metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Bis(1,3-diphen­ylpropane-1,3-dionato-κ2O,O′){hydro­tris­[3-(2-pyrid­yl)pyrazol-1-yl]borato}praseodymium(III): another member of an unpredicta­ble series

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Sheffield, Sheffield S3 7HF, England
*Correspondence e-mail: m.d.ward@sheffield.ac.uk

(Received 8 March 2005; accepted 11 March 2005; online 2 April 2005)

Reaction of praseodymium(III) chloride with stoichometric quantities of dibenzoyl­methane (Hdbm) and hydro­tris[3-(2-pyrid­yl)pyrazol-1-­yl]borate (Tp2py) affords the title complex, [Pr(C24H19BN9)(C15H11O4)2]. The lanthanide ion in this ternary complex exhibits an N6O4 ten-coordinate geometry arising from the five bidentate arms found on the anionic ligands. The structure is entirely different from those found in other lanthanide complexes with the same ligand set.

Comment

Since their introduction, poly(pyrazol­yl)borate ligands [for a review, see Trofimenko (1993[Trofimenko, S. (1993). Chem. Rev. 93, 943-980.])] have proved extremely popular for the coordination chemistry of lanthanide(III) ions (Marques et al., 2002[Marques, N., Sella, A. & Takats, J. (2002). Chem. Rev. 102, 2137-2159.]). This is largely for two reasons: firstly, their multiple denticity, hard donor set and single negative charge are ideally attractive to the hard lanthanide(III) cations; secondly, the ease with which substituents can be added at the 3- and 5-positions of the pyrazol­yl rings allows fine-tuning of the size of the ligand cavity. We have been inter­ested in both the structural and photophysical properties of such complexes (Amoroso et al., 1994[Amoroso, A. J., Cargill Thompson, A. M., Jeffery, J. C., Jones, P. L., McCleverty, J. A. & Ward, M. D. (1994). J. Chem. Soc. Chem. Commun. pp. 2751-2752.]; Bardwell et al., 1997[Bardwell, D. A., Jeffery, J. C., Jones, P. L., McCleverty, J. A., Psillakis, E., Reeves, Z. & Ward, M. D. (1997). J. Chem. Soc. Dalton Trans. pp. 2079-2086.]; Jones et al., 1997[Jones, P. L., Amoroso, A. J., Jeffery, J. C., McCleverty, J. A., Psillakis, E., Rees, L. H. & Ward, M. D. (1997). Inorg. Chem. 36, 10-18.]; Armaroli et al., 1999[Armaroli, N., Accorsi, G., Barigelletti, F., Couchman, S. M., Fleming, J. S., Harden, N. C., Jeffery, J. C., Mann, K. L. V., McCleverty, J. A., Rees, L. H., Starling, S. R. & Ward, M. D. (1999). Inorg. Chem. 38, 5769-5776.]; Reeves et al., 1999[Reeves, Z. R., Mann, K. L. V., Jeffery, J. C., McCleverty, J. A., Ward, M. D., Barigelletti, F. & Armaroli, N. (1999). J. Chem. Soc. Dalton Trans. pp. 349-356.]; Beeby et al., 2002[Beeby, A., Burton-Pye, B. P., Faulkner, S., Motson, G. R., Jeffery, J. C., McCleverty, J. A. & Ward, M. D. (2002). J. Chem. Soc. Dalton Trans. pp. 1923-1928.]), particularly with the ligand hydrotris[3-(2-pyridyl)pyrazol-1-yl]borate (Tp2py), in which the pyrazol­yl rings are functionalized with 2-pyrid­yl substituents, creating a hexa­dentate podand-type ligand.

We have used dbm (Hdbm is dibenzoyl­methane) as a co-ligand in order to exclude solvent mol­ecules from the coordination sphere of the metal ion, which is essential for optimization of the photophysical properties of lanthanide(III) complexes (Beeby et al., 1999[Beeby, A., Clarkson, I. M., Dickins, R. S., Faulkner, S., Parker, D., Royle, L., de Sousa, A. S., Gareth Williams, J. A. & Woods, M. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 493-503.]), and have recently structurally characterized two types of mixed-ligand Tp2py/dbm complex with lanthanide(III) ions. In eight-coordinate [Ln(Tp2py)(dbm)2] (Ln is Eu or Tb), one of the three bidentate arms of Tp2py is pendant, such that this ligand is only tetra­dentate and the metal centre has an N4O4 coordination sphere (Ward et al., 1999[Ward, M. D., McCleverty, J. A., Mann, K. L. V., Jeffery, J. C., Motson, G. R. & Hurst, J. (1999). Acta Cryst. C55, 2055-2058.]; Davies et al., 2004[Davies, G. M., Aarons, R. J., Motson, G. R., Jeffery, J. C., Adams, H., Faulkner, S. & Ward, M. D. (2004). Dalton Trans. pp. 1136-1144.]). In contrast, [Nd(Tp2py)2][Nd(dbm)4] contains 12-coordinate [Nd(Tp2py)2]+ cations and eight-coordinate [Nd(dbm)4] anions, the former with an icosa­hedral N12 coordination and the latter with unusual O8 cubic geometry (Davies et al., 2004[Davies, G. M., Aarons, R. J., Motson, G. R., Jeffery, J. C., Adams, H., Faulkner, S. & Ward, M. D. (2004). Dalton Trans. pp. 1136-1144.]). In this paper, we report a new structural type in this series, the title compound, [Pr(Tp2py)(dbm)2], (I)[link], which is ten-coordinate, with the PrIII ion in an N6O4 environment with all three chelating arms of Tp2py attached to the metal centre.

[Scheme 1]

Complex (I)[link] (Fig. 1[link]) was prepared by the reaction of praseodymium(III) chloride hydrate with KTp2py and Hdbm (1:1:2 molar ratio) in aqueous methanol with a few drops of triethyl­amine added. By comparison with the analogous EuIII and TbIII structures, the original concept of the ligand design is achieved in this case, with all three arms of the Tp2py mol­ecule chelating to the PrIII ion. The larger ionic radius of PrIII allows the two dbm units to coordinate without displacing one of the arms of the scorpionate, in contrast with the behaviour shown by the smaller ions EuIII and TbIII. This places the metal ion in a ten-coordinate N6O4 coordination environment, with all five chelating units (three pyrazol­yl-pyridine units and two dbm ligands) being approximately parallel to one another.

Many ten-donor coordination spheres exist among PrIII complexes, although only two previous examples of N6O4 environments have been reported to date (Jones et al., 1997[Jones, P. L., Amoroso, A. J., Jeffery, J. C., McCleverty, J. A., Psillakis, E., Rees, L. H. & Ward, M. D. (1997). Inorg. Chem. 36, 10-18.]; Tamboura et al., 2004[Tamboura, F. B., Haba, P. M., Gaye, M., Sall, A. S., Barry, A. H. & Jouini, T. (2004). Polyhedron, 23, 1191-1197.]). The Pr—N and Pr—O bond lengths are unremarkable, with averages of 2.652, 2.738, and 2.469 Å for the Pr—Npz, Pr—Npy and Pr—O bonds (pz is pyrazolyl and py is pyridyl), respectively, all of which are understandably longer than those of the EuIII and TbIII analogues.

The coordination geometry of (I)[link] does not obviously match any of the `ideal' arrangments of ten-coordination (Kepert, 1987[Kepert, D. L. (1987). Comprehensive Coordination Chemistry, edited by G. Wilkinson, R. D. Gillard & J. A. McCleverty, 1st ed., Vol. 1, pp. 31-107. Oxford: Pergamon Press.]). The best way of looking at the coordination geometry is down the N122—Pr1 bond (Fig. 2[link]). The other two pyrazole N atoms, N102 and N142, form a penta­gon with pyrid­yl atom N131 and atoms O55 and O21 from the dbm units. The average edge length and angle for this penta­gon are 2.818 Å and 107.6°, respectively, using O55; if O55′ is used instead, these values become 2.871 Å and 106.9°, respectively. These five atoms display an average deviation from their mean plane of 0.095 (if O55 is used) or 0.180 Å (if O55′ is used). The penta­gon is capped by atom N122, while on the other side of the penta­gon resides a distorted square described by atoms O25, N151, N111 and O51. This `square' has an average edge of 2.983 Å and an average angle of 89.5° at its corners, but is rather irregular, with the corner angles varying from 75.50 to 102.31°. The mean deviation from the plane of these four atoms is 0.135 Å.

In conclusion, the contrast of this structure with those of the EuIII, TbIII and NdIII analogues with the same stoichiometry is remarkable. The difference between this PrIII structure and the eight-coordinate complexes with TbIII and EuIII can be rationalized on the basis of the larger ionic radius of PrIII. The contrast with the structure of [Nd(Tp2py)2][Nd(dbm)4] is less easy to explain. It is possible that there is an equilibrium mixture of structural types in solution which is perturbed in one direction or another by crystallization. We examined several crystals of (I)[link] and found them all to have the same unit cell.

[Figure 1]
Figure 1
A view of (I)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms have been omitted for clarity.
[Figure 2]
Figure 2
The coordination geometry about the PrIII ion in (I)[link]. Only the major component of the disorder is shown.

Experimental

KTp2py was prepared according to the published method of Amoroso et al. (1994[Amoroso, A. J., Cargill Thompson, A. M., Jeffery, J. C., Jones, P. L., McCleverty, J. A. & Ward, M. D. (1994). J. Chem. Soc. Chem. Commun. pp. 2751-2752.]). KTp2py (202 mg, 0.42 mmol) in MeOH (5 ml) was added to a solution of PrCl3·6H2O (148 mg, 0.42 mmol) in MeOH (5 ml) and allowed to stir for 5 min at room temperature. A solution of Hdbm (188 mg, 0.84 mmol) in MeOH (5 ml) with Et3N (1 ml) was added and, after a further 5 min, water (20 ml) was added, generating a lime-green precipitate. The product was isolated by filtration and slowly recrystallized by the layering of hexa­nes onto a concentrated solution of the product in dichloro­methane. After 5 d, the green crystals which formed were collected by filtration and washed with hexa­ne and ether to give (I)[link] in 67% yield. IR: ν(B—H) 2444 cm−1. Analysis found: C 62.2, H 4.0, N 12.0%; calculated for [Pr(C24H19BN9)(C15H11O4)2]: C 61.8, H 4.1, N 12.0%. FAB–MS gave a strong peak at m/z = 808, corresponding to the loss of one dbm unit to give the fragment {Pr(Tp2py)(dbm)}+; a weaker signal at m/z = 1029 suggested the presence of the {Pr(Tp2py)(dbm)2} unit minus two H atoms. The crystals were suitable for single-crystal X-ray diffraction and were completely air-stable. A suitable crystal was coated in engine oil to clean it of subsidiary grains.

Crystal data
  • [Pr(C24H19BN9)(C15H11O4)2]

  • Mr = 1031.68

  • Triclinic, [P \overline 1]

  • a = 11.6308 (15) Å

  • b = 11.9248 (16) Å

  • c = 18.569 (2) Å

  • α = 96.558 (2)°

  • β = 106.782 (2)°

  • γ = 105.669 (2)°

  • V = 2321.9 (5) Å3

  • Z = 2

  • Dx = 1.476 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4832 reflections

  • θ = 4.7–54.6°

  • μ = 1.11 mm−1

  • T = 150 (2) K

  • Block, green

  • 0.34 × 0.25 × 0.18 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])Tmin = 0.705, Tmax = 0.826

  • 22 669 measured reflections

  • 8143 independent reflections

  • 7003 reflections with I > 2σ(I)

  • Rint = 0.032

  • θmax = 25.0°

  • h = −13 → 13

  • k = −14 → 14

  • l = −22 → 22

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.074

  • S = 1.05

  • 8143 reflections

  • 680 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0285P)2 + 2.7047P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

Pr1—O55 2.448 (17) 
Pr1—O25 2.454 (2)
Pr1—O51 2.464 (2)
Pr1—O55′ 2.492 (17)
Pr1—O21 2.496 (2)
Pr1—N122 2.595 (3)
Pr1—N142 2.656 (3)
Pr1—N131 2.656 (3)
Pr1—N102 2.704 (3)
Pr1—N151 2.754 (3)
Pr1—N111 2.804 (3)
O55—Pr1—O25 128.4 (6)
O55—Pr1—O51 71.7 (5)
O25—Pr1—O51 65.89 (7)
O55—Pr1—O55′ 9.0 (6)
O25—Pr1—O55′ 126.1 (6)
O51—Pr1—O55′ 65.2 (5)
O55—Pr1—O21 129.8 (4)
O25—Pr1—O21 65.98 (7)
O51—Pr1—O21 128.16 (7)
O55′—Pr1—O21 138.5 (4)
O55—Pr1—N122 69.4 (3)
O25—Pr1—N122 121.82 (9)
O51—Pr1—N122 131.58 (8)
O55′—Pr1—N122 78.1 (4)
O21—Pr1—N122 65.02 (9)
O55—Pr1—N142 121.4 (6)
O25—Pr1—N142 109.44 (8)
O51—Pr1—N142 154.01 (9)
O55′—Pr1—N142 124.5 (7)
O21—Pr1—N142 63.44 (9)
N122—Pr1—N142 73.55 (9)
O55—Pr1—N131 71.2 (6)
O25—Pr1—N131 73.08 (8)
O51—Pr1—N131 79.07 (8)
O55′—Pr1—N131 76.8 (6)
O21—Pr1—N131 69.66 (8)
N122—Pr1—N131 61.99 (9)
N142—Pr1—N131 125.31 (9)
O55—Pr1—N102 65.5 (6)
O25—Pr1—N102 163.61 (8)
O51—Pr1—N102 117.95 (9)
O55′—Pr1—N102 66.0 (7)
O21—Pr1—N102 113.69 (9)
N122—Pr1—N102 68.87 (11)
N142—Pr1—N102 59.51 (9)
N131—Pr1—N102 122.86 (9)
O55—Pr1—N151 150.3 (5)
O25—Pr1—N151 65.76 (8)
O51—Pr1—N151 98.08 (8)
O55′—Pr1—N151 142.4 (4)
O21—Pr1—N151 78.77 (8)
N122—Pr1—N151 129.64 (9)
N142—Pr1—N151 58.98 (9)
N131—Pr1—N151 135.59 (9)
N102—Pr1—N151 97.90 (9)
O55—Pr1—N111 74.0 (5)
O25—Pr1—N111 113.86 (9)
O51—Pr1—N111 68.63 (9)
O55′—Pr1—N111 66.3 (5)
O21—Pr1—N111 151.93 (8)
N122—Pr1—N111 124.18 (10)
N142—Pr1—N111 92.39 (10)
N131—Pr1—N111 138.32 (9)
N102—Pr1—N111 58.02 (11)
N151—Pr1—N111 76.31 (9)

One of the dbm units was shown to contain disorder about atom C52. The disordered phen­yl ring was constrained to ideal geometry and the disorder was modelled over two sites, with refined site occupancies of 0.514 (3) and 0.486 (3). All H atoms were positioned geometrically and refined with a riding model, with C—H = 0.93 Å for aromatic rings and 0.96 Å for disordered rings, and with B—H = 1.07 Å. In all cases, Uiso(H) values were constrained to be 1.2Ueq of the carrier atom.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. ]); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA. ]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Since their introduction, poly(pyrazolyl)borate ligands [for a review, see Trofimenko (1993)] have proved extremely popular for the coordination chemistry of lanthanide(III) ions (Marques et al., 2002). This is largely for two reasons. Firstly, their multiple denticity, hard donor set and single negative charge are ideally attractive to the hard lanthanide(III) cations. Secondly, the ease with which substituents can be added at the 3- and 5-positions of the pyrazolyl rings allows fine-tuning of the size of the ligand cavity. We have been interested in both the structural and photophysical properties of such complexes (Amoroso et al., 1994; Bardwell et al., 1997; Jones et al., 1997; Armaroli et al., 1999; Reeves et al., 1999; Beeby et al., 2002), particularly with the ligand (Tp2py), in which the pyrazolyl rings are functionalized with 2-pyridyl substituents, creating a hexadentate podand-type ligand.

We have used dbm (Hdbm is dibenzoylmethane) as a co-ligand, in order to exclude solvent molecules from the coordination sphere of the metal ion, which is essential for optimization of the photophysical properties of lanthanide(III) complexes, and have recently structurally characterized two types of mixed-ligand (Tp2py/dbm) complex with lanthanide(III) ions. In eight-coordinate [Ln(Tp2py)(dbm)2] (Ln is Eu or Tb), one of the three bidentate arms of Tp2py is pendant, such that this ligand is only tetradentate and the metal centre has an N4O4 coordination sphere (Ward et al., 1999; Davies et al., 2004). In contrast, [Nd(Tp2py)2][Nd(dbm)4] contains 12-coordinate [Nd(Tp2py)2]+ cations and eight-coordinate [Nd(dbm)4] anions, the former with an icosahedral N12 coordination and the latter with unusual O8 cubic geometry (Davies et al., 2004). In this paper, we report a new structural type in this series, the title compound, (I), [Pr(Tp2py)(dbm)2], which is ten-coordinate, with the PrIII ion in an N6O4 environment with all three chelating arms of Tp2py attached to the metal centre.

Complex (I) (Fig. 1) was prepared by reaction of praseodymium(III) chloride hydrate with KTp2py and Hdbm (1:1:2 molar ratio) in aqueous methanol with a few drops of triethylamine added. By comparison with the analogous structures of EuIII and TbIII, the original concept of the ligand design is achieved in this case, with all three arms of the Tp2py molecule chelating to the PrIII ion. The larger ionic radius of PrIII allows the two dbm units to coordinate without displacing one of the arms of the scorpionate, in contrast with the behaviour shown by the smaller ions EuIII and TbIII. This places the metal ion in a ten-coordinate N6O4 coordination environment, with all five chelating units (three pyrazolyl-pyridine units and two dbm ligands) being approximately parallel to one another.

Many ten-donor coordination spheres exist among PrIII complexes, although only two previous examples of N6O4 environments have been reported to date (Jones et al., 1997; Tamboura et al., 2004). The Pr—N and Pr—O bond lengths are unremarkable, with averages of 2.652, 2.738, and 2.469 Å for the Pr—Npz, Pr—Npy and Pr—O bonds, respectively, all of which are understandably longer than those of the EuIII and TbIII analogues.

The coordination geometry of (I) does not obviously match any of the `ideal' arrangments of ten-coordination (Kepert, 1987). The best way of looking at the coordination geometry is down the N122—Pr1 bond (Fig. 2). The other two pyrazole N atoms, N102 and N142, form a pentagon with pyridyl atom N131 and atoms O55 and O21 from each dbm unit. The average edge length and angle for this pentagon are 2.818 Å and 107.6°, respectively, using O55; if O55' is used instead, these figures become 2.871 Å and 106.9°, respectively. These five atoms display an average deviation from their mean plane of 0.095 Å (if O55 is used) or 0.180 Å (if O55' is used). The pentagon is capped with atom N122, while on the other side of the pentagon resides a distorted square described by atoms O25, N151, N111 and O51. This `square' has an average edge of 2.983 Å and an average angle of 89.5° at its corners, but is rather irregular, with the corner angles varying from 75.50 to 102.31°. The mean deviation from the plane of these four atoms is 0.135 Å.

In conclusion, the contrast of this structure with those of the EuIII, TbIII and NdIII analogues with the same stoichiometry is remarkable. The difference between this PrIII structure and the eight-coordinate complexes with TbIII and EuIII can be rationalized on the basis of the larger ionic radius of PrIII. The contrast with the structure of [Nd(Tp2py)2][Nd(dbm)4] is less easy to explain. It is possible that there is an equilibrium mixture of structural types in solution which is perturbed in one direction or another by crystallization. We examined several crystals of (I) and found them all to have the same unit cell.

Experimental top

KTp2py was prepared according to the published method of Amoroso et al. (1994). KTp2py (202 mg, 0.42 mmol) in MeOH (5 ml) was added to a solution of PrCl3·6H2O (148 mg, 0.42 mmol) in MeOH (5 ml) and allowed to stir for 5 min at room temperature. A solution of Hdbm (188 mg, 0.84 mmol) in MeOH (5 ml) with Et3N (1 ml) was added and, after 5 min, addition of H2O (20 ml) generated a lime-green precipitate. The product was isolated by filtration and slowly recrystallized by the layering of hexanes onto a concentrated solution of the product in dichloromethane. After 5 d, the green crystals were collected by filtration and washed with hexane and ether to give (I) in 67% yield. Spectroscopic analysis: IR: ν(B—H) 2444 cm−1. Analysis, found: C 62.2, H 4.0, N 12.0%; calculated for [Pr(C24H19N9B)(C15H11O4)2]·H2O No hydrate in other formulae?: C 61.8, H 4.1, N 12.0%. FAB-MS gave a strong peak at m/z 808, corresponding to the loss of one dbm unit to give the fragment {Pr(Tp2py)(dbm)}+; a weaker signal at m/z 1029 suggested the presence of the {Pr(Tp2py)(dbm)2} unit, minus two H atoms. The crystals were suitable for single-crystal X-ray diffraction and were completely air-stable. A suitable crystal was coated in engine oil to clean it of subsidiary grains.

Refinement top

One of the dbm units was shown to contain disorder about atom C52. The disordered phenyl ring was constrained to the ideal geometry and the disorder was modelled over two sites, with refined site occupancies of 0.514 (3) and 0.486 (3). H atoms were positioned geometrically and refined with a riding model, with C—H = 0.93 Å for aromatic rings and 0.96 Å for disordered rings, and with B—H = 1.07 Å. In all cases, Uiso(H) was constrained to be 1.2Ueq of the carrier atom.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The coordination geometry about the PrIII ion in (I). Only the Which? component of the disorder is shown.
Bis(1,3-diphenyl-1,3-propanedionato-κ2O,O'){hydrotris[3-(2-pyridyl)pyrazol- 1-yl]borato}praseodymium(III) top
Crystal data top
[Pr(C24H19BN9)(C15H11O4)2]Z = 2
Mr = 1031.68F(000) = 1048
Triclinic, P1Dx = 1.476 Mg m3
Hall symbol: -P1Mo Kα radiation, λ = 0.71073 Å
a = 11.6308 (15) ÅCell parameters from 4832 reflections
b = 11.9248 (16) Åθ = 4.7–54.6°
c = 18.569 (2) ŵ = 1.11 mm1
α = 96.558 (2)°T = 150 K
β = 106.782 (2)°Block, green
γ = 105.669 (2)°0.34 × 0.25 × 0.18 mm
V = 2321.9 (5) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
8143 independent reflections
Radiation source: fine-focus sealed tube7003 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 100 pixels mm-1θmax = 25.0°, θmin = 1.2°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.705, Tmax = 0.826l = 2222
22669 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0285P)2 + 2.7047P]
where P = (Fo2 + 2Fc2)/3
8143 reflections(Δ/σ)max < 0.001
680 parametersΔρmax = 0.73 e Å3
230 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Pr(C24H19BN9)(C15H11O4)2]γ = 105.669 (2)°
Mr = 1031.68V = 2321.9 (5) Å3
Triclinic, P1Z = 2
a = 11.6308 (15) ÅMo Kα radiation
b = 11.9248 (16) ŵ = 1.11 mm1
c = 18.569 (2) ÅT = 150 K
α = 96.558 (2)°0.34 × 0.25 × 0.18 mm
β = 106.782 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
8143 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
7003 reflections with I > 2σ(I)
Tmin = 0.705, Tmax = 0.826Rint = 0.032
22669 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033230 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.05Δρmax = 0.73 e Å3
8143 reflectionsΔρmin = 0.72 e Å3
680 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pr10.003830 (17)0.130026 (17)0.245282 (11)0.02367 (7)
B10.2148 (5)0.4280 (5)0.2294 (3)0.0548 (15)
H10.26450.51470.22490.066*
N1010.2973 (3)0.3481 (3)0.25498 (18)0.0515 (9)
N1020.2392 (3)0.2318 (3)0.25452 (17)0.0439 (8)
C1030.3256 (4)0.1768 (5)0.2630 (2)0.0580 (12)
C1040.4439 (4)0.2599 (6)0.2708 (2)0.0695 (12)
H1040.52090.24580.27850.083*
C1050.4208 (4)0.3636 (6)0.2647 (3)0.0736 (14)
H1050.48050.43490.26680.088*
N1110.1559 (3)0.0054 (3)0.23431 (17)0.0399 (8)
C1120.2831 (5)0.0475 (6)0.2541 (2)0.0615 (11)
C1130.3660 (5)0.0195 (6)0.2592 (3)0.0729 (11)
H1130.45300.01770.27420.087*
C1140.3162 (6)0.1406 (6)0.2415 (3)0.0773 (11)
H1140.37020.18620.24390.093*
C1150.1875 (5)0.1972 (5)0.2200 (3)0.0701 (11)
H1150.15300.27970.20680.084*
C1160.1123 (5)0.1243 (5)0.2192 (2)0.0601 (11)
H1160.02570.16070.20740.072*
N1210.1488 (3)0.4485 (3)0.28738 (18)0.0466 (9)
N1220.0756 (3)0.3555 (3)0.30654 (17)0.0356 (8)
C1230.0213 (4)0.4013 (3)0.3519 (2)0.0342 (9)
C1240.0617 (5)0.5260 (3)0.3634 (2)0.0520 (12)
H1240.03940.57940.39290.062*
C1250.1399 (5)0.5508 (4)0.3219 (3)0.0586 (14)
H1250.18160.62690.31770.070*
N1310.1018 (3)0.2033 (2)0.34729 (16)0.0283 (7)
C1320.0718 (3)0.3205 (3)0.3761 (2)0.0319 (8)
C1330.1314 (4)0.3614 (4)0.4241 (2)0.0435 (10)
H1330.10820.44240.44440.052*
C1340.2241 (4)0.2818 (4)0.4410 (2)0.0469 (11)
H1340.26460.30790.47280.056*
C1350.2566 (4)0.1626 (4)0.4103 (2)0.0400 (10)
H1350.32070.10680.41980.048*
C1360.1919 (3)0.1274 (3)0.3651 (2)0.0307 (8)
H1360.21220.04640.34590.037*
N1410.1166 (3)0.3611 (3)0.14883 (18)0.0446 (9)
N1420.0488 (3)0.2444 (3)0.13829 (17)0.0345 (7)
C1430.0178 (3)0.2071 (3)0.0635 (2)0.0333 (9)
C1440.0063 (4)0.2998 (4)0.0249 (2)0.0453 (11)
H1440.02820.29750.02730.054*
C1450.0917 (4)0.3948 (4)0.0806 (2)0.0526 (12)
H1450.12690.47030.07270.063*
N1510.0974 (3)0.0173 (3)0.09259 (16)0.0308 (7)
C1520.0963 (3)0.0808 (3)0.03713 (19)0.0289 (8)
C1530.1649 (3)0.0295 (4)0.0397 (2)0.0374 (9)
H1530.16420.07520.07700.045*
C1540.2338 (4)0.0890 (4)0.0601 (2)0.0418 (10)
H1540.27950.12460.11140.050*
C1550.2350 (4)0.1552 (4)0.0039 (2)0.0434 (10)
H1550.28030.23610.01650.052*
C1560.1670 (4)0.0980 (3)0.0714 (2)0.0380 (9)
H1560.16970.14180.10950.046*
C110.2929 (3)0.3395 (3)0.13755 (19)0.0304 (8)
C120.4145 (4)0.3483 (3)0.1162 (2)0.0364 (9)
H120.48180.28550.11700.044*
C130.4363 (4)0.4495 (4)0.0940 (2)0.0484 (11)
H130.51800.45440.07990.058*
C140.3376 (5)0.5432 (4)0.0925 (2)0.0509 (12)
H140.35280.61090.07720.061*
C150.2171 (4)0.5363 (3)0.1135 (2)0.0450 (10)
H150.15060.59920.11220.054*
C160.1941 (4)0.4355 (3)0.1368 (2)0.0360 (9)
H160.11180.43220.15200.043*
O210.1480 (2)0.2427 (2)0.18909 (13)0.0298 (6)
C220.2633 (3)0.2304 (3)0.15983 (18)0.0262 (8)
C230.3604 (3)0.1223 (3)0.1448 (2)0.0305 (8)
H230.44370.11970.12170.037*
C240.3370 (3)0.0185 (3)0.16304 (18)0.0229 (7)
O250.2295 (2)0.01301 (19)0.19963 (13)0.0265 (5)
C310.4428 (3)0.0978 (3)0.13840 (19)0.0253 (8)
C320.5539 (3)0.1204 (3)0.0768 (2)0.0342 (9)
H320.56690.06040.05070.041*
C330.6450 (4)0.2314 (4)0.0543 (3)0.0488 (12)
H330.71890.24610.01300.059*
C340.6261 (4)0.3199 (4)0.0927 (3)0.0590 (14)
H340.68700.39490.07700.071*
C350.5179 (4)0.2987 (3)0.1545 (3)0.0492 (11)
H350.50670.35870.18090.059*
C360.4256 (3)0.1881 (3)0.1772 (2)0.0340 (9)
H360.35210.17420.21860.041*
C410.0853 (3)0.2001 (3)0.3697 (2)0.0322 (8)
C420.0834 (4)0.2241 (4)0.4411 (2)0.0440 (10)
H420.02660.16980.48540.053*
C430.1654 (4)0.3283 (4)0.4473 (2)0.0486 (11)
H430.16490.34220.49560.058*
C440.2473 (4)0.4110 (4)0.3828 (2)0.0426 (10)
H440.30270.48040.38720.051*
C450.2469 (4)0.3905 (3)0.3110 (2)0.0415 (10)
H450.29960.44770.26710.050*
C460.1681 (3)0.2850 (3)0.3047 (2)0.0336 (9)
H460.17050.27060.25620.040*
O510.0531 (2)0.0478 (2)0.30078 (13)0.0276 (5)
C520.0054 (3)0.0838 (3)0.36064 (18)0.0295 (7)
C530.1054 (5)0.0086 (6)0.4198 (4)0.0266 (14)0.514 (3)
H530.13330.04020.46260.032*0.514 (3)
C540.1788 (5)0.1078 (6)0.4223 (4)0.0256 (16)0.514 (3)
O550.151 (3)0.1707 (15)0.3743 (9)0.023 (3)0.514 (3)
C610.3019 (3)0.1745 (4)0.4867 (2)0.0320 (10)0.514 (3)
C620.3263 (4)0.1466 (4)0.5592 (2)0.0334 (12)0.514 (3)
H620.26630.08160.56830.040*0.514 (3)
C630.4374 (4)0.2128 (4)0.61836 (19)0.0399 (13)0.514 (3)
H630.45420.19350.66840.048*0.514 (3)
C640.5242 (3)0.3069 (4)0.6052 (2)0.0432 (12)0.514 (3)
H640.60090.35260.64610.052*0.514 (3)
C650.4998 (4)0.3348 (4)0.5328 (3)0.0418 (11)0.514 (3)
H650.55970.39990.52360.050*0.514 (3)
C660.3887 (4)0.2687 (4)0.4736 (2)0.0370 (11)0.514 (3)
H660.37190.28790.42350.044*0.514 (3)
C53'0.1205 (5)0.0435 (7)0.4088 (5)0.0275 (15)0.486 (3)
H53'0.15340.09100.43990.033*0.486 (3)
C54'0.1961 (5)0.0697 (7)0.4093 (5)0.0277 (18)0.486 (3)
O55'0.155 (3)0.1394 (16)0.3710 (10)0.023 (3)0.486 (3)
C61'0.3337 (3)0.1051 (4)0.4571 (3)0.0313 (11)0.486 (3)
C62'0.3943 (4)0.0206 (3)0.4731 (3)0.0305 (12)0.486 (3)
H62'0.34880.06240.45220.037*0.486 (3)
C63'0.5209 (4)0.0563 (4)0.5193 (3)0.0350 (13)0.486 (3)
H63'0.56270.00210.53030.042*0.486 (3)
C64'0.5868 (3)0.1765 (4)0.5495 (3)0.0408 (13)0.486 (3)
H64'0.67420.20120.58140.049*0.486 (3)
C65'0.5262 (4)0.2611 (3)0.5335 (3)0.0422 (11)0.486 (3)
H65'0.57170.34410.55430.051*0.486 (3)
C66'0.3997 (4)0.2253 (4)0.4873 (3)0.0381 (11)0.486 (3)
H66'0.35780.28370.47620.046*0.486 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.01723 (10)0.02729 (11)0.02189 (11)0.00235 (7)0.00419 (7)0.00511 (7)
B10.043 (3)0.051 (3)0.039 (3)0.026 (2)0.004 (2)0.014 (2)
N1010.0239 (16)0.077 (2)0.0308 (16)0.0162 (15)0.0068 (13)0.0091 (16)
N1020.0204 (15)0.072 (2)0.0273 (15)0.0019 (14)0.0058 (12)0.0114 (15)
C1030.0197 (17)0.128 (4)0.0240 (18)0.017 (2)0.0079 (15)0.020 (2)
C1040.0200 (16)0.143 (3)0.0313 (18)0.006 (2)0.0061 (14)0.016 (2)
C1050.025 (2)0.138 (4)0.035 (2)0.006 (2)0.0050 (17)0.019 (3)
N1110.041 (2)0.066 (2)0.0292 (18)0.0349 (18)0.0164 (15)0.0205 (17)
C1120.056 (2)0.134 (3)0.032 (2)0.066 (2)0.0275 (18)0.040 (2)
C1130.070 (2)0.139 (3)0.047 (2)0.072 (2)0.0330 (18)0.040 (2)
C1140.089 (2)0.133 (3)0.056 (2)0.084 (2)0.0384 (19)0.043 (2)
C1150.096 (2)0.111 (3)0.053 (2)0.077 (2)0.046 (2)0.045 (2)
C1160.090 (3)0.098 (3)0.042 (2)0.071 (2)0.045 (2)0.045 (2)
N1210.049 (2)0.035 (2)0.0305 (18)0.0170 (16)0.0043 (16)0.0083 (15)
N1220.0348 (18)0.0271 (17)0.0315 (17)0.0067 (14)0.0056 (14)0.0089 (14)
C1230.041 (2)0.027 (2)0.0257 (19)0.0062 (17)0.0022 (17)0.0052 (16)
C1240.078 (3)0.023 (2)0.039 (2)0.002 (2)0.009 (2)0.0057 (18)
C1250.078 (3)0.023 (2)0.041 (3)0.012 (2)0.003 (2)0.0046 (19)
N1310.0326 (17)0.0252 (16)0.0268 (16)0.0096 (13)0.0087 (13)0.0070 (13)
C1320.036 (2)0.030 (2)0.0261 (19)0.0127 (17)0.0008 (16)0.0090 (16)
C1330.051 (3)0.040 (2)0.036 (2)0.024 (2)0.005 (2)0.0028 (18)
C1340.046 (3)0.065 (3)0.037 (2)0.026 (2)0.019 (2)0.006 (2)
C1350.035 (2)0.056 (3)0.032 (2)0.0142 (19)0.0125 (17)0.0127 (19)
C1360.034 (2)0.032 (2)0.030 (2)0.0116 (16)0.0138 (16)0.0114 (16)
N1410.0343 (18)0.050 (2)0.0327 (18)0.0135 (16)0.0097 (15)0.0134 (16)
N1420.0218 (16)0.0427 (19)0.0282 (17)0.0057 (14)0.0062 (13)0.0098 (14)
C1430.0192 (18)0.051 (2)0.027 (2)0.0054 (17)0.0081 (15)0.0092 (17)
C1440.036 (2)0.062 (3)0.027 (2)0.002 (2)0.0090 (18)0.018 (2)
C1450.041 (2)0.063 (3)0.041 (3)0.009 (2)0.013 (2)0.028 (2)
N1510.0270 (16)0.0388 (18)0.0240 (16)0.0117 (14)0.0043 (13)0.0053 (14)
C1520.0210 (18)0.043 (2)0.0235 (18)0.0097 (16)0.0081 (15)0.0075 (16)
C1530.033 (2)0.054 (3)0.025 (2)0.0111 (19)0.0105 (17)0.0129 (18)
C1540.044 (2)0.052 (3)0.0207 (19)0.011 (2)0.0041 (17)0.0005 (18)
C1550.049 (3)0.037 (2)0.035 (2)0.0108 (19)0.0059 (19)0.0013 (18)
C1560.046 (2)0.039 (2)0.029 (2)0.0180 (19)0.0085 (18)0.0074 (17)
C110.041 (2)0.0281 (19)0.0248 (19)0.0121 (17)0.0126 (16)0.0083 (15)
C120.041 (2)0.033 (2)0.040 (2)0.0171 (18)0.0146 (18)0.0113 (17)
C130.058 (3)0.047 (3)0.055 (3)0.032 (2)0.022 (2)0.021 (2)
C140.085 (4)0.039 (3)0.047 (3)0.037 (2)0.028 (2)0.020 (2)
C150.064 (3)0.030 (2)0.046 (3)0.012 (2)0.027 (2)0.0137 (19)
C160.043 (2)0.031 (2)0.036 (2)0.0111 (18)0.0165 (18)0.0091 (17)
O210.0233 (13)0.0276 (13)0.0351 (14)0.0036 (10)0.0067 (11)0.0117 (11)
C220.031 (2)0.0297 (19)0.0204 (17)0.0109 (16)0.0110 (15)0.0077 (15)
C230.0183 (17)0.034 (2)0.034 (2)0.0069 (15)0.0025 (15)0.0084 (16)
C240.0191 (17)0.0275 (18)0.0207 (17)0.0052 (14)0.0076 (14)0.0031 (14)
O250.0205 (12)0.0272 (13)0.0288 (13)0.0062 (10)0.0038 (10)0.0090 (10)
C310.0218 (18)0.0254 (18)0.0282 (19)0.0044 (14)0.0124 (15)0.0011 (15)
C320.0221 (19)0.040 (2)0.033 (2)0.0021 (16)0.0074 (16)0.0019 (17)
C330.024 (2)0.050 (3)0.052 (3)0.0031 (19)0.0078 (19)0.018 (2)
C340.034 (2)0.033 (2)0.098 (4)0.0083 (19)0.032 (3)0.014 (3)
C350.047 (3)0.025 (2)0.086 (3)0.0094 (19)0.038 (3)0.014 (2)
C360.031 (2)0.029 (2)0.046 (2)0.0090 (16)0.0197 (18)0.0068 (17)
C410.0243 (19)0.045 (2)0.032 (2)0.0155 (17)0.0080 (16)0.0195 (18)
C420.028 (2)0.067 (3)0.029 (2)0.004 (2)0.0030 (17)0.020 (2)
C430.035 (2)0.073 (3)0.037 (2)0.008 (2)0.0113 (19)0.033 (2)
C440.035 (2)0.044 (2)0.051 (3)0.0112 (19)0.013 (2)0.025 (2)
C450.046 (2)0.032 (2)0.043 (2)0.0098 (19)0.0112 (19)0.0087 (18)
C460.040 (2)0.036 (2)0.031 (2)0.0182 (18)0.0136 (17)0.0132 (17)
O510.0270 (13)0.0293 (13)0.0238 (13)0.0099 (10)0.0034 (10)0.0064 (10)
C520.0228 (14)0.045 (2)0.0262 (16)0.0154 (14)0.0092 (12)0.0142 (15)
C530.021 (2)0.043 (3)0.024 (2)0.018 (2)0.0078 (19)0.016 (2)
C540.020 (3)0.044 (3)0.021 (3)0.015 (2)0.011 (2)0.011 (3)
O550.029 (4)0.012 (8)0.022 (4)0.001 (6)0.007 (3)0.003 (4)
C610.0239 (18)0.041 (2)0.0281 (18)0.0114 (16)0.0042 (16)0.0041 (17)
C620.027 (2)0.041 (2)0.028 (2)0.0138 (19)0.0008 (19)0.0035 (19)
C630.032 (2)0.046 (3)0.032 (2)0.014 (2)0.0028 (19)0.001 (2)
C640.030 (2)0.050 (2)0.037 (2)0.0093 (18)0.0006 (18)0.0030 (19)
C650.0284 (19)0.048 (2)0.0375 (18)0.0061 (17)0.0041 (17)0.0007 (18)
C660.0264 (18)0.045 (2)0.0319 (18)0.0068 (17)0.0050 (16)0.0024 (18)
C53'0.020 (2)0.044 (3)0.026 (3)0.017 (2)0.009 (2)0.016 (2)
C54'0.019 (3)0.045 (4)0.022 (3)0.013 (2)0.007 (2)0.011 (3)
O55'0.025 (4)0.011 (8)0.026 (4)0.002 (6)0.006 (3)0.003 (5)
C61'0.0231 (19)0.042 (2)0.027 (2)0.0097 (17)0.0067 (17)0.0061 (19)
C62'0.022 (2)0.043 (2)0.027 (2)0.0094 (19)0.0099 (19)0.009 (2)
C63'0.023 (2)0.050 (2)0.031 (2)0.010 (2)0.010 (2)0.007 (2)
C64'0.026 (2)0.052 (2)0.035 (2)0.0081 (19)0.004 (2)0.001 (2)
C65'0.0281 (17)0.049 (2)0.0374 (18)0.0073 (16)0.0025 (16)0.0008 (18)
C66'0.0269 (17)0.045 (2)0.0340 (18)0.0086 (17)0.0033 (16)0.0012 (17)
Geometric parameters (Å, º) top
Pr1—O552.448 (17)C12—C131.382 (5)
Pr1—O252.454 (2)C12—H120.9300
Pr1—O512.464 (2)C13—C141.377 (6)
Pr1—O55'2.492 (17)C13—H130.9300
Pr1—O212.496 (2)C14—C151.370 (6)
Pr1—N1222.595 (3)C14—H140.9300
Pr1—N1422.656 (3)C15—C161.388 (5)
Pr1—N1312.656 (3)C15—H150.9300
Pr1—N1022.704 (3)C16—H160.9300
Pr1—N1512.754 (3)O21—C221.254 (4)
Pr1—N1112.804 (3)C22—C231.401 (5)
B1—N1211.526 (7)C23—C241.395 (5)
B1—N1011.545 (7)C23—H230.9300
B1—N1411.557 (5)C24—O251.262 (4)
B1—H11.0653C24—C311.501 (4)
N101—C1051.353 (6)C31—C361.389 (5)
N101—N1021.367 (5)C31—C321.393 (5)
N102—C1031.324 (6)C32—C331.382 (5)
C103—C1041.418 (6)C32—H320.9300
C103—C1121.460 (7)C33—C341.371 (7)
C104—C1051.344 (8)C33—H330.9300
C104—H1040.9300C34—C351.375 (6)
C105—H1050.9300C34—H340.9300
N111—C1161.337 (6)C35—C361.384 (5)
N111—C1121.360 (6)C35—H350.9300
C112—C1131.399 (6)C36—H360.9300
C113—C1141.364 (8)C41—C421.384 (5)
C113—H1130.9300C41—C461.389 (5)
C114—C1151.379 (8)C41—C521.504 (5)
C114—H1140.9300C42—C431.387 (6)
C115—C1161.388 (6)C42—H420.9300
C115—H1150.9300C43—C441.370 (6)
C116—H1160.9300C43—H430.9300
N121—N1221.354 (4)C44—C451.383 (5)
N121—C1251.356 (6)C44—H440.9300
N122—C1231.340 (5)C45—C461.382 (5)
C123—C1241.403 (5)C45—H450.9300
C123—C1321.455 (5)C46—H460.9300
C124—C1251.348 (7)O51—C521.269 (4)
C124—H1240.9300C52—C53'1.392 (5)
C125—H1250.9300C52—C531.416 (5)
N131—C1361.336 (4)C53—C541.407 (5)
N131—C1321.348 (4)C53—H530.9300
C132—C1331.398 (5)C54—O551.256 (5)
C133—C1341.369 (6)C54—C611.515 (5)
C133—H1330.9300C61—C621.3900
C134—C1351.375 (6)C61—C661.3900
C134—H1340.9300C62—C631.3900
C135—C1361.378 (5)C62—H620.9601
C135—H1350.9300C63—C641.3900
C136—H1360.9300C63—H630.9600
N141—C1451.348 (5)C64—C651.3900
N141—N1421.361 (4)C64—H640.9601
N142—C1431.334 (4)C65—C661.3900
C143—C1441.394 (5)C65—H650.9600
C143—C1521.474 (5)C66—H660.9600
C144—C1451.369 (6)C53'—C54'1.396 (5)
C144—H1440.9300C53'—H53'0.9300
C145—H1450.9300C54'—O55'1.256 (5)
N151—C1561.339 (5)C54'—C61'1.503 (4)
N151—C1521.347 (4)C61'—C62'1.3900
C152—C1531.387 (5)C61'—C66'1.3900
C153—C1541.368 (5)C62'—C63'1.3900
C153—H1530.9300C62'—H62'0.9601
C154—C1551.379 (6)C63'—C64'1.3900
C154—H1540.9300C63'—H63'0.9600
C155—C1561.378 (5)C64'—C65'1.3900
C155—H1550.9300C64'—H64'0.9600
C156—H1560.9300C65'—C66'1.3900
C11—C121.391 (5)C65'—H65'0.9600
C11—C161.391 (5)C66'—H66'0.9601
C11—C221.504 (5)
O55—Pr1—O25128.4 (6)C156—N151—C152117.8 (3)
O55—Pr1—O5171.7 (5)C156—N151—Pr1120.2 (2)
O25—Pr1—O5165.89 (7)C152—N151—Pr1120.6 (2)
O55—Pr1—O55'9.0 (6)N151—C152—C153121.6 (3)
O25—Pr1—O55'126.1 (6)N151—C152—C143115.7 (3)
O51—Pr1—O55'65.2 (5)C153—C152—C143122.7 (3)
O55—Pr1—O21129.8 (4)C154—C153—C152119.5 (4)
O25—Pr1—O2165.98 (7)C154—C153—H153120.3
O51—Pr1—O21128.16 (7)C152—C153—H153120.3
O55'—Pr1—O21138.5 (4)C153—C154—C155119.5 (3)
O55—Pr1—N12269.4 (3)C153—C154—H154120.2
O25—Pr1—N122121.82 (9)C155—C154—H154120.2
O51—Pr1—N122131.58 (8)C156—C155—C154118.0 (4)
O55'—Pr1—N12278.1 (4)C156—C155—H155121.0
O21—Pr1—N12265.02 (9)C154—C155—H155121.0
O55—Pr1—N142121.4 (6)N151—C156—C155123.6 (4)
O25—Pr1—N142109.44 (8)N151—C156—H156118.2
O51—Pr1—N142154.01 (9)C155—C156—H156118.2
O55'—Pr1—N142124.5 (7)C12—C11—C16118.3 (3)
O21—Pr1—N14263.44 (9)C12—C11—C22123.3 (3)
N122—Pr1—N14273.55 (9)C16—C11—C22118.4 (3)
O55—Pr1—N13171.2 (6)C13—C12—C11120.6 (4)
O25—Pr1—N13173.08 (8)C13—C12—H12119.7
O51—Pr1—N13179.07 (8)C11—C12—H12119.7
O55'—Pr1—N13176.8 (6)C14—C13—C12120.4 (4)
O21—Pr1—N13169.66 (8)C14—C13—H13119.8
N122—Pr1—N13161.99 (9)C12—C13—H13119.8
N142—Pr1—N131125.31 (9)C15—C14—C13119.8 (4)
O55—Pr1—N10265.5 (6)C15—C14—H14120.1
O25—Pr1—N102163.61 (8)C13—C14—H14120.1
O51—Pr1—N102117.95 (9)C14—C15—C16120.2 (4)
O55'—Pr1—N10266.0 (7)C14—C15—H15119.9
O21—Pr1—N102113.69 (9)C16—C15—H15119.9
N122—Pr1—N10268.87 (11)C15—C16—C11120.6 (4)
N142—Pr1—N10259.51 (9)C15—C16—H16119.7
N131—Pr1—N102122.86 (9)C11—C16—H16119.7
O55—Pr1—N151150.3 (5)C22—O21—Pr1141.2 (2)
O25—Pr1—N15165.76 (8)O21—C22—C23123.6 (3)
O51—Pr1—N15198.08 (8)O21—C22—C11115.6 (3)
O55'—Pr1—N151142.4 (4)C23—C22—C11120.8 (3)
O21—Pr1—N15178.77 (8)C24—C23—C22122.7 (3)
N122—Pr1—N151129.64 (9)C24—C23—H23118.7
N142—Pr1—N15158.98 (9)C22—C23—H23118.7
N131—Pr1—N151135.59 (9)O25—C24—C23124.5 (3)
N102—Pr1—N15197.90 (9)O25—C24—C31115.0 (3)
O55—Pr1—N11174.0 (5)C23—C24—C31120.5 (3)
O25—Pr1—N111113.86 (9)C24—O25—Pr1141.4 (2)
O51—Pr1—N11168.63 (9)C36—C31—C32119.0 (3)
O55'—Pr1—N11166.3 (5)C36—C31—C24117.9 (3)
O21—Pr1—N111151.93 (8)C32—C31—C24123.1 (3)
N122—Pr1—N111124.18 (10)C33—C32—C31120.3 (4)
N142—Pr1—N11192.39 (10)C33—C32—H32119.8
N131—Pr1—N111138.32 (9)C31—C32—H32119.8
N102—Pr1—N11158.02 (11)C34—C33—C32119.9 (4)
N151—Pr1—N11176.31 (9)C34—C33—H33120.0
N121—B1—N101110.0 (4)C32—C33—H33120.0
N121—B1—N141111.1 (4)C33—C34—C35120.5 (4)
N101—B1—N141106.5 (4)C33—C34—H34119.7
N121—B1—H1105.2C35—C34—H34119.7
N101—B1—H1115.6C34—C35—C36120.1 (4)
N141—B1—H1108.5C34—C35—H35120.0
C105—N101—N102108.5 (4)C36—C35—H35120.0
C105—N101—B1131.1 (4)C35—C36—C31120.1 (4)
N102—N101—B1119.0 (3)C35—C36—H36120.0
C103—N102—N101107.5 (3)C31—C36—H36120.0
C103—N102—Pr1125.1 (3)C42—C41—C46118.2 (4)
N101—N102—Pr1127.4 (3)C42—C41—C52122.1 (3)
N102—C103—C104109.2 (5)C46—C41—C52119.6 (3)
N102—C103—C112117.9 (4)C41—C42—C43120.6 (4)
C104—C103—C112132.4 (5)C41—C42—H42119.7
C105—C104—C103105.2 (5)C43—C42—H42119.7
C105—C104—H104127.4C44—C43—C42120.6 (4)
C103—C104—H104127.4C44—C43—H43119.7
C104—C105—N101109.5 (5)C42—C43—H43119.7
C104—C105—H105125.3C43—C44—C45119.5 (4)
N101—C105—H105125.3C43—C44—H44120.3
C116—N111—C112117.5 (4)C45—C44—H44120.3
C116—N111—Pr1121.0 (3)C46—C45—C44119.9 (4)
C112—N111—Pr1120.9 (3)C46—C45—H45120.0
N111—C112—C113121.6 (6)C44—C45—H45120.0
N111—C112—C103115.8 (4)C45—C46—C41121.1 (4)
C113—C112—C103122.4 (5)C45—C46—H46119.5
C114—C113—C112118.4 (6)C41—C46—H46119.5
C114—C113—H113120.8C52—O51—Pr1138.1 (2)
C112—C113—H113120.8O51—C52—C53'127.2 (5)
C113—C114—C115121.5 (5)O51—C52—C53120.7 (4)
C113—C114—H114119.2O51—C52—C41115.5 (3)
C115—C114—H114119.2C53'—C52—C41115.6 (4)
C114—C115—C116116.5 (6)C53—C52—C41123.0 (4)
C114—C115—H115121.8C54—C53—C52128.5 (6)
C116—C115—H115121.8C54—C53—H53115.8
N111—C116—C115124.4 (5)C52—C53—H53115.8
N111—C116—H116117.8O55—C54—C53125.8 (12)
C115—C116—H116117.8O55—C54—C61111.4 (12)
N122—N121—C125108.6 (4)C53—C54—C61122.8 (5)
N122—N121—B1120.9 (3)C54—O55—Pr1134.2 (14)
C125—N121—B1130.2 (4)C62—C61—C66120.0
C123—N122—N121106.9 (3)C62—C61—C54121.1 (4)
C123—N122—Pr1121.5 (2)C66—C61—C54118.8 (4)
N121—N122—Pr1129.8 (2)C54—C61—H66'112.5
N122—C123—C124110.1 (4)C61—C62—C63120.0
N122—C123—C132118.9 (3)C61—C62—H62120.0
C124—C123—C132130.9 (4)C63—C62—H62120.0
C125—C124—C123104.5 (4)C62—C63—C64120.0
C125—C124—H124127.8C62—C63—H63120.0
C123—C124—H124127.8C64—C63—H63120.0
C124—C125—N121110.0 (4)C65—C64—C63120.0
C124—C125—H125125.0C65—C64—H64120.0
N121—C125—H125125.0C63—C64—H64120.0
C136—N131—C132117.9 (3)C64—C65—C66120.0
C136—N131—Pr1121.3 (2)C64—C65—H65120.0
C132—N131—Pr1120.4 (2)C66—C65—H65120.0
N131—C132—C133121.2 (4)C65—C66—C61120.0
N131—C132—C123116.5 (3)C65—C66—H66120.0
C133—C132—C123122.2 (3)C61—C66—H66120.0
C134—C133—C132119.7 (4)C65—C66—H66'107.0
C134—C133—H133120.2C52—C53'—C54'118.5 (6)
C132—C133—H133120.2C52—C53'—H53'120.7
C133—C134—C135119.0 (4)C54'—C53'—H53'120.7
C133—C134—H134120.5O55'—C54'—C53'123.3 (14)
C135—C134—H134120.5O55'—C54'—C61'120.2 (14)
C134—C135—C136118.6 (4)C53'—C54'—C61'116.5 (5)
C134—C135—H135120.7C54'—O55'—Pr1139.0 (14)
C136—C135—H135120.7C62'—C61'—C66'120.0
N131—C136—C135123.6 (4)C62'—C61'—C54'121.5 (4)
N131—C136—H136118.2C66'—C61'—C54'118.4 (4)
C135—C136—H136118.2C61'—C62'—C63'120.0
C145—N141—N142109.2 (3)C61'—C62'—H62'120.0
C145—N141—B1131.0 (3)C63'—C62'—H62'120.0
N142—N141—B1119.5 (3)C62'—C63'—C64'120.0
C143—N142—N141106.8 (3)C62'—C63'—H63'120.0
C143—N142—Pr1123.5 (2)C64'—C63'—H63'120.0
N141—N142—Pr1127.0 (2)C65'—C64'—C63'120.0
N142—C143—C144110.2 (3)C65'—C64'—H64'120.0
N142—C143—C152117.0 (3)C63'—C64'—H64'120.0
C144—C143—C152132.7 (3)C64'—C65'—C66'120.0
C145—C144—C143104.9 (3)C64'—C65'—H65'120.0
C145—C144—H144127.5C66'—C65'—H65'120.0
C143—C144—H144127.5C65'—C66'—C61'120.0
N141—C145—C144108.8 (4)C65'—C66'—H66'120.0
N141—C145—H145125.6C61'—C66'—H66'120.0
C144—C145—H145125.6
N121—B1—N101—C105127.5 (4)C152—C143—C144—C145177.3 (4)
N141—B1—N101—C105112.0 (5)N142—N141—C145—C1440.4 (5)
N121—B1—N101—N10267.6 (4)B1—N141—C145—C144173.4 (5)
N141—B1—N101—N10252.9 (5)C143—C144—C145—N1410.4 (5)
C105—N101—N102—C1030.6 (4)O55—Pr1—N151—C15677.7 (11)
B1—N101—N102—C103167.4 (4)O25—Pr1—N151—C15648.1 (3)
C105—N101—N102—Pr1176.6 (3)O51—Pr1—N151—C15610.8 (3)
B1—N101—N102—Pr115.4 (5)O55'—Pr1—N151—C15670.1 (11)
O55—Pr1—N102—C10373.7 (4)O21—Pr1—N151—C156116.7 (3)
O25—Pr1—N102—C10376.5 (5)N122—Pr1—N151—C156160.3 (2)
O51—Pr1—N102—C10323.0 (3)N142—Pr1—N151—C156177.7 (3)
O55'—Pr1—N102—C10363.9 (5)N131—Pr1—N151—C15671.8 (3)
O21—Pr1—N102—C103161.7 (3)N102—Pr1—N151—C156130.6 (3)
N122—Pr1—N102—C103149.9 (3)N111—Pr1—N151—C15676.4 (3)
N142—Pr1—N102—C103127.3 (3)O55—Pr1—N151—C152115.8 (11)
N131—Pr1—N102—C103118.0 (3)O25—Pr1—N151—C152118.4 (3)
N151—Pr1—N102—C10380.6 (3)O51—Pr1—N151—C152177.3 (2)
N111—Pr1—N102—C10312.2 (3)O55'—Pr1—N151—C152123.3 (10)
O55—Pr1—N102—N101103.1 (4)O21—Pr1—N151—C15249.9 (2)
O25—Pr1—N102—N101106.7 (4)N122—Pr1—N151—C1526.2 (3)
O51—Pr1—N102—N101153.8 (3)N142—Pr1—N151—C15215.7 (2)
O55'—Pr1—N102—N101112.9 (5)N131—Pr1—N151—C15294.7 (3)
O21—Pr1—N102—N10121.5 (3)N102—Pr1—N151—C15262.8 (3)
N122—Pr1—N102—N10126.9 (3)N111—Pr1—N151—C152117.1 (3)
N142—Pr1—N102—N10155.9 (3)C156—N151—C152—C1530.1 (5)
N131—Pr1—N102—N10158.8 (3)Pr1—N151—C152—C153166.7 (3)
N151—Pr1—N102—N101102.7 (3)C156—N151—C152—C143179.8 (3)
N111—Pr1—N102—N101171.1 (3)Pr1—N151—C152—C14313.4 (4)
N101—N102—C103—C1041.2 (4)N142—C143—C152—N1513.3 (5)
Pr1—N102—C103—C104176.1 (2)C144—C143—C152—N151179.3 (4)
N101—N102—C103—C112172.0 (3)N142—C143—C152—C153176.6 (3)
Pr1—N102—C103—C11210.7 (5)C144—C143—C152—C1530.8 (6)
N102—C103—C104—C1051.4 (5)N151—C152—C153—C1541.2 (6)
C112—C103—C104—C105170.6 (4)C143—C152—C153—C154178.7 (3)
C103—C104—C105—N1011.0 (5)C152—C153—C154—C1550.7 (6)
N102—N101—C105—C1040.2 (5)C153—C154—C155—C1560.8 (6)
B1—N101—C105—C104166.3 (4)C152—N151—C156—C1551.4 (6)
O55—Pr1—N111—C116113.7 (6)Pr1—N151—C156—C155168.4 (3)
O25—Pr1—N111—C11611.8 (3)C154—C155—C156—N1511.9 (6)
O51—Pr1—N111—C11637.5 (3)C16—C11—C12—C130.8 (6)
O55'—Pr1—N111—C116108.8 (7)C22—C11—C12—C13177.9 (3)
O21—Pr1—N111—C11695.1 (3)C11—C12—C13—C140.1 (6)
N122—Pr1—N111—C116164.1 (3)C12—C13—C14—C150.3 (7)
N142—Pr1—N111—C116124.3 (3)C13—C14—C15—C160.4 (6)
N131—Pr1—N111—C11679.3 (3)C14—C15—C16—C111.3 (6)
N102—Pr1—N111—C116175.6 (3)C12—C11—C16—C151.5 (5)
N151—Pr1—N111—C11667.0 (3)C22—C11—C16—C15177.3 (3)
O55—Pr1—N111—C11257.5 (6)O55—Pr1—O21—C22119.7 (9)
O25—Pr1—N111—C112177.1 (3)O25—Pr1—O21—C221.2 (3)
O51—Pr1—N111—C112133.7 (3)O51—Pr1—O21—C2222.0 (4)
O55'—Pr1—N111—C11262.3 (7)O55'—Pr1—O21—C22116.8 (10)
O21—Pr1—N111—C11293.8 (3)N122—Pr1—O21—C22146.4 (4)
N122—Pr1—N111—C1127.1 (3)N142—Pr1—O21—C22130.3 (4)
N142—Pr1—N111—C11264.6 (3)N131—Pr1—O21—C2278.7 (3)
N131—Pr1—N111—C11291.9 (3)N102—Pr1—O21—C22163.3 (3)
N102—Pr1—N111—C11213.2 (3)N151—Pr1—O21—C2269.5 (3)
N151—Pr1—N111—C112121.8 (3)N111—Pr1—O21—C2297.2 (4)
C116—N111—C112—C1130.4 (6)Pr1—O21—C22—C234.7 (6)
Pr1—N111—C112—C113171.1 (3)Pr1—O21—C22—C11178.2 (2)
C116—N111—C112—C103174.4 (3)C12—C11—C22—O21169.1 (3)
Pr1—N111—C112—C10314.1 (4)C16—C11—C22—O2112.1 (5)
N102—C103—C112—N1112.9 (5)C12—C11—C22—C2313.6 (5)
C104—C103—C112—N111168.5 (4)C16—C11—C22—C23165.1 (3)
N102—C103—C112—C113177.6 (4)O21—C22—C23—C241.7 (5)
C104—C103—C112—C1136.2 (7)C11—C22—C23—C24178.6 (3)
N111—C112—C113—C1141.8 (7)C22—C23—C24—O255.7 (5)
C103—C112—C113—C114172.6 (4)C22—C23—C24—C31173.6 (3)
C112—C113—C114—C1150.8 (7)C23—C24—O25—Pr112.1 (6)
C113—C114—C115—C1161.5 (7)C31—C24—O25—Pr1167.2 (2)
C112—N111—C116—C1152.2 (6)O55—Pr1—O25—C24130.4 (5)
Pr1—N111—C116—C115173.6 (3)O51—Pr1—O25—C24167.8 (4)
C114—C115—C116—N1113.1 (6)O55'—Pr1—O25—C24141.3 (6)
N101—B1—N121—N12255.3 (5)O21—Pr1—O25—C247.7 (3)
N141—B1—N121—N12262.4 (5)N122—Pr1—O25—C2442.5 (4)
N101—B1—N121—C125131.5 (4)N142—Pr1—O25—C2439.7 (3)
N141—B1—N121—C125110.8 (5)N131—Pr1—O25—C2482.5 (3)
C125—N121—N122—C1230.6 (4)N102—Pr1—O25—C2484.8 (5)
B1—N121—N122—C123173.9 (4)N151—Pr1—O25—C2480.4 (3)
C125—N121—N122—Pr1165.0 (3)N111—Pr1—O25—C24141.5 (3)
B1—N121—N122—Pr19.6 (5)O25—C24—C31—C3620.8 (4)
O55—Pr1—N122—C12386.4 (7)C23—C24—C31—C36159.8 (3)
O25—Pr1—N122—C12336.8 (3)O25—C24—C31—C32156.4 (3)
O51—Pr1—N122—C12348.0 (3)C23—C24—C31—C3223.0 (5)
O55'—Pr1—N122—C12388.5 (7)C36—C31—C32—C330.7 (5)
O21—Pr1—N122—C12371.9 (3)C24—C31—C32—C33176.5 (3)
N142—Pr1—N122—C123139.8 (3)C31—C32—C33—C340.1 (6)
N131—Pr1—N122—C1237.3 (2)C32—C33—C34—C350.9 (6)
N102—Pr1—N122—C123157.2 (3)C33—C34—C35—C361.4 (7)
N151—Pr1—N122—C123120.2 (3)C34—C35—C36—C310.8 (6)
N111—Pr1—N122—C123138.7 (3)C32—C31—C36—C350.3 (5)
O55—Pr1—N122—N121111.2 (7)C24—C31—C36—C35177.1 (3)
O25—Pr1—N122—N121125.6 (3)C46—C41—C42—C432.3 (6)
O51—Pr1—N122—N121149.7 (3)C52—C41—C42—C43174.9 (4)
O55'—Pr1—N122—N121109.1 (7)C41—C42—C43—C441.9 (7)
O21—Pr1—N122—N12190.4 (3)C42—C43—C44—C450.7 (6)
N142—Pr1—N122—N12122.6 (3)C43—C44—C45—C462.7 (6)
N131—Pr1—N122—N121169.7 (3)C44—C45—C46—C412.3 (6)
N102—Pr1—N122—N12140.5 (3)C42—C41—C46—C450.2 (6)
N151—Pr1—N122—N12142.1 (3)C52—C41—C46—C45177.1 (3)
N111—Pr1—N122—N12158.9 (3)O55—Pr1—O51—C525.8 (6)
N121—N122—C123—C1241.0 (4)O25—Pr1—O51—C52155.7 (3)
Pr1—N122—C123—C124166.8 (3)O55'—Pr1—O51—C520.9 (7)
N121—N122—C123—C132174.8 (3)O21—Pr1—O51—C52132.5 (3)
Pr1—N122—C123—C1328.9 (4)N122—Pr1—O51—C5243.6 (4)
N122—C123—C124—C1250.9 (5)N142—Pr1—O51—C52119.2 (3)
C132—C123—C124—C125174.1 (4)N131—Pr1—O51—C5279.5 (3)
C123—C124—C125—N1210.5 (5)N102—Pr1—O51—C5242.1 (3)
N122—N121—C125—C1240.1 (5)N151—Pr1—O51—C52145.5 (3)
B1—N121—C125—C124173.8 (4)N111—Pr1—O51—C5273.7 (3)
O55—Pr1—N131—C136105.9 (5)Pr1—O51—C52—C53'21.7 (7)
O25—Pr1—N131—C13636.2 (2)Pr1—O51—C52—C533.7 (6)
O51—Pr1—N131—C13631.7 (2)Pr1—O51—C52—C41173.8 (2)
O55'—Pr1—N131—C13698.5 (6)C42—C41—C52—O51147.7 (4)
O21—Pr1—N131—C136106.3 (3)C46—C41—C52—O5129.4 (5)
N122—Pr1—N131—C136178.0 (3)C42—C41—C52—C53'45.9 (6)
N142—Pr1—N131—C136138.4 (2)C46—C41—C52—C53'136.9 (5)
N102—Pr1—N131—C136148.0 (2)C42—C41—C52—C5322.1 (6)
N151—Pr1—N131—C13658.7 (3)C46—C41—C52—C53160.7 (5)
N111—Pr1—N131—C13670.9 (3)O51—C52—C53—C541.9 (10)
O55—Pr1—N131—C13281.6 (5)C53'—C52—C53—C54112 (2)
O25—Pr1—N131—C132136.3 (3)C41—C52—C53—C54171.3 (6)
O51—Pr1—N131—C132155.8 (3)C52—C53—C54—O557.4 (17)
O55'—Pr1—N131—C13288.9 (6)C52—C53—C54—C61174.7 (7)
O21—Pr1—N131—C13266.2 (2)C53—C54—O55—Pr114 (3)
N122—Pr1—N131—C1325.5 (2)C61—C54—O55—Pr1167.9 (16)
N142—Pr1—N131—C13234.1 (3)O25—Pr1—O55—C5446 (2)
N102—Pr1—N131—C13239.5 (3)O51—Pr1—O55—C5411 (2)
N151—Pr1—N131—C132113.8 (2)O55'—Pr1—O55—C5432 (6)
N111—Pr1—N131—C132116.6 (3)O21—Pr1—O55—C54135.5 (18)
C136—N131—C132—C1331.1 (5)N122—Pr1—O55—C54161 (2)
Pr1—N131—C132—C133173.8 (3)N142—Pr1—O55—C54144 (2)
C136—N131—C132—C123176.4 (3)N131—Pr1—O55—C5495 (2)
Pr1—N131—C132—C1233.7 (4)N102—Pr1—O55—C54123 (2)
N122—C123—C132—N1313.2 (5)N151—Pr1—O55—C5463 (3)
C124—C123—C132—N131171.4 (4)N111—Pr1—O55—C5462 (2)
N122—C123—C132—C133179.3 (3)O55—C54—C61—C62153.7 (12)
C124—C123—C132—C1336.0 (6)C53—C54—C61—C6224.5 (8)
N131—C132—C133—C1341.5 (6)O55—C54—C61—C6623.3 (13)
C123—C132—C133—C134175.8 (4)C53—C54—C61—C66158.5 (6)
C132—C133—C134—C1350.1 (6)C66—C61—C62—C630.0
C133—C134—C135—C1361.7 (6)C54—C61—C62—C63177.0 (5)
C132—N131—C136—C1350.8 (5)C61—C62—C63—C640.0
Pr1—N131—C136—C135171.9 (3)C62—C63—C64—C650.0
C134—C135—C136—N1312.2 (6)C63—C64—C65—C660.0
N121—B1—N141—C145117.1 (5)C64—C65—C66—C610.0
N101—B1—N141—C145123.1 (5)C62—C61—C66—C650.0
N121—B1—N141—N14270.4 (5)C54—C61—C66—C65177.0 (5)
N101—B1—N141—N14249.4 (5)O51—C52—C53'—C54'22.3 (10)
C145—N141—N142—C1430.2 (4)C53—C52—C53'—C54'58.0 (16)
B1—N141—N142—C143174.1 (4)C41—C52—C53'—C54'173.2 (6)
C145—N141—N142—Pr1161.8 (3)C52—C53'—C54'—O55'3.3 (16)
B1—N141—N142—Pr124.2 (5)C52—C53'—C54'—C61'175.0 (7)
O55—Pr1—N142—C143163.3 (5)C53'—C54'—O55'—Pr134 (3)
O25—Pr1—N142—C14325.7 (3)C61'—C54'—O55'—Pr1144 (2)
O51—Pr1—N142—C14348.9 (4)O55—Pr1—O55'—C54'163 (11)
O55'—Pr1—N142—C143153.2 (5)O25—Pr1—O55'—C54'55 (3)
O21—Pr1—N142—C14374.5 (3)O51—Pr1—O55'—C54'28 (2)
N122—Pr1—N142—C143144.4 (3)O21—Pr1—O55'—C54'148 (2)
N131—Pr1—N142—C143108.4 (3)N122—Pr1—O55'—C54'175 (3)
N102—Pr1—N142—C143140.9 (3)N142—Pr1—O55'—C54'124 (3)
N151—Pr1—N142—C14318.2 (3)N131—Pr1—O55'—C54'112 (3)
N111—Pr1—N142—C14390.6 (3)N102—Pr1—O55'—C54'113 (3)
O55—Pr1—N142—N14137.9 (6)N151—Pr1—O55'—C54'42 (3)
O25—Pr1—N142—N141133.1 (3)N111—Pr1—O55'—C54'49 (2)
O51—Pr1—N142—N141152.2 (3)O55'—C54'—C61'—C62'152.3 (12)
O55'—Pr1—N142—N14147.9 (6)C53'—C54'—C61'—C62'26.0 (9)
O21—Pr1—N142—N14184.3 (3)O55'—C54'—C61'—C66'29.4 (13)
N122—Pr1—N142—N14114.5 (3)C53'—C54'—C61'—C66'152.2 (6)
N131—Pr1—N142—N14150.4 (3)C66'—C61'—C62'—C63'0.0
N102—Pr1—N142—N14160.3 (3)C54'—C61'—C62'—C63'178.2 (6)
N151—Pr1—N142—N141177.0 (3)C61'—C62'—C63'—C64'0.0
N111—Pr1—N142—N141110.6 (3)C62'—C63'—C64'—C65'0.0
N141—N142—C143—C1440.1 (4)C63'—C64'—C65'—C66'0.0
Pr1—N142—C143—C144162.4 (3)C64'—C65'—C66'—C61'0.0
N141—N142—C143—C152177.9 (3)C62'—C61'—C66'—C65'0.0
Pr1—N142—C143—C15219.6 (4)C54'—C61'—C66'—C65'178.3 (6)
N142—C143—C144—C1450.3 (5)

Experimental details

Crystal data
Chemical formula[Pr(C24H19BN9)(C15H11O4)2]
Mr1031.68
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)11.6308 (15), 11.9248 (16), 18.569 (2)
α, β, γ (°)96.558 (2), 106.782 (2), 105.669 (2)
V3)2321.9 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.34 × 0.25 × 0.18
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.705, 0.826
No. of measured, independent and
observed [I > 2σ(I)] reflections
22669, 8143, 7003
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.074, 1.05
No. of reflections8143
No. of parameters680
No. of restraints230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.72

Computer programs: XSCANS (Siemens, 1996), XSCANS, SHELXTL (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Pr1—O552.448 (17)Pr1—N1422.656 (3)
Pr1—O252.454 (2)Pr1—N1312.656 (3)
Pr1—O512.464 (2)Pr1—N1022.704 (3)
Pr1—O55'2.492 (17)Pr1—N1512.754 (3)
Pr1—O212.496 (2)Pr1—N1112.804 (3)
Pr1—N1222.595 (3)
O55—Pr1—O25128.4 (6)O55—Pr1—N10265.5 (6)
O55—Pr1—O5171.7 (5)O25—Pr1—N102163.61 (8)
O25—Pr1—O5165.89 (7)O51—Pr1—N102117.95 (9)
O55—Pr1—O55'9.0 (6)O55'—Pr1—N10266.0 (7)
O25—Pr1—O55'126.1 (6)O21—Pr1—N102113.69 (9)
O51—Pr1—O55'65.2 (5)N122—Pr1—N10268.87 (11)
O55—Pr1—O21129.8 (4)N142—Pr1—N10259.51 (9)
O25—Pr1—O2165.98 (7)N131—Pr1—N102122.86 (9)
O51—Pr1—O21128.16 (7)O55—Pr1—N151150.3 (5)
O55'—Pr1—O21138.5 (4)O25—Pr1—N15165.76 (8)
O55—Pr1—N12269.4 (3)O51—Pr1—N15198.08 (8)
O25—Pr1—N122121.82 (9)O55'—Pr1—N151142.4 (4)
O51—Pr1—N122131.58 (8)O21—Pr1—N15178.77 (8)
O55'—Pr1—N12278.1 (4)N122—Pr1—N151129.64 (9)
O21—Pr1—N12265.02 (9)N142—Pr1—N15158.98 (9)
O55—Pr1—N142121.4 (6)N131—Pr1—N151135.59 (9)
O25—Pr1—N142109.44 (8)N102—Pr1—N15197.90 (9)
O51—Pr1—N142154.01 (9)O55—Pr1—N11174.0 (5)
O55'—Pr1—N142124.5 (7)O25—Pr1—N111113.86 (9)
O21—Pr1—N14263.44 (9)O51—Pr1—N11168.63 (9)
N122—Pr1—N14273.55 (9)O55'—Pr1—N11166.3 (5)
O55—Pr1—N13171.2 (6)O21—Pr1—N111151.93 (8)
O25—Pr1—N13173.08 (8)N122—Pr1—N111124.18 (10)
O51—Pr1—N13179.07 (8)N142—Pr1—N11192.39 (10)
O55'—Pr1—N13176.8 (6)N131—Pr1—N111138.32 (9)
O21—Pr1—N13169.66 (8)N102—Pr1—N11158.02 (11)
N122—Pr1—N13161.99 (9)N151—Pr1—N11176.31 (9)
N142—Pr1—N131125.31 (9)
 

Acknowledgements

The authors thank the EPSRC for financial support (to GMD).

References

First citationAmoroso, A. J., Cargill Thompson, A. M., Jeffery, J. C., Jones, P. L., McCleverty, J. A. & Ward, M. D. (1994). J. Chem. Soc. Chem. Commun. pp. 2751–2752.  CrossRef Web of Science Google Scholar
First citationArmaroli, N., Accorsi, G., Barigelletti, F., Couchman, S. M., Fleming, J. S., Harden, N. C., Jeffery, J. C., Mann, K. L. V., McCleverty, J. A., Rees, L. H., Starling, S. R. & Ward, M. D. (1999). Inorg. Chem. 38, 5769–5776.  Web of Science CSD CrossRef CAS Google Scholar
First citationBardwell, D. A., Jeffery, J. C., Jones, P. L., McCleverty, J. A., Psillakis, E., Reeves, Z. & Ward, M. D. (1997). J. Chem. Soc. Dalton Trans. pp. 2079–2086.  CSD CrossRef Web of Science Google Scholar
First citationBeeby, A., Burton-Pye, B. P., Faulkner, S., Motson, G. R., Jeffery, J. C., McCleverty, J. A. & Ward, M. D. (2002). J. Chem. Soc. Dalton Trans. pp. 1923–1928.  Web of Science CSD CrossRef Google Scholar
First citationBeeby, A., Clarkson, I. M., Dickins, R. S., Faulkner, S., Parker, D., Royle, L., de Sousa, A. S., Gareth Williams, J. A. & Woods, M. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 493–503.  CrossRef Google Scholar
First citationBruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavies, G. M., Aarons, R. J., Motson, G. R., Jeffery, J. C., Adams, H., Faulkner, S. & Ward, M. D. (2004). Dalton Trans. pp. 1136–1144.  Web of Science CSD CrossRef PubMed Google Scholar
First citationJones, P. L., Amoroso, A. J., Jeffery, J. C., McCleverty, J. A., Psillakis, E., Rees, L. H. & Ward, M. D. (1997). Inorg. Chem. 36, 10–18.  CSD CrossRef CAS Web of Science Google Scholar
First citationKepert, D. L. (1987). Comprehensive Coordination Chemistry, edited by G. Wilkinson, R. D. Gillard & J. A. McCleverty, 1st ed., Vol. 1, pp. 31–107. Oxford: Pergamon Press.  Google Scholar
First citationMarques, N., Sella, A. & Takats, J. (2002). Chem. Rev. 102, 2137–2159.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReeves, Z. R., Mann, K. L. V., Jeffery, J. C., McCleverty, J. A., Ward, M. D., Barigelletti, F. & Armaroli, N. (1999). J. Chem. Soc. Dalton Trans. pp. 349–356.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSiemens (1996). XSCANS. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTamboura, F. B., Haba, P. M., Gaye, M., Sall, A. S., Barry, A. H. & Jouini, T. (2004). Polyhedron, 23, 1191–1197.  Web of Science CSD CrossRef Google Scholar
First citationTrofimenko, S. (1993). Chem. Rev. 93, 943–980.  CrossRef CAS Web of Science Google Scholar
First citationWard, M. D., McCleverty, J. A., Mann, K. L. V., Jeffery, J. C., Motson, G. R. & Hurst, J. (1999). Acta Cryst. C55, 2055–2058.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds