.040 (4)0.037 (4)0.075 (6)0.016 (4)0.023 (4)0.019 (4)
C100.055 (5)0.045 (5)0.090 (7)0.032 (4)0.019 (5)0.001 (5)
C110.074 (6)0.053 (5)0.089 (7)0.031 (5)0.042 (5)0.023 (5)
C120.106 (8)0.037 (5)0.114 (9)0.040 (5)0.008 (7)0.011 (6)
C130.093 (7)0.039 (5)0.103 (8)0.011 (5)0.020 (7)0.009 (6)
C140.088 (7)0.046 (5)0.082 (7)0.013 (5)0.014 (5)0.008 (5)
C150.055 (5)0.050 (5)0.085 (7)0.017 (4)0.037 (5)0.012 (5)
C160.050 (5)0.042 (5)0.094 (7)0.025 (4)0.039 (5)0.014 (5)
C170.051 (5)0.051 (5)0.059 (5)0.022 (4)0.012 (4)0.001 (4)
C180.057 (5)0.064 (6)0.061 (6)0.030 (4)0.012 (4)0.002 (5)
C190.076 (6)0.065 (6)0.076 (7)0.024 (5)0.008 (6)0.008 (6)
C200.097 (8)0.090 (8)0.055 (6)0.050 (7)0.006 (5)0.020 (6)
C210.103 (8)0.094 (8)0.051 (6)0.051 (6)0.002 (5)0.012 (6)
C220.078 (6)0.075 (6)0.057 (6)0.029 (5)0.021 (5)0.024 (5)
C230.057 (5)0.052 (5)0.058 (5)0.015 (4)0.024 (4)0.015 (4)
C240.047 (4)0.036 (4)0.052 (5)0.012 (4)0.017 (4)0.006 (4)
C250.038 (4)0.039 (4)0.050 (5)0.015 (3)0.016 (4)0.012 (4)
C260.042 (4)0.048 (4)0.034 (4)0.005 (3)0.012 (3)0.016 (4)
C270.059 (5)0.050 (5)0.056 (5)0.021 (4)0.015 (4)0.015 (4)
C280.060 (5)0.037 (4)0.066 (6)0.004 (4)0.003 (4)0.007 (4)
C290.071 (6)0.051 (5)0.068 (6)0.005 (4)0.010 (5)0.004 (5)
C300.052 (5)0.043 (4)0.053 (5)0.009 (4)0.014 (4)0.012 (4)
C310.049 (5)0.053 (5)0.053 (5)0.005 (4)0.013 (4)0.017 (4)
C320.028 (4)0.041 (4)0.068 (6)0.010 (3)0.013 (4)0.011 (4)
Sb50.0506 (3)0.0329 (3)0.0344 (3)0.0102 (2)0.0031 (2)0.0089 (2)
N110.053 (4)0.032 (3)0.046 (4)0.006 (3)0.001 (3)0.016 (3)
N120.053 (4)0.047 (4)0.046 (4)0.013 (3)0.009 (3)0.011 (3)
N130.045 (3)0.033 (3)0.040 (3)0.002 (3)0.013 (3)0.015 (3)
N140.061 (4)0.041 (4)0.039 (4)0.009 (3)0.005 (3)0.007 (3)
N150.056 (4)0.043 (4)0.048 (4)0.011 (3)0.017 (3)0.019 (3)
N160.067 (4)0.041 (4)0.046 (4)0.019 (3)0.017 (3)0.010 (3)
N170.051 (4)0.040 (3)0.052 (4)0.015 (3)0.006 (3)0.009 (3)
N180.063 (4)0.040 (3)0.030 (3)0.014 (3)0.006 (3)0.005 (3)
C330.067 (5)0.034 (4)0.020 (4)0.008 (4)0.008 (4)0.003 (3)
C340.046 (4)0.043 (4)0.037 (4)0.012 (4)0.007 (3)0.005 (4)
C350.060 (5)0.093 (7)0.041 (5)0.014 (5)0.003 (4)0.032 (5)
C360.070 (6)0.087 (6)0.069 (6)0.043 (5)0.009 (5)0.041 (5)
C370.090 (7)0.078 (6)0.078 (6)0.046 (5)0.004 (5)0.030 (5)
C380.058 (5)0.090 (7)0.060 (6)0.028 (5)0.009 (4)0.033 (5)
C390.042 (4)0.053 (5)0.052 (5)0.007 (4)0.013 (4)0.009 (4)
C400.045 (5)0.045 (5)0.042 (5)0.009 (4)0.010 (4)0.006 (4)
C410.049 (5)0.039 (4)0.050 (5)0.012 (4)0.002 (4)0.009 (4)
C420.047 (5)0.041 (4)0.056 (5)0.009 (4)0.007 (4)0.014 (4)
C430.057 (5)0.060 (5)0.079 (6)0.011 (4)0.004 (5)0.033 (5)
C440.052 (5)0.076 (6)0.069 (6)0.003 (5)0.013 (5)0.006 (5)
C450.075 (6)0.073 (6)0.060 (6)0.032 (5)0.039 (5)0.026 (5)
C460.064 (5)0.056 (5)0.040 (5)0.002 (4)0.008 (4)0.015 (4)
C470.052 (5)0.039 (4)0.044 (5)0.004 (4)0.000 (4)0.005 (4)
C480.050 (5)0.031 (4)0.036 (4)0.003 (3)0.006 (4)0.001 (3)
C490.064 (5)0.033 (4)0.044 (5)0.018 (4)0.004 (4)0.013 (4)
C500.056 (5)0.055 (5)0.046 (5)0.028 (4)0.009 (4)0.020 (4)
C510.078 (6)0.045 (5)0.043 (5)0.026 (4)0.009 (4)0.008 (4)
C520.092 (7)0.058 (5)0.059 (5)0.042 (5)0.009 (5)0.024 (5)
C530.086 (6)0.051 (5)0.076 (6)0.040 (5)0.000 (5)0.018 (5)
C540.065 (5)0.042 (5)0.074 (6)0.027 (4)0.002 (4)0.004 (4)
C550.058 (5)0.049 (5)0.045 (5)0.018 (4)0.003 (4)0.008 (4)
C560.064 (5)0.029 (4)0.063 (5)0.018 (4)0.011 (4)0.011 (4)
C570.060 (5)0.041 (4)0.042 (4)0.018 (4)0.008 (4)0.007 (4)
C580.067 (6)0.047 (5)0.053 (5)0.009 (4)0.022 (4)0.008 (4)
C590.069 (6)0.084 (6)0.077 (6)0.038 (5)0.027 (5)0.039 (5)
C600.077 (7)0.093 (8)0.068 (6)0.038 (6)0.032 (5)0.030 (6)
C610.062 (6)0.087 (6)0.057 (5)0.027 (5)0.026 (4)0.029 (5)
C620.082 (6)0.049 (5)0.048 (5)0.018 (4)0.019 (5)0.004 (4)
C630.079 (6)0.029 (4)0.041 (4)0.020 (4)0.011 (4)0.011 (4)
C640.057 (5)0.042 (4)0.036 (4)0.013 (4)0.012 (4)0.004 (4)
Geometric parameters (Å, º) top
Sb1—I13.2186 (10)C27—C281.373 (9)
Sb1—I23.0451 (15)C27—H270.9300
Sb1—I33.0344 (15)C28—C291.379 (10)
Sb1—I42.7903 (8)C28—H280.9300
Sb1—I52.8781 (9)C29—C301.403 (9)
Sb1—I1i3.3864 (9)C29—H290.9300
Sb2—I62.9001 (9)C30—C311.408 (9)
Sb2—I72.8428 (12)C30—H300.9300
Sb2—I82.7630 (9)C31—C321.440 (9)
Sb2—I13.2402 (16)Sb5—I63.6598 (18)
Sb2—I33.2563 (10)Sb5—I73.5843 (11)
Sb2—I2i3.4734 (9)Sb5—I11i3.6696 (10)
Sb3—I23.3696 (10)Sb5—N172.165 (6)
Sb3—I53.3402 (9)Sb5—N152.180 (6)
Sb3—I6i3.4527 (10)Sb5—N132.203 (5)
Sb3—I92.7638 (9)Sb5—N112.210 (5)
Sb3—I102.7600 (10)N11—C401.356 (8)
Sb3—I112.7985 (14)N11—C331.385 (8)
Sb4—I33.6984 (10)N12—C401.337 (8)
Sb4—I1i3.5750 (15)N12—C411.360 (8)
Sb4—I2i3.6640 (11)N13—C411.349 (8)
Sb4—N52.175 (6)N13—C481.385 (8)
Sb4—N12.189 (5)N14—C481.303 (8)
Sb4—N32.195 (5)N14—C491.312 (8)
Sb4—N72.195 (5)N15—C561.370 (9)
N1—C11.369 (8)N15—C491.410 (8)
N1—C81.386 (8)N16—C571.320 (8)
N2—C91.310 (9)N16—C561.326 (8)
N2—C81.329 (8)N17—C571.365 (8)
N3—C161.386 (10)N17—C641.374 (8)
N3—C91.388 (9)N18—C331.315 (8)
N4—C161.320 (9)N18—C641.379 (8)
N4—C171.331 (9)C33—C341.439 (9)
N5—C241.382 (8)C34—C351.369 (9)
N5—C171.396 (8)C34—C391.395 (9)
N6—C251.306 (8)C35—C361.401 (10)
N6—C241.310 (8)C35—H350.9300
N7—C251.368 (8)C36—C371.441 (11)
N7—C321.394 (8)C36—H360.9300
N8—C321.342 (8)C37—C381.385 (10)
N8—C11.349 (8)C37—H370.9300
C1—C21.430 (9)C38—C391.385 (10)
C2—C71.390 (9)C38—H380.9300
C2—C31.421 (10)C39—C401.456 (9)
C3—C41.367 (9)C41—C421.442 (9)
C3—H30.9300C42—C431.334 (10)
C4—C51.402 (11)C42—C471.373 (9)
C4—H40.9300C43—C441.427 (10)
C5—C61.322 (11)C43—H430.9300
C5—H50.9300C44—C451.363 (10)
C6—C71.411 (10)C44—H440.9300
C6—H60.9300C45—C461.365 (10)
C7—C81.432 (10)C45—H450.9300
C9—C101.433 (10)C46—C471.434 (9)
C10—C111.397 (10)C46—H460.9300
C10—C151.401 (11)C47—C481.426 (9)
C11—C121.332 (10)C49—C501.431 (9)
C11—H110.9300C50—C551.382 (9)
C12—C131.358 (12)C50—C511.392 (9)
C12—H120.9300C51—C521.369 (10)
C13—C141.450 (11)C51—H510.9300
C13—H130.9300C52—C531.406 (10)
C14—C151.391 (10)C52—H520.9300
C14—H140.9300C53—C541.368 (9)
C15—C161.490 (10)C53—H530.9300
C17—C181.426 (10)C54—C551.405 (9)
C18—C191.394 (10)C54—H540.9300
C18—C231.397 (10)C55—C561.462 (9)
C19—C201.376 (11)C57—C581.521 (10)
C19—H190.9300C58—C591.319 (10)
C20—C211.371 (11)C58—C631.405 (10)
C20—H200.9300C59—C601.376 (10)
C21—C221.391 (11)C59—H590.9300
C21—H210.9300C60—C611.398 (10)
C22—C231.354 (10)C60—H600.9300
C22—H220.9300C61—C621.398 (10)
C23—C241.470 (10)C61—H610.9300
C25—C261.449 (9)C62—C631.366 (9)
C26—C311.353 (9)C62—H620.9300
C26—C271.414 (9)C63—C641.387 (9)
I4—Sb1—I598.07 (3)C29—C30—C31115.4 (7)
I4—Sb1—I391.27 (3)C29—C30—H30122.3
I5—Sb1—I388.51 (4)C31—C30—H30122.3
I4—Sb1—I291.97 (3)C26—C31—C30122.9 (7)
I5—Sb1—I293.97 (4)C26—C31—C32107.9 (7)
I3—Sb1—I2175.60 (4)C30—C31—C32128.8 (7)
I4—Sb1—I191.13 (3)N8—C32—N7128.3 (6)
I5—Sb1—I1170.59 (2)N8—C32—C31123.3 (7)
I3—Sb1—I189.31 (4)N7—C32—C31108.4 (6)
I2—Sb1—I187.65 (4)N17—Sb5—N1578.4 (2)
I8—Sb2—I797.48 (4)N17—Sb5—N13126.4 (2)
I8—Sb2—I691.02 (3)N15—Sb5—N1378.5 (2)
I7—Sb2—I698.05 (4)N17—Sb5—N1177.8 (2)
I3—Sb2—I185.19 (4)N15—Sb5—N11125.5 (2)
I10—Sb3—I998.51 (4)N13—Sb5—N1177.7 (2)
I10—Sb3—I1197.36 (4)C40—N11—C33108.6 (6)
I9—Sb3—I1192.18 (4)C40—N11—Sb5119.4 (5)
I2—Sb3—I580.44 (4)C33—N11—Sb5121.2 (5)
N5—Sb4—N1127.4 (2)C40—N12—C41121.8 (6)
N5—Sb4—N379.0 (2)C41—N13—C48107.4 (6)
N1—Sb4—N377.5 (2)C41—N13—Sb5120.9 (4)
N5—Sb4—N777.8 (2)C48—N13—Sb5124.3 (5)
N1—Sb4—N778.7 (2)C48—N14—C49125.0 (6)
N3—Sb4—N7125.32 (19)C56—N15—C49109.1 (6)
C1—N1—C8107.1 (6)C56—N15—Sb5121.8 (4)
C1—N1—Sb4120.8 (4)C49—N15—Sb5124.0 (5)
C8—N1—Sb4123.0 (5)C57—N16—C56120.4 (6)
C9—N2—C8123.7 (7)C57—N17—C64105.8 (6)
C16—N3—C9109.0 (6)C57—N17—Sb5121.6 (5)
C16—N3—Sb4121.0 (5)C64—N17—Sb5125.2 (5)
C9—N3—Sb4121.6 (5)C33—N18—C64122.9 (6)
C16—N4—C17122.9 (7)N18—C33—N11128.2 (7)
C24—N5—C17109.4 (6)N18—C33—C34123.3 (6)
C24—N5—Sb4123.1 (5)N11—C33—C34108.4 (7)
C17—N5—Sb4123.5 (5)C35—C34—C39119.9 (7)
C25—N6—C24122.4 (6)C35—C34—C33132.5 (8)
C25—N7—C32107.3 (5)C39—C34—C33107.6 (6)
C25—N7—Sb4122.8 (4)C34—C35—C36119.0 (8)
C32—N7—Sb4120.1 (4)C34—C35—H35120.5
C32—N8—C1120.8 (6)C36—C35—H35120.5
N8—C1—N1129.2 (7)C35—C36—C37120.8 (7)
N8—C1—C2121.1 (7)C35—C36—H36119.6
N1—C1—C2109.6 (6)C37—C36—H36119.6
C7—C2—C3120.0 (7)C38—C37—C36118.9 (8)
C7—C2—C1107.2 (7)C38—C37—H37120.6
C3—C2—C1132.4 (7)C36—C37—H37120.6
C4—C3—C2119.3 (7)C37—C38—C39118.5 (8)
C4—C3—H3120.4C37—C38—H38120.7
C2—C3—H3120.4C39—C38—H38120.7
C3—C4—C5116.9 (8)C38—C39—C34122.8 (7)
C3—C4—H4121.5C38—C39—C40131.4 (8)
C5—C4—H4121.5C34—C39—C40105.8 (7)
C6—C5—C4127.2 (8)N12—C40—N11128.8 (6)
C6—C5—H5116.4N12—C40—C39121.4 (7)
C4—C5—H5116.4N11—C40—C39109.6 (7)
C5—C6—C7115.7 (7)N13—C41—N12126.7 (7)
C5—C6—H6122.1N13—C41—C42111.3 (6)
C7—C6—H6122.1N12—C41—C42122.0 (7)
C2—C7—C6120.8 (7)C43—C42—C47123.4 (7)
C2—C7—C8106.3 (7)C43—C42—C41132.5 (7)
C6—C7—C8132.8 (7)C47—C42—C41104.1 (7)
N2—C8—N1125.6 (7)C42—C43—C44117.0 (8)
N2—C8—C7124.8 (7)C42—C43—H43121.5
N1—C8—C7109.6 (6)C44—C43—H43121.5
N2—C9—N3128.0 (7)C45—C44—C43121.3 (8)
N2—C9—C10123.4 (7)C45—C44—H44119.4
N3—C9—C10108.6 (7)C43—C44—H44119.4
C11—C10—C15116.1 (8)C44—C45—C46121.4 (8)
C11—C10—C9134.8 (9)C44—C45—H45119.3
C15—C10—C9109.0 (8)C46—C45—H45119.3
C12—C11—C10121.2 (9)C45—C46—C47117.4 (8)
C12—C11—H11119.4C45—C46—H46121.3
C10—C11—H11119.4C47—C46—H46121.3
C11—C12—C13121.4 (9)C42—C47—C48109.6 (7)
C11—C12—H12119.3C42—C47—C46119.4 (7)
C13—C12—H12119.3C48—C47—C46130.9 (7)
C12—C13—C14123.4 (9)N14—C48—N13126.8 (7)
C12—C13—H13118.3N14—C48—C47125.4 (7)
C14—C13—H13118.3N13—C48—C47107.6 (6)
C15—C14—C13111.2 (8)N14—C49—N15126.8 (6)
C15—C14—H14124.4N14—C49—C50125.5 (7)
C13—C14—H14124.4N15—C49—C50107.6 (7)
C14—C15—C10126.7 (8)C55—C50—C51121.1 (7)
C14—C15—C16128.1 (9)C55—C50—C49108.0 (6)
C10—C15—C16105.1 (8)C51—C50—C49130.9 (7)
N4—C16—N3128.7 (7)C52—C51—C50117.3 (8)
N4—C16—C15123.0 (8)C52—C51—H51121.4
N3—C16—C15108.2 (8)C50—C51—H51121.4
N4—C17—N5127.1 (7)C51—C52—C53121.4 (7)
N4—C17—C18125.1 (7)C51—C52—H52119.3
N5—C17—C18107.8 (7)C53—C52—H52119.3
C19—C18—C23119.8 (8)C54—C53—C52122.1 (8)
C19—C18—C17131.4 (8)C54—C53—H53118.9
C23—C18—C17108.7 (7)C52—C53—H53118.9
C20—C19—C18117.5 (8)C53—C54—C55116.1 (8)
C20—C19—H19121.2C53—C54—H54122.0
C18—C19—H19121.2C55—C54—H54122.0
C21—C20—C19121.3 (9)C50—C55—C54122.0 (7)
C21—C20—H20119.4C50—C55—C56107.5 (6)
C19—C20—H20119.4C54—C55—C56130.4 (7)
C20—C21—C22122.0 (9)N16—C56—N15128.9 (7)
C20—C21—H21119.0N16—C56—C55123.6 (7)
C22—C21—H21119.0N15—C56—C55107.5 (7)
C23—C22—C21116.7 (8)N16—C57—N17129.6 (7)
C23—C22—H22121.7N16—C57—C58120.6 (7)
C21—C22—H22121.7N17—C57—C58109.7 (7)
C22—C23—C18122.6 (8)C59—C58—C63124.7 (8)
C22—C23—C24131.0 (7)C59—C58—C57131.9 (8)
C18—C23—C24106.3 (7)C63—C58—C57103.3 (7)
N6—C24—N5129.3 (7)C58—C59—C60118.0 (8)
N6—C24—C23123.0 (7)C58—C59—H59121.0
N5—C24—C23107.7 (6)C60—C59—H59121.0
N6—C25—N7127.1 (6)C59—C60—C61119.8 (8)
N6—C25—C26123.7 (6)C59—C60—H60120.1
N7—C25—C26109.2 (6)C61—C60—H60120.1
C31—C26—C27121.0 (7)C60—C61—C62121.2 (8)
C31—C26—C25107.2 (6)C60—C61—H61119.4
C27—C26—C25131.9 (7)C62—C61—H61119.4
C28—C27—C26116.5 (7)C63—C62—C61118.1 (8)
C28—C27—H27121.7C63—C62—H62121.0
C26—C27—H27121.7C61—C62—H62121.0
C27—C28—C29122.5 (7)C62—C63—C64134.0 (8)
C27—C28—H28118.7C62—C63—C58118.3 (8)
C29—C28—H28118.7C64—C63—C58107.8 (7)
C28—C29—C30121.4 (7)N17—C64—N18124.7 (7)
C28—C29—H29119.3N17—C64—C63113.4 (7)
C30—C29—H29119.3N18—C64—C63121.9 (7)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Sb(C32H16N8)]4[Sb6I22]
Mr6059.42
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)14.708 (3), 15.633 (3), 19.158 (4)
α, β, γ (°)94.99 (3), 96.62 (3), 114.88 (3)
V3)3924.4 (18)
Z1
Radiation typeMo Kα
µ (mm1)6.08
Crystal size (mm)0.23 × 0.15 × 0.12
Data collection
DiffractometerKuma KM-4
diffractometer with CCD detector
Absorption correctionAnalytical
face-indexed (SHELXTL; Sheldrick, 1990b)
Tmin, Tmax0.334, 0.527
No. of measured, independent and
observed [I > 2σ(I)] reflections
34137, 19326, 10908
Rint0.035
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.074, 1.02
No. of reflections19326
No. of parameters865
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.65, 1.15

Computer programs: KM-4 CCD Software (Kuma, 2002), KM-4 CCD Software, SHELXS97 (Sheldrick, 1990a), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1990b).

Selected geometric parameters (Å, º) top
Sb1—I13.2186 (10)Sb3—I102.7600 (10)
Sb1—I23.0451 (15)Sb3—I112.7985 (14)
Sb1—I33.0344 (15)Sb4—I33.6984 (10)
Sb1—I42.7903 (8)Sb4—I1i3.5750 (15)
Sb1—I52.8781 (9)Sb4—I2i3.6640 (11)
Sb1—I1i3.3864 (9)Sb4—N52.175 (6)
Sb2—I62.9001 (9)Sb4—N12.189 (5)
Sb2—I72.8428 (12)Sb4—N32.195 (5)
Sb2—I82.7630 (9)Sb4—N72.195 (5)
Sb2—I13.2402 (16)Sb5—I63.6598 (18)
Sb2—I33.2563 (10)Sb5—I73.5843 (11)
Sb2—I2i3.4734 (9)Sb5—I11i3.6696 (10)
Sb3—I23.3696 (10)Sb5—N172.165 (6)
Sb3—I53.3402 (9)Sb5—N152.180 (6)
Sb3—I6i3.4527 (10)Sb5—N132.203 (5)
Sb3—I92.7638 (9)Sb5—N112.210 (5)
I4—Sb1—I598.07 (3)N5—Sb4—N379.0 (2)
I5—Sb1—I293.97 (4)N1—Sb4—N377.5 (2)
I3—Sb1—I189.31 (4)N5—Sb4—N777.8 (2)
I8—Sb2—I797.48 (4)N1—Sb4—N778.7 (2)
I7—Sb2—I698.05 (4)N17—Sb5—N1578.4 (2)
I3—Sb2—I185.19 (4)N15—Sb5—N1378.5 (2)
I10—Sb3—I998.51 (4)N17—Sb5—N1177.8 (2)
I10—Sb3—I1197.36 (4)N13—Sb5—N1177.7 (2)
I2—Sb3—I580.44 (4)
Symmetry code: (i) x, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds