Download citation
Download citation
link to html
The title compound, [Fe(C10H15)2][Ni(C3OS4)2]·C4H8O or [Fe(Cp*)2][Ni(dmio)2]·THF, where [Fe(Cp*)2]+ is the deca­methyl­ferrocenium cation, dmio is the 2-oxo-1,3-dithiole-4,5-dithiol­ate dianion and THF is tetra­hydro­furan, crystallizes with two independent half-anion units [one Ni atom is at the centre of symmetry ({1 \over 2}, {1 \over 2}, 0) and the other is at the centre of symmetry ({1 \over 2}, 0, {1 \over 2})], one cation unit (located in a general position) and one THF solvent mol­ecule in the asymmetric unit. The crystal structure consists of two-dimensional layers composed of parallel mixed chains, where pairs of cations alternate with single anions. These layers are separated by sheets of anions and THF mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106018191/gd3016sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106018191/gd3016Isup2.hkl
Contains datablock I

CCDC reference: 616105

Comment top

Following the report of bulk molecular magnets (Miller et al., 1986; Pei et al., 1986), significant research effort has been devoted to this type of material. We have focused our attention on charge-transfer salts based on decamethylmetallocenium donors and monoanionic planar metal dithiolate acceptors, with S = 1/2. These materials seem adequate to obtain new molecular magnets. The ligand dmio2, the 2-oxo-1,3-dithiole-4,5-dithiolate dianion, C3S4O2−, contains several peripheral S atoms which could contribute to the existence of extended magnetic interactions, and here we report the structure of the title salt, (I).

The structure of (I) consists of [Fe(Cp*)2]+ cations, two centrosymmetric [Ni(dmio)2] anions and a tetrahydrofuran (THF) solvent molecule (Fig. 1). The [Fe(Cp*)2]+ cations shows approximate C5 local symmetry and the two Cp* rings (Cp* = C10H15) exhibit an almost eclipsed conformation, unlike that observed in most [Fe(Cp*)2]+-based charge-transfer salts, which generally contain staggered conformations. The bond distances and angles in the cations and anions are in the expected ranges (Reference for standard values?). As expected, the centrosymmetric [Ni(dmio)2] anions adopt a square-planar coordination geometry, with approximate D2h local symmetry. The anions are essentially planar (the atomic deviations from the average molecular plane are less than 0.0186 Å for the [Ni1(dmio)2] unit and less than 0.0577 Å for the [Ni2(dmio)2] unit). The average Ni—S distance (Table 1) is in good agreement with values found in other square-planar NiIII dithiolate complexes (Mahadevan et al., 1985). The dihedral angle between the average planes of the two [Ni(dmio)2] units is 87.79 Å.

The crystal structure of (I) consists of two-dimensional layers composed of parallel mixed chains, where side-by-side pairs of donors alternate with the isolated acceptor, ···D+D+AD+D+A··· (Figs. 2 and 3). Within the chains, there is a net charge (+) per repeated unit (D+D+A), and the layers are separated by sheets of anions and THF molecules which are responsible for charge neutralization.

The supramolecular arrangement observed in (I) is similar to that reported for [Fe(Cp*)2][Ni(dmio)2]·CH3CN (Fettouhi et al., 1995). The Cp* fragment of the cation sits above the dmio2 ligand of the anion. The shorter DA intrachain separation (S···C) exceeds the sum of the van der Waals radii by ca 4% (Reference for van der Waals radii?). The chains in the layers are quite isolated, and S···O short contacts (3.167 Å), involving anions from the chains and the anionic sheets, are observed (Fig. 3).

A different type of structure was observed for decamethylferrocenium charge-transfer salts based on similar acceptors, but without solvent molecules in the crystal structure, such as [Fe(Cp*)2][M(dmit)2], with M = Ni (Broderik et al., 1989) or Pt (Rabaça et al., 1999), and [Fe(Cp*)2][M(dmio)2], with M = Pd or Pt (Rabaça et al., 1999). For these compounds, the crystal structure consists of an arrangement of parallel stacks, where side-by-side pairs of donors alternate with face-to-face pairs of acceptors.

At high temperatures, the magnetic susceptibility of (I) follows the Curie–Weiss law, χ = C/(T - θ), with a θ value of 10.5 K. The dominant ferromagnetic (FM) interactions can be assigned to the FM intrachain DA magnetic coupling (Rabaça et al., 2003), in view of the McConnell I mechanism (McConnell, 1963), due to a spin-polarization effect in the donor, where the C atoms in the C5 rings of the donor ligand present a negative spin density (Rabaça et al., 2001).

In compound (I), the interchain contacts involving the peripheral S atoms seem to be quite weak and the anticipated increase of dimensionality in the magnetic interactions is not observed.

Experimental top

Compound (I) was obtained by reaction of equimolar tetrahydrofuran (THF) solutions of C16H36N[Ni(dmio)2] (Hendrickson et al., 1971) and [Fe(Cp*)2]BF4 (Muller et al., 1997). The two solutions were filtered and slowly added to one another with constant stirring. Rapid precipitation occurred and a polycrystalline precipitate was collected via vacuum filtration. The precipitate was dissolved in THF. Suitable crystals of (I) for X-ray diffraction were obtained by slow evaporation of a saturated THF solution.

Refinement top

Cp* H atoms were treated as riding, with C—H = 0.96 Å and UisoH = 1.5Ueq(C). Solvent H atoms were treated as riding, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). Occupancy refinement for the tetrahydrofuran solvent indicated unit occupancy.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1994); cell refinement: CAD-4 Software; data reduction: PROCESS in MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SCHAKAL (Keller, 1989) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A diagram of the cation and the two independent anion units of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms have been omitted for clarity. Atoms labelled with the suffix `a' are generated by the symmetry operation (−x + 1, −y + 1, −z), and those labelled with the suffix `b' are generated by the symmetry operation (−x + 1, −y, −z + 1).
[Figure 2] Fig. 2. A packing diagram for (I), viewed along the b axis, showing a two-dimensional layer, composed of parallel mixed chains, separated by sheets of anions and tetrahydrofuran molecules.
[Figure 3] Fig. 3. A packing diagram for (I), showing the details of the one-dimensional ···D+D+AD+D+A··· chain and the S···O short contacts. [Symmetry codes: (I) x, y, z; (II) x, 1 + y, z; (III) 1 + x, 1 + y, −1 + z; (IV) 1 + x, y, −1 + z; (1) 3/2 − x, −1/2 + y, −z; (2) 3/2 − x, 1/2 + y, −z; (A) 3/2 − x, −1/2 + y, −z; (B) 1/2 + x, −1/2 − y, z; (C) 3/2 − x, 1/2 + y, z; (D) 1/2 + x,1/2 − y,z; (E) 3/2 − x, 3/2 + y, −z; (F) 1/2 + x, 3/2 − y, z.]
Decamethylferrocenium bis(2-oxo-1,3-dithiole-4,5-dithiolato-κ2S4,S5)nickelate(III) tetrahydrofuran solvate top
Crystal data top
[Fe(C10H15)2][Ni(C3OS4)2]·C4H8OF(000) = 1696
Mr = 817.70Dx = 1.530 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 25 reflections
a = 16.4733 (17) Åθ = 7–12°
b = 11.0224 (10) ŵ = 1.44 mm1
c = 19.693 (2) ÅT = 295 K
β = 96.887 (9)°Plate, dark green
V = 3550.0 (6) Å30.50 × 0.30 × 0.04 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
3359 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 26.0°, θmin = 2.1°
ω/2θ scansh = 2020
Absorption correction: ψ scan
(North et al., 1968)
k = 130
Tmin = 0.613, Tmax = 0.940l = 240
7075 measured reflections5 standard reflections every 300 reflections
6873 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0535P)2]
where P = (Fo2 + 2Fc2)/3
6873 reflections(Δ/σ)max = 0.001
401 parametersΔρmax = 0.43 e Å3
1 restraintΔρmin = 0.34 e Å3
Crystal data top
[Fe(C10H15)2][Ni(C3OS4)2]·C4H8OV = 3550.0 (6) Å3
Mr = 817.70Z = 4
Monoclinic, P21/aMo Kα radiation
a = 16.4733 (17) ŵ = 1.44 mm1
b = 11.0224 (10) ÅT = 295 K
c = 19.693 (2) Å0.50 × 0.30 × 0.04 mm
β = 96.887 (9)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3359 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.029
Tmin = 0.613, Tmax = 0.9405 standard reflections every 300 reflections
7075 measured reflections intensity decay: none
6873 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0721 restraint
wR(F2) = 0.149H-atom parameters constrained
S = 1.02Δρmax = 0.43 e Å3
6873 reflectionsΔρmin = 0.34 e Å3
401 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.00000.0412 (3)
S10.48927 (9)0.48230 (17)0.10976 (8)0.0504 (5)
S20.62729 (9)0.54616 (17)0.00796 (9)0.0534 (5)
C10.5876 (3)0.5094 (6)0.1270 (3)0.0461 (15)
C20.6467 (4)0.5381 (6)0.0766 (3)0.0467 (17)
S30.61429 (10)0.50288 (19)0.20981 (9)0.0568 (5)
S40.74479 (10)0.5617 (2)0.09844 (9)0.0610 (5)
C30.7195 (4)0.5401 (7)0.1861 (4)0.059 (2)
O10.7686 (3)0.5457 (5)0.2272 (3)0.0798 (17)
Ni20.50000.00000.50000.0537 (3)
S50.42338 (11)0.1355 (2)0.53812 (11)0.0681 (6)
S60.41452 (11)0.1448 (2)0.51178 (11)0.0673 (6)
C40.3420 (4)0.0510 (8)0.5587 (4)0.060 (2)
C50.3385 (4)0.0681 (8)0.5473 (3)0.059 (2)
S70.26335 (13)0.1159 (3)0.59673 (13)0.0930 (8)
S80.25605 (13)0.1482 (2)0.57418 (12)0.0870 (7)
C60.2097 (5)0.0216 (10)0.6070 (4)0.099 (3)
O20.1496 (3)0.0248 (7)0.6365 (3)0.133 (3)
Fe0.41108 (5)0.00228 (9)0.19020 (4)0.0402 (2)
C100.3666 (4)0.1390 (6)0.1214 (3)0.0433 (15)
C110.3251 (4)0.1431 (5)0.1819 (3)0.0462 (16)
C120.3844 (4)0.1640 (6)0.2398 (4)0.0519 (18)
C130.4611 (4)0.1743 (5)0.2151 (4)0.0476 (17)
C140.4510 (4)0.1579 (5)0.1439 (3)0.0428 (16)
C150.4823 (4)0.1450 (6)0.1675 (4)0.0503 (17)
C160.4874 (4)0.1310 (6)0.2394 (4)0.0534 (18)
C170.4078 (4)0.1452 (6)0.2584 (4)0.062 (2)
C180.3532 (4)0.1667 (6)0.1986 (4)0.0525 (18)
C190.3990 (4)0.1675 (5)0.1423 (3)0.0455 (16)
C1010.3289 (4)0.1248 (7)0.0500 (3)0.065 (2)
H10A0.27450.09320.04950.097*
H10B0.36100.06970.02650.097*
H10C0.32670.20220.02750.097*
C1110.2329 (4)0.1294 (7)0.1836 (4)0.079 (3)
H11A0.20880.09260.14180.118*
H11B0.20900.20790.18840.118*
H11C0.22310.07930.22160.118*
C1210.3661 (5)0.1833 (8)0.3114 (4)0.083 (3)
H12A0.41200.15750.34280.125*
H12B0.31880.13690.31920.125*
H12C0.35590.26780.31850.125*
C1310.5414 (4)0.2045 (7)0.2579 (4)0.075 (2)
H13A0.53670.18880.30520.112*
H13B0.55410.28860.25210.112*
H13C0.58420.15520.24350.112*
C1410.5168 (4)0.1678 (6)0.0974 (4)0.068 (2)
H14A0.50500.11310.05960.101*
H14B0.56860.14730.12230.101*
H14C0.51860.24940.08060.101*
C1510.5530 (4)0.1447 (7)0.1259 (4)0.072 (2)
H15A0.53440.11900.08010.108*
H15B0.57530.22510.12490.108*
H15C0.59430.09000.14610.108*
C1610.5637 (4)0.1114 (7)0.2877 (4)0.088 (3)
H16A0.55060.06820.32720.131*
H16B0.60210.06500.26530.131*
H16C0.58740.18840.30140.131*
C1710.3851 (5)0.1431 (8)0.3297 (4)0.092 (3)
H17A0.42280.09240.35780.138*
H17B0.38730.22400.34780.138*
H17C0.33080.11150.32910.138*
C1810.2624 (4)0.1923 (7)0.1957 (5)0.089 (3)
H18A0.23640.17920.15000.134*
H18B0.23890.13890.22660.134*
H18C0.25440.27500.20880.134*
C1910.3674 (5)0.1927 (7)0.0695 (4)0.081 (3)
H19A0.39670.14420.04000.121*
H19B0.31020.17320.06170.121*
H19C0.37490.27710.05980.121*
O30.1719 (6)0.0099 (11)0.3308 (5)0.203 (5)
C200.0966 (7)0.0485 (10)0.3104 (6)0.118 (4)
H20A0.09740.13200.29480.142*
H20B0.07100.00140.27320.142*
C210.0533 (7)0.0388 (14)0.3692 (8)0.164 (6)
H21A0.03000.11700.37840.197*
H21B0.00880.01860.35970.197*
C220.1078 (9)0.0016 (12)0.4298 (6)0.149 (5)
H22A0.08880.07630.44860.179*
H22B0.11400.06020.46520.179*
C230.1821 (7)0.0194 (14)0.4000 (6)0.181 (7)
H23A0.19900.10350.40550.218*
H23B0.22490.03080.42360.218*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0333 (5)0.0445 (6)0.0474 (7)0.0022 (6)0.0110 (5)0.0054 (6)
S10.0358 (8)0.0628 (13)0.0539 (10)0.0039 (8)0.0107 (7)0.0001 (9)
S20.0347 (8)0.0741 (13)0.0521 (10)0.0027 (8)0.0083 (7)0.0029 (9)
C10.042 (3)0.046 (4)0.052 (4)0.001 (3)0.010 (3)0.002 (4)
C20.035 (3)0.050 (4)0.056 (4)0.002 (3)0.010 (3)0.006 (3)
S30.0479 (9)0.0712 (12)0.0542 (10)0.0009 (11)0.0174 (8)0.0030 (11)
S40.0359 (9)0.0878 (14)0.0610 (12)0.0026 (9)0.0132 (8)0.0087 (11)
C30.045 (4)0.068 (5)0.067 (5)0.003 (3)0.015 (4)0.014 (4)
O10.058 (3)0.112 (5)0.076 (4)0.001 (3)0.034 (3)0.006 (3)
Ni20.0449 (6)0.0703 (8)0.0493 (7)0.0033 (7)0.0199 (5)0.0002 (7)
S50.0575 (11)0.0731 (15)0.0789 (14)0.0046 (11)0.0292 (10)0.0043 (11)
S60.0547 (11)0.0754 (14)0.0758 (13)0.0056 (10)0.0246 (10)0.0020 (12)
C40.046 (4)0.078 (5)0.061 (5)0.006 (4)0.023 (4)0.004 (4)
C50.041 (4)0.094 (6)0.043 (4)0.001 (4)0.011 (3)0.012 (4)
S70.0585 (13)0.131 (2)0.0967 (17)0.0107 (14)0.0391 (12)0.0189 (16)
S80.0571 (12)0.124 (2)0.0842 (16)0.0175 (13)0.0266 (11)0.0075 (15)
C60.054 (5)0.156 (10)0.093 (7)0.010 (6)0.032 (5)0.008 (7)
O20.072 (4)0.219 (9)0.120 (5)0.022 (5)0.061 (4)0.032 (5)
Fe0.0308 (4)0.0429 (5)0.0479 (5)0.0012 (5)0.0086 (4)0.0004 (5)
C100.050 (4)0.042 (4)0.038 (4)0.003 (3)0.006 (3)0.000 (3)
C110.041 (4)0.034 (4)0.067 (5)0.004 (3)0.015 (3)0.001 (3)
C120.050 (4)0.051 (4)0.057 (5)0.010 (3)0.017 (4)0.004 (4)
C130.041 (4)0.034 (4)0.068 (5)0.005 (3)0.005 (3)0.010 (3)
C140.042 (4)0.030 (3)0.059 (4)0.004 (3)0.021 (3)0.001 (3)
C150.038 (4)0.033 (4)0.081 (5)0.001 (3)0.013 (3)0.008 (4)
C160.047 (4)0.049 (4)0.064 (5)0.006 (3)0.005 (4)0.011 (4)
C170.060 (5)0.050 (5)0.079 (6)0.002 (4)0.026 (4)0.019 (4)
C180.036 (4)0.040 (4)0.082 (5)0.003 (3)0.010 (4)0.004 (4)
C190.047 (4)0.036 (4)0.051 (4)0.004 (3)0.002 (3)0.006 (3)
C1010.070 (5)0.070 (5)0.054 (5)0.002 (4)0.001 (4)0.010 (4)
C1110.040 (4)0.067 (6)0.132 (7)0.010 (4)0.021 (4)0.015 (5)
C1210.096 (6)0.085 (7)0.074 (6)0.011 (5)0.030 (5)0.024 (5)
C1310.053 (4)0.080 (6)0.087 (6)0.013 (4)0.009 (4)0.019 (5)
C1410.072 (5)0.053 (5)0.086 (6)0.003 (4)0.039 (4)0.004 (4)
C1510.060 (5)0.064 (5)0.100 (6)0.008 (4)0.043 (4)0.011 (5)
C1610.069 (5)0.084 (6)0.102 (7)0.008 (5)0.025 (5)0.019 (5)
C1710.105 (7)0.104 (7)0.074 (6)0.011 (6)0.038 (5)0.021 (5)
C1810.046 (5)0.067 (6)0.157 (9)0.015 (4)0.022 (5)0.002 (6)
C1910.087 (6)0.061 (5)0.088 (6)0.006 (5)0.012 (5)0.019 (5)
O30.132 (7)0.371 (17)0.104 (7)0.027 (9)0.006 (6)0.043 (8)
C200.116 (9)0.117 (9)0.117 (10)0.002 (8)0.006 (8)0.002 (7)
C210.080 (8)0.243 (17)0.171 (14)0.037 (9)0.017 (9)0.004 (13)
C220.188 (13)0.151 (11)0.118 (10)0.039 (11)0.055 (10)0.012 (9)
C230.130 (10)0.32 (2)0.096 (9)0.088 (12)0.027 (8)0.047 (11)
Geometric parameters (Å, º) top
Ni1—S22.1451 (16)C17—C181.414 (9)
Ni1—S2i2.1451 (16)C17—C1711.495 (9)
Ni1—S1i2.1564 (17)C18—C191.414 (9)
Ni1—S12.1564 (17)C18—C1811.517 (8)
S1—C11.720 (6)C19—C1911.492 (9)
S2—C21.735 (7)C101—H10A0.9600
C1—C21.343 (8)C101—H10B0.9600
C1—S31.741 (6)C101—H10C0.9600
C2—S41.740 (6)C111—H11A0.9600
S3—C31.787 (7)C111—H11B0.9600
S4—C31.743 (7)C111—H11C0.9600
C3—O11.212 (7)C121—H12A0.9600
Ni2—S52.1480 (19)C121—H12B0.9600
Ni2—S5ii2.1480 (19)C121—H12C0.9600
Ni2—S6ii2.159 (2)C131—H13A0.9600
Ni2—S62.159 (2)C131—H13B0.9600
S5—C41.720 (7)C131—H13C0.9600
S6—C51.726 (7)C141—H14A0.9600
C4—C51.332 (10)C141—H14B0.9600
C4—S71.728 (7)C141—H14C0.9600
C5—S81.754 (7)C151—H15A0.9600
S7—C61.779 (10)C151—H15B0.9600
S8—C61.751 (10)C151—H15C0.9600
C6—O21.206 (8)C161—H16A0.9600
Fe—C152.083 (6)C161—H16B0.9600
Fe—C142.086 (6)C161—H16C0.9600
Fe—C162.094 (6)C171—H17A0.9600
Fe—C112.094 (6)C171—H17B0.9600
Fe—C192.095 (6)C171—H17C0.9600
Fe—C102.098 (6)C181—H18A0.9600
Fe—C132.102 (6)C181—H18B0.9600
Fe—C122.104 (7)C181—H18C0.9600
Fe—C182.108 (6)C191—H19A0.9600
Fe—C172.113 (7)C191—H19B0.9600
C10—C141.424 (8)C191—H19C0.9600
C10—C111.443 (8)O3—C201.328 (10)
C10—C1011.477 (8)O3—C231.390 (12)
C11—C121.429 (9)C20—C211.435 (14)
C11—C1111.530 (8)C20—H20A0.9700
C12—C131.413 (8)C20—H20B0.9700
C12—C1211.492 (9)C21—C221.474 (15)
C13—C141.402 (8)C21—H21A0.9700
C13—C1311.518 (8)C21—H21B0.9700
C14—C1411.504 (8)C22—C231.433 (13)
C15—C161.416 (9)C22—H22A0.9700
C15—C191.423 (8)C22—H22B0.9700
C15—C1511.502 (8)C23—H23A0.9700
C16—C171.414 (9)C23—H23B0.9700
C16—C1611.499 (9)
S2—Ni1—S2i180.0C16—C15—C151126.0 (6)
S2—Ni1—S1i86.75 (6)C19—C15—C151126.0 (7)
S2i—Ni1—S1i93.25 (6)C16—C15—Fe70.6 (4)
S2—Ni1—S193.25 (6)C19—C15—Fe70.5 (4)
S2i—Ni1—S186.75 (6)C151—C15—Fe127.5 (5)
S1i—Ni1—S1180.0C17—C16—C15107.9 (6)
C1—S1—Ni1102.5 (2)C17—C16—C161125.6 (7)
C2—S2—Ni1102.1 (2)C15—C16—C161126.5 (6)
C2—C1—S1120.8 (5)C17—C16—Fe71.1 (4)
C2—C1—S3117.4 (5)C15—C16—Fe69.7 (4)
S1—C1—S3121.8 (4)C161—C16—Fe127.1 (5)
C1—C2—S2121.4 (5)C18—C17—C16108.4 (6)
C1—C2—S4117.7 (5)C18—C17—C171125.4 (7)
S2—C2—S4120.9 (4)C16—C17—C171126.2 (7)
C1—S3—C395.3 (3)C18—C17—Fe70.2 (4)
C2—S4—C396.1 (3)C16—C17—Fe69.6 (4)
O1—C3—S4123.7 (6)C171—C17—Fe127.8 (6)
O1—C3—S3122.8 (6)C17—C18—C19107.9 (6)
S4—C3—S3113.5 (4)C17—C18—C181126.0 (7)
S5—Ni2—S5ii180.00 (8)C19—C18—C181125.9 (7)
S5—Ni2—S6ii86.67 (7)C17—C18—Fe70.6 (4)
S5ii—Ni2—S6ii93.33 (7)C19—C18—Fe69.8 (4)
S5—Ni2—S693.33 (7)C181—C18—Fe127.9 (5)
S5ii—Ni2—S686.67 (7)C18—C19—C15107.9 (6)
S6ii—Ni2—S6180.00 (11)C18—C19—C191126.7 (6)
C4—S5—Ni2102.3 (3)C15—C19—C191125.4 (7)
C5—S6—Ni2101.3 (3)C18—C19—Fe70.9 (4)
C5—C4—S5120.9 (6)C15—C19—Fe69.6 (4)
C5—C4—S7117.5 (6)C191—C19—Fe127.1 (5)
S5—C4—S7121.6 (5)C10—C101—H10A109.5
C4—C5—S6122.1 (6)C10—C101—H10B109.5
C4—C5—S8117.7 (6)H10A—C101—H10B109.5
S6—C5—S8120.1 (5)C10—C101—H10C109.5
C4—S7—C696.1 (4)H10A—C101—H10C109.5
C6—S8—C595.7 (4)H10B—C101—H10C109.5
O2—C6—S8125.0 (9)C11—C111—H11A109.5
O2—C6—S7121.9 (9)C11—C111—H11B109.5
S8—C6—S7113.1 (4)H11A—C111—H11B109.5
C15—Fe—C14109.4 (2)C11—C111—H11C109.5
C15—Fe—C1639.6 (2)H11A—C111—H11C109.5
C14—Fe—C16125.2 (3)H11B—C111—H11C109.5
C15—Fe—C11162.6 (3)C12—C121—H12A109.5
C14—Fe—C1166.6 (2)C12—C121—H12B109.5
C16—Fe—C11156.8 (3)H12A—C121—H12B109.5
C15—Fe—C1939.8 (2)C12—C121—H12C109.5
C14—Fe—C19123.8 (3)H12A—C121—H12C109.5
C16—Fe—C1966.5 (3)H12B—C121—H12C109.5
C11—Fe—C19126.9 (2)C13—C131—H13A109.5
C15—Fe—C10125.7 (3)C13—C131—H13B109.5
C14—Fe—C1039.8 (2)H13A—C131—H13B109.5
C16—Fe—C10161.1 (3)C13—C131—H13C109.5
C11—Fe—C1040.3 (2)H13A—C131—H13C109.5
C19—Fe—C10110.1 (3)H13B—C131—H13C109.5
C15—Fe—C13122.6 (2)C14—C141—H14A109.5
C14—Fe—C1339.1 (2)C14—C141—H14B109.5
C16—Fe—C13109.2 (3)H14A—C141—H14B109.5
C11—Fe—C1365.9 (2)C14—C141—H14C109.5
C19—Fe—C13157.6 (3)H14A—C141—H14C109.5
C10—Fe—C1366.4 (2)H14B—C141—H14C109.5
C15—Fe—C12156.1 (3)C15—C151—H15A109.5
C14—Fe—C1266.5 (2)C15—C151—H15B109.5
C16—Fe—C12121.8 (3)H15A—C151—H15B109.5
C11—Fe—C1239.8 (2)C15—C151—H15C109.5
C19—Fe—C12162.2 (3)H15A—C151—H15C109.5
C10—Fe—C1267.4 (2)H15B—C151—H15C109.5
C13—Fe—C1239.3 (2)C16—C161—H16A109.5
C15—Fe—C1866.4 (2)C16—C161—H16B109.5
C14—Fe—C18158.5 (3)H16A—C161—H16B109.5
C16—Fe—C1866.1 (3)C16—C161—H16C109.5
C11—Fe—C18110.7 (2)H16A—C161—H16C109.5
C19—Fe—C1839.3 (2)H16B—C161—H16C109.5
C10—Fe—C18124.0 (3)C17—C171—H17A109.5
C13—Fe—C18161.3 (3)C17—C171—H17B109.5
C12—Fe—C18126.2 (3)H17A—C171—H17B109.5
C15—Fe—C1766.1 (3)C17—C171—H17C109.5
C14—Fe—C17160.7 (3)H17A—C171—H17C109.5
C16—Fe—C1739.3 (2)H17B—C171—H17C109.5
C11—Fe—C17123.4 (3)C18—C181—H18A109.5
C19—Fe—C1765.9 (3)C18—C181—H18B109.5
C10—Fe—C17158.3 (3)H18A—C181—H18B109.5
C13—Fe—C17125.8 (3)C18—C181—H18C109.5
C12—Fe—C17109.5 (3)H18A—C181—H18C109.5
C18—Fe—C1739.1 (3)H18B—C181—H18C109.5
C14—C10—C11106.3 (5)C19—C191—H19A109.5
C14—C10—C101126.5 (6)C19—C191—H19B109.5
C11—C10—C101127.1 (6)H19A—C191—H19B109.5
C14—C10—Fe69.6 (3)C19—C191—H19C109.5
C11—C10—Fe69.7 (3)H19A—C191—H19C109.5
C101—C10—Fe127.8 (5)H19B—C191—H19C109.5
C12—C11—C10108.5 (5)C20—O3—C23111.7 (10)
C12—C11—C111125.7 (6)O3—C20—C21105.5 (10)
C10—C11—C111125.8 (6)O3—C20—H20A110.6
C12—C11—Fe70.5 (4)C21—C20—H20A110.6
C10—C11—Fe70.0 (3)O3—C20—H20B110.6
C111—C11—Fe126.1 (5)C21—C20—H20B110.6
C13—C12—C11107.0 (6)H20A—C20—H20B108.8
C13—C12—C121127.2 (7)C20—C21—C22111.3 (10)
C11—C12—C121125.6 (6)C20—C21—H21A109.4
C13—C12—Fe70.3 (4)C22—C21—H21A109.4
C11—C12—Fe69.7 (4)C20—C21—H21B109.4
C121—C12—Fe129.5 (5)C22—C21—H21B109.4
C14—C13—C12109.3 (6)H21A—C21—H21B108.0
C14—C13—C131125.0 (6)C23—C22—C21100.1 (10)
C12—C13—C131125.6 (6)C23—C22—H22A111.8
C14—C13—Fe69.8 (3)C21—C22—H22A111.8
C12—C13—Fe70.5 (4)C23—C22—H22B111.8
C131—C13—Fe128.2 (5)C21—C22—H22B111.8
C13—C14—C10108.9 (5)H22A—C22—H22B109.5
C13—C14—C141126.3 (6)O3—C23—C22111.2 (10)
C10—C14—C141124.7 (6)O3—C23—H23A109.4
C13—C14—Fe71.1 (4)C22—C23—H23A109.4
C10—C14—Fe70.6 (3)O3—C23—H23B109.4
C141—C14—Fe127.9 (4)C22—C23—H23B109.4
C16—C15—C19107.9 (6)H23A—C23—H23B108.0
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Fe(C10H15)2][Ni(C3OS4)2]·C4H8O
Mr817.70
Crystal system, space groupMonoclinic, P21/a
Temperature (K)295
a, b, c (Å)16.4733 (17), 11.0224 (10), 19.693 (2)
β (°) 96.887 (9)
V3)3550.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.50 × 0.30 × 0.04
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.613, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
7075, 6873, 3359
Rint0.029
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.149, 1.02
No. of reflections6873
No. of parameters401
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.34

Computer programs: CAD-4 Software (Enraf–Nonius, 1994), CAD-4 Software, PROCESS in MolEN (Fair, 1990), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SCHAKAL (Keller, 1989) and ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds