Download citation
Download citation
link to html
Conformational analyses and a structural comparison of the four spiro compounds 3-bromo-1,9-di­phenyl-4-p-tolyl-7-oxa-1,2,8-tri­aza­spiro­[4.4]­nona-2,8-dien-6-one, (I), C24H18BrN3O2, 3-bromo-4-(4-methoxy­phenyl)-1,9-di­phenyl-7-oxa-1,2,8-tri­aza­spiro­[4.4]­nona-2,8-dien-6-one, (II), C24H18BrN3O3, 3-bromo-4-(4-chloro­phenyl)-1,7,9-tri­phenyl-1,2,7,8-tetra­aza­spiro­[4.4]­nona-2,8-dien-6-one, (III), C29H20BrClN4O, and 3-bromo-1,7,9-tri­phenyl-4-p-tolyl-1,2,7,8-tetra­aza­spiro­[4.4]­nona-2,8-di­en-6-one, (IV), C30H22.89Br1.11N4O, are presented. The mol­ecular structures are rather similar, which is as expected since the compounds are all products of concerted 1,3-dipolar attack on (Z)-4-aryl­idene oxazolone and pyrazolone derivatives. The observed conformations tend to favour extended π conjugation of the benzene rings and other π systems, as shown by a comparison of selected geometric parameters of the four structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104022231/gd1337sup1.cif
Contains datablocks global, I, II, III, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104022231/gd1337Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104022231/gd1337IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104022231/gd1337IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104022231/gd1337IVsup5.hkl
Contains datablock IV

CCDC references: 259040; 259041; 259042; 259043

Comment top

Spirans are organic compounds often present in natural products (Oh et al., 2003). The creation of stereogenic quaternary C centres is a challenging task in organic chemistry, especially for spiro-centres (Hughes et al., 2001). Because of their ability to generate a surrounding asymmetrical space, spirans have been exploited for asymmetric synthesis, molecular recognition and catalysis. The synthesis of biologically active heterocyclic spiro compounds (Negoro et al., 1998) has mainly been addressed toward structures mimicking peptide β-turn secondary structures (Braña et al., 2002). This is of particular interest when the rigidly mimicked conformation is also the bioactive one. Furthermore, the non-peptide nature of spiro-compounds may prevent possible unwanted side-effects (Khalil et al., 1999).

The synthesis of a new dipolar intermediate, C-bromo-N-phenylnitrilimine, (Foti et al., 1999), enabled us to obtain, by cycloaddition with selected dipolarophiles, 3-bromopyrazoles with interesting biopharmacological properties. The introduction of a Br substituent might increase the biological activity of related derivatives. In this context, we report the crystal structures of the four title bromo compounds, (I)-(IV). These spiro compounds are composed of substituted isoxazolinone or pyrazolinone rings, connected to pyrazoline rings through the asymmetric spiro-centre C5. Beyond the spiro-centre, another asymmetric atom, C9, is present (Figs. 1–4). The CIP Please define configuration of this atom is always inverted with respect to the other asymmetric centre, C9. Therefore, the crystals of these compounds are (5R,9S)-(5S,9R) racemic mixtures, and all crystallize in centrosymmetric space groups. \sch

The structures of (I) and (II) are very similar, as are those of (III) and (IV), as they differ only in the para-substituent of the aromatic ring attached to C9. Since the four conformations are reasonably similar, we will discuss these two pairs together, reporting the four respective values for each mentioned geometric parameter or referring to the comparative table listed below (Table 4). The two core rings are oriented almost perpendicular to one another, with the angles between their mean planes being 89.0 (1), 88.5 (2), 87.7 (1) and 88.6 (2)°, respectively.

The isoxazolinone rings, in (I) and (II), and the pyrazolinone rings, in (III) and (IV), are less puckered [maximum deviations from the mean plane for atom C1 are 0.045 (4), 0.066 (6), 0.081 (4) and 0.040 (4) Å, respectively] than the corresponding pyrazoline rings, which show a slight envelope-like distortion: atom C5 is always above the mean plane, by 0.197 (4), 0.094 (6), 0.142 (4) and 0.143 (4) Å, respectively. Cremer & Pople (1975) puckering parameters for the C5/N6/N7/C8/C9 ring are q2 = 0.287 (3), 0.142 (5), 0.214 (4) and 0.239 (4) Å, respectively, and ϕ2 = −5.9 (7), 5(2), −2(1) and −6(1)°, respectively. This is expected because of the further chiral sp3-hybridized endocyclic C atom present in pyrazolines.

The aromatic rings conjugated with endocyclic double bonds or sp2-hybridized atoms tend to lie on the same plane of the attached core rings, developing extended π conjugations. On the other hand, these are partially hampered because of steric hindrance (see Table 4 for a comparison of torsion angles and angles between mean planes). These quasi-coplanar orientations of the aromatic rings are also supported by intramolecular dipolar interactions between aromatic ortho-H and electronegative N3, O1 and N7 atoms, which are sometimes cited as intramolecular hydrogen bonds (see Tables 1–3).

In compound (I), the packing is mainly characterized by an unusual intermolecular interaction between atom Br1 and the N3—O2 bond [Br1···O2i 3.310 (3) and Br1···N3i 3.377 (3) Å; symmetry code: (i) 3/2 − x, y − 1/2, z], which may be interpreted as a stabilizing intermolecular combination between a Br atomic orbital and the lowest unoccupied molecular anti-bonding orbital centred on the CN—O system of the next molecule along the crystallographic screw b axis (Fig. 4). Other weak dipolar interactions and a hydrogen bond (Table 1) contribute to the three-dimensional packing.

In compound (II), the three-dimensional structure is generated by weak intermolecular dipolar interactions. As usual for these systems, there is an interaction between the carbonyl O atom and the methyl group of another molecule. Although it is too weak to be considered as a hydrogen bond [C28···O1 3.376 (9) and H28···O1 2.644 (5) Å, and C28—H28···O1 133.3 (4)°], it is doubled because it occurs between objects related by a symmetry inversion centre, thus sorting dimers with an R22(22) first-order graph-set (Fig. 5).

The crystal packing of (III) is dominated by dipolar interactions. Among these, we mention the intermolecular interaction between atom H27 and the Cl atom of another molecule, which could be interpreted as a weak hydrogen-bond interaction creating one-dimensional C(11) chains along the [101] axis (Fig. 6).

The structure of (IV) presented more refinement problems, because of the presence of small amounts (about 10–15%, varying across the several tested samples) of a side product which occupy the same crystallographic site, but bearing another Br atom substituted on the aromatic C25 atom (Fig. 3). These molecules are embedded in the lattice packing (atom Br2 interacts with the aromatic π system of other molecules). Several polar and dipolar interactions support the overall crystal packing.

Table 1. Hydrogen-bonding geometry for (I) (Å, °).

Table 2. Short intramolecular contacts for (III) (Å, °).

Table 3. Short intramolecular contacts for (IV) (Å, °).

Table 4. Comparison of selected distances, torsion angles and angles between mean planes (Å, °) for (I), (II), (III) and (IV).

Experimental top

Products (I) and (II) were obtained by C-bromo-N-phenylnitrilimine, generated in situ, and (Z)-4-(arylmethylidene)oxazol-5-ones, as previously described by Foti et al. (2001). The same procedure with (Z)-4-(arylmethylidene)pyrazol-5-ones led to the formation of (III) and (IV). After purification of the products, crystals suitable for X-ray analysis were obtained by slow evaporation of chloroform solutions.

Refinement top

X-ray diffraction analysis gave an orthorhombic crystal system for (I), and monoclinic for (II), (III) and (IV). These space groups were hypothesized to be centrosymmetric during the data-reduction procedure and finally confirmed by the subsequent analyses. All H atoms were treated as riding, with alkyl C—H distances of 0.98, methyl C—H distances of 0.96 and aromatic C—H distances of 0.93 Å, and with Uiso(H) = 1.2Ueq(C). Please check added text. All data were measured at 298 (2) K. For disordered methyl groups, the special SHELXL97 (Sheldrick, 1997) instruction, defining six sites with fractional occupancy factors (AFIX 127), was applied. Intensities, which in some cases were calculated by profile fitting (Lehman & Larsen, 1974), were corrected for absorption using the ψ-scan procedure (North et al., 1968). During the refinement of the structure of (IV), we observed a consistent electron density (3.5 e Å−3) 1.7 Å from atom C25. It is known that, during the reaction, C25 could be brominated, leading to a known side-product. Thus, despite the relatively short distance, the model was refined by optimizing the occupancy factor of a Br atom partially replacing atom H25. Although the resulting C—Br distance of 1.707 (8) Å is more reminiscent of a C—Cl distance, the mass spectrum of (IV) clearly showed the presence of the second Br substituent and unambiguously ruled out the presence of Cl. In the final refinement, the occupancy factor of atom Br2 was found to be 0.11 and was fixed in order to reduce the number of parameters, so that in the solid state there are 11% of dibrominated molecules.

Computing details top

For all compounds, data collection: XSCANS (Siemens, 1989); cell refinement: XSCANS; data reduction: XPREPW (Bruker, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XPW (Bruker, 1997); software used to prepare material for publication: PARST97 (Nardelli, 1995) and WinGX-PC (Version 1.6.4.05; Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The (5R,9S) isomer of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The (5R,9S) isomer of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The (5R,9S) isomer of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. The (5R,9S) isomer of (IV), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level and H atoms are shown as small spheres of arbitrary radii·Dashed outlines indicate the disordered methyl group and Br atom. Please check added text.
[Figure 5] Fig. 5. The crystal packing of (I), showing the intermolecular interaction between Br1 and atoms O2 and N3 of another molecule (dotted lines). Atoms marked with an asterisk (*) or hash (#) are at the symmetry positions (3/2 − x, y + 1/2, z) and (3/2 − x, y − 1/2, z), respectively.
[Figure 6] Fig. 6. The crystal packing of (II), showing the weak interaction, doubled by the crystallographic inversion centre, stabilizing the dimers (dotted and dashed lines). Atoms marked with a hash (#) are generated through inversion.
[Figure 7] Fig. 7. The crystal packing of (III), showing the formation of molecular chains along the [101] direction. Atoms marked with an asterisk (*) or hash (#) are at the symmetry positions (x + 1/2, 3/2 − y, z + 1/2) and (x − 1/2, 3/2 − y, z − 1/2), respectively.
(I) 3-Bromo-1,9-diphenyl-4-p-tolyl-7-oxa-1,2,8-triazaspiro[4.4]nona-2,8-dien-6-one top
Crystal data top
C24H18BrN3O2F(000) = 1872
Mr = 460.32Dx = 1.457 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 30 reflections
a = 14.180 (2) Åθ = 5.3–12.5°
b = 16.076 (2) ŵ = 1.98 mm1
c = 18.413 (2) ÅT = 298 K
V = 4197.4 (9) Å3Irregular, light yellow
Z = 80.4 × 0.32 × 0.28 mm
Data collection top
Bruker P4
diffractometer
Rint = 0.043
2θ/ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: ψ scan
(North et al., 1968)
h = 117
Tmin = 0.414, Tmax = 0.573k = 120
5243 measured reflectionsl = 123
4267 independent reflections3 standard reflections every 197 reflections
1805 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0333P)2 + 1.0734P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.053(Δ/σ)max = 0.003
wR(F2) = 0.105Δρmax = 0.26 e Å3
S = 1.00Δρmin = 0.27 e Å3
4267 reflectionsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
273 parametersExtinction coefficient: 0.00148 (12)
0 restraints
Crystal data top
C24H18BrN3O2V = 4197.4 (9) Å3
Mr = 460.32Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.180 (2) ŵ = 1.98 mm1
b = 16.076 (2) ÅT = 298 K
c = 18.413 (2) Å0.4 × 0.32 × 0.28 mm
Data collection top
Bruker P4
diffractometer
1805 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.043
Tmin = 0.414, Tmax = 0.5733 standard reflections every 197 reflections
5243 measured reflections intensity decay: none
4267 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.00Δρmax = 0.26 e Å3
4267 reflectionsΔρmin = 0.27 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.74636 (4)0.10933 (3)0.60520 (3)0.0786 (2)
O10.9070 (2)0.34324 (19)0.70273 (16)0.0662 (10)
C10.9035 (3)0.3692 (3)0.6424 (3)0.0505 (13)
O20.9021 (2)0.45240 (19)0.62686 (16)0.0603 (9)
N30.9102 (2)0.4648 (2)0.54887 (19)0.0544 (10)
C40.9156 (3)0.3936 (3)0.5174 (2)0.0398 (10)
C50.9043 (3)0.3226 (3)0.5701 (2)0.0410 (11)
N60.9702 (2)0.2522 (2)0.57065 (17)0.0447 (9)
N70.9217 (3)0.1796 (2)0.59324 (19)0.0522 (10)
C80.8336 (3)0.1937 (3)0.5878 (2)0.0479 (11)
C90.8079 (3)0.2773 (2)0.5559 (2)0.0428 (11)
H90.80270.26950.50320.051*
C100.9186 (3)0.3879 (3)0.4385 (2)0.0415 (10)
C110.8694 (3)0.4474 (3)0.3986 (3)0.0581 (12)
H110.83470.48810.42260.07*
C120.8720 (3)0.4464 (3)0.3236 (3)0.0700 (15)
H120.83960.48660.29710.084*
C130.9223 (3)0.3861 (3)0.2884 (3)0.0700 (14)
H130.92390.38520.23790.084*
C140.9703 (3)0.3269 (3)0.3272 (3)0.0677 (14)
H141.00420.28590.30280.081*
C150.9689 (3)0.3275 (3)0.4018 (2)0.0531 (11)
H151.00180.28720.42770.064*
C161.0621 (3)0.2619 (2)0.6003 (2)0.0438 (10)
C171.0991 (3)0.2054 (3)0.6496 (2)0.0555 (12)
H171.06260.16120.6660.067*
C181.1900 (3)0.2153 (3)0.6741 (2)0.0652 (14)
H181.21490.17670.70650.078*
C191.2445 (4)0.2808 (3)0.6518 (2)0.0648 (13)
H191.30570.28710.66910.078*
C201.2079 (3)0.3364 (3)0.6038 (3)0.0650 (14)
H201.24450.38120.58880.078*
C211.1173 (3)0.3278 (3)0.5768 (2)0.0568 (13)
H211.09380.36570.54320.068*
C220.7201 (3)0.3217 (3)0.5799 (2)0.0427 (11)
C230.6669 (3)0.3636 (2)0.5295 (2)0.0495 (11)
H230.68590.36410.48110.059*
C240.5857 (3)0.4052 (3)0.5493 (3)0.0596 (14)
H240.55010.4320.51390.071*
C250.5563 (3)0.4076 (3)0.6210 (3)0.0533 (12)
C260.6104 (3)0.3663 (3)0.6715 (2)0.0546 (12)
H260.59210.36710.720.066*
C270.6907 (3)0.3240 (3)0.6520 (2)0.0535 (12)
H270.72580.29660.68730.064*
C280.4679 (3)0.4545 (3)0.6420 (3)0.0826 (16)
H28A0.41990.44510.60620.099*
H28B0.48150.51290.64470.099*
H28C0.44610.43530.68840.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0749 (4)0.0555 (3)0.1056 (4)0.0227 (3)0.0047 (4)0.0131 (3)
O10.071 (2)0.083 (3)0.0438 (19)0.004 (2)0.0061 (18)0.0076 (19)
C10.037 (3)0.062 (4)0.053 (3)0.004 (2)0.002 (3)0.011 (3)
O20.066 (2)0.052 (2)0.063 (2)0.0013 (18)0.0017 (17)0.0226 (17)
N30.057 (3)0.047 (2)0.060 (3)0.000 (2)0.003 (2)0.009 (2)
C40.032 (2)0.036 (2)0.051 (3)0.001 (2)0.002 (2)0.004 (3)
C50.040 (3)0.041 (2)0.042 (3)0.000 (2)0.001 (2)0.008 (2)
N60.043 (2)0.039 (2)0.052 (2)0.0007 (19)0.0027 (19)0.0013 (18)
N70.055 (2)0.0395 (19)0.062 (3)0.006 (2)0.001 (2)0.002 (2)
C80.049 (3)0.041 (3)0.053 (3)0.008 (2)0.001 (3)0.005 (2)
C90.045 (3)0.044 (3)0.038 (3)0.006 (2)0.001 (2)0.001 (2)
C100.042 (3)0.038 (2)0.044 (3)0.008 (2)0.002 (2)0.004 (2)
C110.060 (3)0.050 (3)0.064 (3)0.002 (3)0.001 (3)0.002 (3)
C120.071 (4)0.072 (4)0.067 (4)0.002 (3)0.010 (3)0.027 (3)
C130.067 (3)0.090 (4)0.052 (3)0.007 (3)0.003 (3)0.010 (3)
C140.069 (4)0.082 (4)0.053 (3)0.006 (3)0.009 (3)0.004 (3)
C150.048 (3)0.054 (3)0.058 (3)0.006 (2)0.003 (3)0.002 (3)
C160.039 (3)0.050 (3)0.043 (3)0.006 (2)0.001 (2)0.012 (3)
C170.058 (3)0.061 (3)0.047 (3)0.007 (3)0.001 (3)0.002 (3)
C180.060 (4)0.084 (4)0.053 (3)0.024 (3)0.002 (3)0.002 (3)
C190.042 (3)0.084 (4)0.069 (3)0.020 (3)0.014 (3)0.023 (3)
C200.041 (3)0.061 (3)0.093 (4)0.002 (2)0.007 (3)0.010 (3)
C210.045 (3)0.050 (3)0.075 (3)0.003 (2)0.009 (3)0.001 (3)
C220.040 (3)0.046 (3)0.042 (3)0.008 (2)0.002 (2)0.002 (2)
C230.050 (3)0.055 (3)0.044 (3)0.003 (3)0.003 (2)0.003 (3)
C240.056 (3)0.061 (3)0.062 (3)0.005 (3)0.008 (3)0.010 (3)
C250.042 (3)0.050 (3)0.068 (3)0.003 (2)0.005 (3)0.004 (3)
C260.051 (3)0.069 (3)0.043 (3)0.004 (3)0.008 (3)0.003 (3)
C270.047 (3)0.065 (3)0.048 (3)0.000 (3)0.007 (3)0.010 (3)
C280.069 (4)0.075 (3)0.104 (4)0.012 (3)0.015 (3)0.012 (3)
Geometric parameters (Å, º) top
Br1—C81.864 (4)C15—H150.93
O1—C11.189 (5)C16—C211.386 (5)
C1—O21.368 (5)C16—C171.387 (5)
C1—C51.527 (5)C17—C181.375 (6)
O2—N31.454 (4)C17—H170.93
N3—C41.286 (4)C18—C191.370 (6)
C4—C101.455 (5)C18—H180.93
C4—C51.506 (5)C19—C201.360 (5)
C5—N61.468 (5)C19—H190.93
C5—C91.571 (5)C20—C211.385 (5)
N6—N71.418 (4)C20—H200.93
N6—C161.422 (5)C21—H210.93
N7—C81.273 (5)C22—C231.373 (5)
C8—C91.511 (5)C22—C271.392 (5)
C9—C221.501 (5)C23—C241.380 (5)
C9—H90.98C23—H230.93
C10—C151.381 (5)C24—C251.384 (6)
C10—C111.394 (5)C24—H240.93
C11—C121.382 (6)C25—C261.375 (5)
C11—H110.93C25—C281.514 (5)
C12—C131.366 (6)C26—C271.375 (5)
C12—H120.93C26—H260.93
C13—C141.372 (6)C27—H270.93
C13—H130.93C28—H28A0.96
C14—C151.374 (5)C28—H28B0.96
C14—H140.93C28—H28C0.96
O1—C1—O2122.6 (4)C10—C15—H15119.9
O1—C1—C5130.0 (5)C21—C16—C17119.4 (4)
O2—C1—C5107.3 (4)C21—C16—N6118.8 (4)
C1—O2—N3109.8 (3)C17—C16—N6121.8 (4)
C4—N3—O2109.2 (3)C18—C17—C16119.6 (4)
N3—C4—C10120.5 (4)C18—C17—H17120.2
N3—C4—C5112.1 (4)C16—C17—H17120.2
C10—C4—C5126.8 (4)C19—C18—C17121.3 (5)
N6—C5—C4121.3 (3)C19—C18—H18119.4
N6—C5—C1112.1 (3)C17—C18—H18119.4
C4—C5—C1101.0 (3)C20—C19—C18119.0 (5)
N6—C5—C9101.4 (3)C20—C19—H19120.5
C4—C5—C9109.7 (3)C18—C19—H19120.5
C1—C5—C9111.5 (3)C19—C20—C21121.5 (5)
N7—N6—C16115.0 (3)C19—C20—H20119.2
N7—N6—C5109.2 (3)C21—C20—H20119.2
C16—N6—C5120.1 (3)C20—C21—C16119.2 (4)
C8—N7—N6107.8 (3)C20—C21—H21120.4
N7—C8—C9115.3 (4)C16—C21—H21120.4
N7—C8—Br1120.5 (3)C23—C22—C27117.9 (4)
C9—C8—Br1123.6 (3)C23—C22—C9119.4 (4)
C22—C9—C8120.6 (3)C27—C22—C9122.8 (4)
C22—C9—C5116.9 (3)C22—C23—C24121.1 (4)
C8—C9—C597.9 (3)C22—C23—H23119.4
C22—C9—H9106.8C24—C23—H23119.4
C8—C9—H9106.8C23—C24—C25121.1 (4)
C5—C9—H9106.8C23—C24—H24119.4
C15—C10—C11118.8 (4)C25—C24—H24119.4
C15—C10—C4123.2 (4)C26—C25—C24117.6 (4)
C11—C10—C4118.0 (4)C26—C25—C28121.9 (4)
C12—C11—C10120.4 (4)C24—C25—C28120.5 (4)
C12—C11—H11119.8C25—C26—C27121.6 (4)
C10—C11—H11119.8C25—C26—H26119.2
C13—C12—C11119.7 (5)C27—C26—H26119.2
C13—C12—H12120.2C26—C27—C22120.7 (4)
C11—C12—H12120.2C26—C27—H27119.7
C12—C13—C14120.4 (5)C22—C27—H27119.7
C12—C13—H13119.8C25—C28—H28A109.5
C14—C13—H13119.8C25—C28—H28B109.5
C13—C14—C15120.5 (5)H28A—C28—H28B109.5
C13—C14—H14119.8C25—C28—H28C109.5
C15—C14—H14119.8H28A—C28—H28C109.5
C14—C15—C10120.2 (4)H28B—C28—H28C109.5
C14—C15—H15119.9
O1—C1—O2—N3172.6 (4)C5—C4—C10—C1543.2 (6)
C5—C1—O2—N35.0 (5)N3—C4—C10—C1132.6 (6)
C1—O2—N3—C40.5 (5)C5—C4—C10—C11138.0 (4)
O2—N3—C4—C10176.3 (3)C15—C10—C11—C120.7 (6)
O2—N3—C4—C54.4 (5)C4—C10—C11—C12178.2 (4)
N3—C4—C5—N6131.6 (4)C10—C11—C12—C130.7 (7)
C10—C4—C5—N657.2 (6)C11—C12—C13—C140.2 (7)
N3—C4—C5—C17.0 (4)C12—C13—C14—C150.3 (7)
C10—C4—C5—C1178.3 (4)C13—C14—C15—C100.2 (7)
N3—C4—C5—C9110.8 (4)C11—C10—C15—C140.3 (6)
C10—C4—C5—C960.4 (5)C4—C10—C15—C14178.6 (4)
O1—C1—C5—N639.8 (7)N7—N6—C16—C21175.0 (3)
O2—C1—C5—N6137.6 (3)C5—N6—C16—C2151.4 (5)
O1—C1—C5—C4170.4 (5)N7—N6—C16—C172.1 (5)
O2—C1—C5—C46.9 (4)C5—N6—C16—C17131.4 (4)
O1—C1—C5—C973.1 (6)C21—C16—C17—C180.3 (6)
O2—C1—C5—C9109.6 (4)N6—C16—C17—C18176.9 (4)
C4—C5—N6—N7149.3 (3)C16—C17—C18—C191.1 (7)
C1—C5—N6—N791.4 (4)C17—C18—C19—C200.7 (7)
C9—C5—N6—N727.6 (4)C18—C19—C20—C210.6 (7)
C4—C5—N6—C1674.7 (5)C19—C20—C21—C161.4 (7)
C1—C5—N6—C1644.5 (5)C17—C16—C21—C200.9 (6)
C9—C5—N6—C16163.6 (3)N6—C16—C21—C20178.2 (4)
C16—N6—N7—C8154.8 (3)C8—C9—C22—C23141.0 (4)
C5—N6—N7—C816.3 (5)C5—C9—C22—C23100.4 (4)
N6—N7—C8—C93.6 (5)C8—C9—C22—C2740.5 (6)
N6—N7—C8—Br1174.8 (2)C5—C9—C22—C2778.1 (5)
N7—C8—C9—C22147.6 (4)C27—C22—C23—C241.5 (6)
Br1—C8—C9—C2241.5 (5)C9—C22—C23—C24180.0 (4)
N7—C8—C9—C519.9 (4)C22—C23—C24—C251.6 (7)
Br1—C8—C9—C5169.3 (3)C23—C24—C25—C260.8 (7)
N6—C5—C9—C22156.7 (3)C23—C24—C25—C28179.1 (4)
C4—C5—C9—C2273.8 (4)C24—C25—C26—C270.1 (7)
C1—C5—C9—C2237.2 (5)C28—C25—C26—C27179.9 (4)
N6—C5—C9—C826.4 (3)C25—C26—C27—C220.1 (7)
C4—C5—C9—C8155.9 (3)C23—C22—C27—C260.7 (6)
C1—C5—C9—C893.0 (4)C9—C22—C27—C26179.2 (4)
N3—C4—C10—C15146.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28C···O1i0.962.553.482 (5)163
Symmetry code: (i) x1/2, y, z+3/2.
(II) 3-Bromo-1,9-diphenyl-4-(4-methoxy-phenyl)-7-oxa-1,2,8-triazaspiro[4.4]nona- 2,8-dien-6-one top
Crystal data top
C24H18BrN3O3F(000) = 1936
Mr = 476.32Dx = 1.524 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCCell parameters from 44 reflections
a = 35.375 (3) Åθ = 5.2–15.4°
b = 9.200 (1) ŵ = 2.01 mm1
c = 12.807 (2) ÅT = 298 K
β = 94.81 (1)°Prismatic, yellow
V = 4153.2 (9) Å30.50 × 0.23 × 0.15 mm
Z = 8
Data collection top
Bruker P4
diffractometer
Rint = 0.061
ω scansθmax = 26°, θmin = 2.3°
Absorption correction: ψ scan
(North et al., 1968)
h = 143
Tmin = 0.388, Tmax = 0.739k = 111
4814 measured reflectionsl = 1515
4047 independent reflections3 standard reflections every 197 reflections
2153 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.067 w = 1/[σ2(Fo2) + (0.1P)2
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.200(Δ/σ)max < 0.001
S = 1.08Δρmax = 1.46 e Å3
4047 reflectionsΔρmin = 0.38 e Å3
282 parameters
Crystal data top
C24H18BrN3O3V = 4153.2 (9) Å3
Mr = 476.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 35.375 (3) ŵ = 2.01 mm1
b = 9.200 (1) ÅT = 298 K
c = 12.807 (2) Å0.50 × 0.23 × 0.15 mm
β = 94.81 (1)°
Data collection top
Bruker P4
diffractometer
2153 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.061
Tmin = 0.388, Tmax = 0.7393 standard reflections every 197 reflections
4814 measured reflections intensity decay: none
4047 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.200H-atom parameters constrained
S = 1.08Δρmax = 1.46 e Å3
4047 reflectionsΔρmin = 0.38 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.05103 (2)0.24132 (9)0.33395 (6)0.0624 (3)
O10.08859 (13)0.0665 (5)0.0252 (3)0.0567 (12)
C10.11327 (19)0.0205 (7)0.0335 (4)0.0412 (15)
O20.13410 (13)0.0997 (5)0.0104 (3)0.0562 (12)
N30.16605 (15)0.1145 (6)0.0885 (4)0.0529 (14)
C40.16483 (16)0.0119 (6)0.1550 (4)0.0378 (14)
C50.12974 (16)0.0763 (6)0.1398 (4)0.0362 (14)
N60.13357 (14)0.2355 (5)0.1437 (4)0.0412 (12)
N70.10485 (15)0.2986 (6)0.1990 (4)0.0425 (13)
C80.08810 (17)0.1958 (7)0.2430 (4)0.0398 (15)
C90.10110 (15)0.0443 (6)0.2256 (4)0.0350 (14)
H90.1160.01240.28950.06*
C100.19654 (17)0.0053 (8)0.2375 (5)0.0481 (16)
C110.19377 (18)0.1052 (7)0.3193 (5)0.0492 (17)
H110.17250.16430.32110.06*
C120.2230 (2)0.1144 (9)0.3967 (5)0.064 (2)
H120.22090.17770.45260.06*
C130.2550 (2)0.0325 (11)0.3930 (7)0.083 (3)
H130.27460.04030.44560.06*
C140.2579 (2)0.0634 (10)0.3095 (7)0.083 (3)
H140.27980.11830.30610.06*
C150.2291 (2)0.0772 (9)0.2334 (6)0.064 (2)
H150.23120.14210.17850.06*
C160.14448 (17)0.3164 (7)0.0567 (4)0.0385 (14)
C170.1695 (2)0.2565 (8)0.0092 (5)0.0572 (18)
H170.17940.16390.00350.06*
C180.1794 (2)0.3369 (10)0.0944 (6)0.069 (2)
H180.19610.2960.13860.06*
C190.1660 (2)0.4715 (9)0.1157 (6)0.067 (2)
H190.17230.52170.17480.06*
C200.1430 (2)0.5314 (8)0.0481 (6)0.063 (2)
H200.13420.62570.06040.06*
C210.13189 (19)0.4574 (7)0.0389 (5)0.0492 (17)
H210.11630.50190.08430.06*
C220.07192 (16)0.0711 (6)0.1963 (4)0.0357 (14)
C230.03716 (16)0.0388 (7)0.1440 (4)0.0401 (15)
H230.0310.05790.12960.06*
C240.01124 (17)0.1459 (7)0.1126 (5)0.0427 (15)
H240.01190.12160.07720.06*
C250.02025 (17)0.2903 (7)0.1347 (5)0.0414 (15)
C260.05436 (18)0.3246 (7)0.1881 (5)0.0448 (15)
H260.06040.42110.20330.06*
C270.07987 (18)0.2155 (7)0.2194 (5)0.0419 (15)
H270.10270.23980.25650.06*
O30.00298 (13)0.4052 (5)0.1071 (3)0.0550 (12)
C280.0372 (2)0.3767 (8)0.0428 (6)0.061 (2)
H28A0.05030.46640.02720.06*
H28B0.03110.33140.02120.06*
H28C0.05310.3130.07930.06*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0511 (4)0.0661 (5)0.0730 (5)0.0020 (4)0.0218 (3)0.0184 (4)
O10.060 (3)0.063 (3)0.044 (2)0.001 (3)0.013 (2)0.002 (2)
C10.048 (4)0.043 (4)0.033 (3)0.003 (3)0.002 (3)0.009 (3)
O20.065 (3)0.050 (3)0.053 (3)0.005 (2)0.001 (2)0.019 (2)
N30.050 (3)0.048 (4)0.059 (3)0.008 (3)0.004 (3)0.004 (3)
C40.039 (4)0.031 (3)0.043 (3)0.003 (3)0.004 (3)0.001 (3)
C50.037 (3)0.033 (3)0.039 (3)0.000 (3)0.001 (3)0.007 (3)
N60.042 (3)0.034 (3)0.049 (3)0.004 (2)0.005 (2)0.006 (2)
N70.042 (3)0.038 (3)0.047 (3)0.002 (2)0.002 (2)0.009 (2)
C80.038 (3)0.045 (4)0.036 (3)0.005 (3)0.004 (3)0.012 (3)
C90.030 (3)0.038 (4)0.036 (3)0.001 (3)0.004 (2)0.001 (3)
C100.035 (4)0.057 (4)0.053 (4)0.001 (3)0.003 (3)0.017 (3)
C110.036 (4)0.063 (5)0.048 (4)0.005 (3)0.000 (3)0.008 (3)
C120.050 (5)0.086 (6)0.054 (4)0.014 (4)0.004 (4)0.003 (4)
C130.049 (5)0.113 (8)0.082 (6)0.010 (5)0.026 (4)0.012 (6)
C140.045 (5)0.096 (7)0.106 (7)0.022 (5)0.000 (5)0.021 (6)
C150.042 (4)0.075 (6)0.073 (5)0.019 (4)0.001 (4)0.003 (4)
C160.037 (3)0.036 (4)0.041 (3)0.007 (3)0.004 (3)0.003 (3)
C170.062 (4)0.049 (4)0.062 (4)0.001 (4)0.013 (3)0.001 (4)
C180.072 (5)0.072 (6)0.067 (5)0.021 (5)0.025 (4)0.007 (4)
C190.070 (5)0.061 (5)0.069 (5)0.014 (4)0.006 (4)0.017 (4)
C200.063 (5)0.044 (4)0.080 (5)0.003 (4)0.004 (4)0.012 (4)
C210.047 (4)0.046 (4)0.054 (4)0.003 (3)0.002 (3)0.002 (3)
C220.038 (3)0.034 (3)0.035 (3)0.003 (3)0.000 (3)0.003 (3)
C230.040 (4)0.036 (4)0.043 (3)0.006 (3)0.004 (3)0.001 (3)
C240.032 (3)0.045 (4)0.049 (4)0.007 (3)0.006 (3)0.002 (3)
C250.035 (3)0.048 (4)0.041 (3)0.008 (3)0.005 (3)0.005 (3)
C260.051 (4)0.034 (4)0.049 (4)0.006 (3)0.001 (3)0.006 (3)
C270.034 (3)0.047 (4)0.045 (3)0.003 (3)0.002 (3)0.003 (3)
O30.050 (3)0.042 (3)0.071 (3)0.007 (2)0.009 (2)0.006 (2)
C280.049 (4)0.053 (5)0.080 (5)0.005 (4)0.006 (4)0.012 (4)
Geometric parameters (Å, º) top
Br1—C81.873 (6)C16—C211.384 (9)
O1—C11.181 (7)C16—C171.387 (9)
C1—O21.374 (7)C17—C181.388 (10)
C1—C51.524 (8)C17—H170.93
O2—N31.451 (7)C18—C191.346 (11)
N3—C41.275 (7)C18—H180.93
C4—C51.482 (8)C19—C201.354 (10)
C4—C101.483 (8)C19—H190.93
C5—N61.471 (7)C20—C211.390 (9)
C5—C91.584 (8)C20—H200.93
N6—N71.412 (7)C21—H210.93
N6—C161.420 (8)C22—C231.382 (8)
N7—C81.272 (8)C22—C271.385 (8)
C8—C91.490 (8)C23—C241.383 (8)
C9—C221.506 (8)C23—H230.93
C9—H90.98C24—C251.390 (9)
C10—C151.383 (9)C24—H240.93
C10—C111.404 (9)C25—O31.367 (7)
C11—C121.374 (9)C25—C261.373 (8)
C11—H110.93C26—C271.386 (9)
C12—C131.364 (11)C26—H260.93
C12—H120.93C27—H270.93
C13—C141.397 (12)O3—C281.430 (8)
C13—H130.93C28—H28A0.96
C14—C151.357 (10)C28—H28B0.96
C14—H140.93C28—H28C0.96
C15—H150.93
O1—C1—O2122.2 (5)C10—C15—H15120
O1—C1—C5130.9 (6)C21—C16—C17119.0 (6)
O2—C1—C5106.9 (5)C21—C16—N6121.1 (6)
C1—O2—N3109.2 (4)C17—C16—N6119.9 (6)
C4—N3—O2108.8 (5)C16—C17—C18118.9 (7)
N3—C4—C5113.1 (5)C16—C17—H17120.5
N3—C4—C10119.2 (6)C18—C17—H17120.5
C5—C4—C10127.6 (5)C19—C18—C17122.7 (8)
N6—C5—C4117.8 (5)C19—C18—H18118.6
N6—C5—C1113.1 (5)C17—C18—H18118.6
C4—C5—C1100.8 (5)C18—C19—C20117.8 (7)
N6—C5—C9102.9 (4)C18—C19—H19121.1
C4—C5—C9112.6 (5)C20—C19—H19121.1
C1—C5—C9109.8 (4)C19—C20—C21122.6 (7)
N7—N6—C16115.6 (5)C19—C20—H20118.7
N7—N6—C5111.0 (5)C21—C20—H20118.7
C16—N6—C5121.7 (5)C16—C21—C20118.9 (7)
C8—N7—N6107.3 (5)C16—C21—H21120.6
N7—C8—C9117.9 (5)C20—C21—H21120.6
N7—C8—Br1119.0 (5)C23—C22—C27117.8 (5)
C9—C8—Br1122.9 (5)C23—C22—C9122.2 (5)
C8—C9—C22118.9 (5)C27—C22—C9120.0 (5)
C8—C9—C598.8 (5)C22—C23—C24121.9 (6)
C22—C9—C5115.0 (4)C22—C23—H23119
C8—C9—H9107.8C24—C23—H23119
C22—C9—H9107.8C23—C24—C25119.1 (5)
C5—C9—H9107.8C23—C24—H24120.4
C15—C10—C11119.9 (6)C25—C24—H24120.4
C15—C10—C4119.8 (6)O3—C25—C26115.8 (6)
C11—C10—C4120.4 (6)O3—C25—C24124.4 (6)
C12—C11—C10119.0 (7)C26—C25—C24119.9 (5)
C12—C11—H11120.5C25—C26—C27120.1 (6)
C10—C11—H11120.5C25—C26—H26120
C13—C12—C11121.1 (8)C27—C26—H26120
C13—C12—H12119.4C22—C27—C26121.2 (6)
C11—C12—H12119.4C22—C27—H27119.4
C12—C13—C14119.4 (7)C26—C27—H27119.4
C12—C13—H13120.3C25—O3—C28117.9 (5)
C14—C13—H13120.3O3—C28—H28A109.5
C15—C14—C13120.7 (8)O3—C28—H28B109.5
C15—C14—H14119.7H28A—C28—H28B109.5
C13—C14—H14119.7O3—C28—H28C109.5
C14—C15—C10119.9 (8)H28A—C28—H28C109.5
C14—C15—H15120H28B—C28—H28C109.5
O1—C1—O2—N3170.4 (6)N3—C4—C10—C11171.9 (6)
C5—C1—O2—N37.2 (6)C5—C4—C10—C116.5 (9)
C1—O2—N3—C40.4 (7)C15—C10—C11—C122.9 (10)
O2—N3—C4—C57.1 (7)C4—C10—C11—C12177.4 (6)
O2—N3—C4—C10174.3 (5)C10—C11—C12—C132.5 (11)
N3—C4—C5—N6134.4 (6)C11—C12—C13—C140.6 (13)
C10—C4—C5—N647.1 (8)C12—C13—C14—C151.1 (13)
N3—C4—C5—C110.9 (6)C13—C14—C15—C100.7 (12)
C10—C4—C5—C1170.6 (6)C11—C10—C15—C141.3 (11)
N3—C4—C5—C9106.0 (6)C4—C10—C15—C14179.0 (7)
C10—C4—C5—C972.5 (7)N7—N6—C16—C219.8 (8)
O1—C1—C5—N640.3 (9)C5—N6—C16—C21149.6 (6)
O2—C1—C5—N6137.1 (5)N7—N6—C16—C17173.1 (5)
O1—C1—C5—C4167.0 (7)C5—N6—C16—C1733.3 (8)
O2—C1—C5—C410.4 (6)C21—C16—C17—C183.5 (10)
O1—C1—C5—C974.1 (8)N6—C16—C17—C18179.3 (6)
O2—C1—C5—C9108.6 (5)C16—C17—C18—C190.4 (11)
C4—C5—N6—N7138.9 (5)C17—C18—C19—C202.5 (12)
C1—C5—N6—N7104.1 (5)C18—C19—C20—C212.3 (11)
C9—C5—N6—N714.3 (6)C17—C16—C21—C203.7 (9)
C4—C5—N6—C1679.7 (7)N6—C16—C21—C20179.2 (6)
C1—C5—N6—C1637.3 (7)C19—C20—C21—C160.8 (11)
C9—C5—N6—C16155.8 (5)C8—C9—C22—C2327.2 (8)
C16—N6—N7—C8154.3 (5)C5—C9—C22—C2389.5 (7)
C5—N6—N7—C810.3 (6)C8—C9—C22—C27154.4 (5)
N6—N7—C8—C91.1 (7)C5—C9—C22—C2788.9 (6)
N6—N7—C8—Br1174.4 (4)C27—C22—C23—C241.8 (9)
N7—C8—C9—C22132.5 (6)C9—C22—C23—C24176.7 (5)
Br1—C8—C9—C2252.3 (7)C22—C23—C24—C250.4 (9)
N7—C8—C9—C57.5 (6)C23—C24—C25—O3179.6 (5)
Br1—C8—C9—C5177.3 (4)C23—C24—C25—C260.7 (9)
N6—C5—C9—C812.1 (5)O3—C25—C26—C27179.9 (5)
C4—C5—C9—C8140.0 (5)C24—C25—C26—C270.4 (9)
C1—C5—C9—C8108.6 (5)C23—C22—C27—C262.1 (9)
N6—C5—C9—C22139.8 (5)C9—C22—C27—C26176.4 (5)
C4—C5—C9—C2292.3 (6)C25—C26—C27—C221.0 (9)
C1—C5—C9—C2219.1 (7)C26—C25—O3—C28174.1 (6)
N3—C4—C10—C158.4 (9)C24—C25—O3—C286.2 (9)
C5—C4—C10—C15173.2 (6)
(III) 3-bromo-4-(4-chlorophenyl)-1,7,9-triphenyl-1,2,7,8-tetraazaspiro[4.4]nona- 2,8-dien-6-one top
Crystal data top
C29H20BrClN4OF(000) = 2256
Mr = 555.85Dx = 1.467 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 52 reflections
a = 16.735 (1) Åθ = 2.9–15.4°
b = 21.454 (2) ŵ = 1.77 mm1
c = 14.254 (1) ÅT = 298 K
β = 100.498 (6)°Irregular, pale yellow
V = 5032.3 (7) Å30.39 × 0.3 × 0.19 mm
Z = 8
Data collection top
Bruker P4
diffractometer
Rint = 0.023
ω scansθmax = 25°, θmin = 2.0°
Absorption correction: empirical (using intensity measurements)
(North et al., 1968)
h = 119
Tmin = 0.577, Tmax = 0.714k = 125
5121 measured reflectionsl = 1616
4365 independent reflections3 standard reflections every 197 reflections
2467 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0238P)2 + 11.4647P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4365 reflectionsΔρmax = 0.37 e Å3
327 parametersΔρmin = 0.32 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00045 (7)
Crystal data top
C29H20BrClN4OV = 5032.3 (7) Å3
Mr = 555.85Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.735 (1) ŵ = 1.77 mm1
b = 21.454 (2) ÅT = 298 K
c = 14.254 (1) Å0.39 × 0.3 × 0.19 mm
β = 100.498 (6)°
Data collection top
Bruker P4
diffractometer
2467 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
(North et al., 1968)
Rint = 0.023
Tmin = 0.577, Tmax = 0.7143 standard reflections every 197 reflections
5121 measured reflections intensity decay: none
4365 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.104H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0238P)2 + 11.4647P]
where P = (Fo2 + 2Fc2)/3
4365 reflectionsΔρmax = 0.37 e Å3
327 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.04863 (4)0.47337 (2)0.13965 (4)0.0793 (2)
Cl10.09079 (9)0.72080 (6)0.15718 (9)0.0822 (5)
O10.10192 (18)0.68384 (13)0.2765 (2)0.0553 (8)
C10.1574 (3)0.68136 (19)0.2336 (3)0.0439 (10)
N20.1922 (2)0.72896 (15)0.1917 (2)0.0480 (9)
N30.2646 (2)0.71140 (16)0.1618 (2)0.0476 (9)
C40.2756 (2)0.65260 (19)0.1773 (3)0.0439 (10)
C50.2047 (2)0.62347 (18)0.2125 (3)0.0429 (10)
N60.2188 (2)0.57874 (16)0.2919 (2)0.0499 (9)
N70.1601 (2)0.53112 (16)0.2777 (3)0.0527 (9)
C80.1240 (3)0.53418 (19)0.1912 (3)0.0509 (11)
C90.1523 (3)0.58328 (18)0.1313 (3)0.0468 (11)
H90.19010.56350.09530.07*
C100.1677 (3)0.7925 (2)0.1796 (3)0.0478 (11)
C110.2243 (3)0.8379 (2)0.1738 (3)0.0590 (13)
H110.27870.82740.17770.07*
C120.1999 (4)0.8994 (2)0.1621 (4)0.0761 (16)
H120.23810.93030.15820.07*
C130.1201 (4)0.9149 (3)0.1562 (4)0.0854 (18)
H130.10370.95630.14810.07*
C140.0645 (4)0.8692 (3)0.1623 (4)0.0859 (17)
H140.01020.88010.15870.07*
C150.0867 (3)0.8077 (2)0.1737 (3)0.0666 (14)
H150.04810.7770.17740.07*
C160.3466 (3)0.6211 (2)0.1521 (3)0.0474 (11)
C170.3589 (3)0.5576 (2)0.1637 (4)0.0714 (15)
H170.3220.53360.18950.07*
C180.4259 (4)0.5298 (3)0.1372 (4)0.0936 (19)
H180.43360.48710.14480.07*
C190.4804 (3)0.5643 (3)0.1002 (4)0.0840 (17)
H190.52490.54510.08180.07*
C200.4700 (3)0.6273 (3)0.0900 (4)0.0843 (17)
H200.50830.65130.06670.07*
C210.4029 (3)0.6549 (2)0.1142 (4)0.0673 (14)
H210.39510.69750.10480.07*
C220.2442 (3)0.5986 (2)0.3884 (3)0.0486 (11)
C230.2189 (3)0.5683 (2)0.4625 (3)0.0670 (14)
H230.18350.53460.45090.07*
C240.2466 (4)0.5885 (3)0.5541 (4)0.0868 (18)
H240.22860.56840.60430.07*
C250.2997 (3)0.6371 (3)0.5739 (4)0.0755 (16)
H250.31850.64970.63650.07*
C260.3241 (3)0.6667 (3)0.4999 (4)0.0836 (17)
H260.35960.70030.51190.07*
C270.2970 (3)0.6477 (2)0.4070 (3)0.0768 (16)
H270.31470.66820.35710.07*
C280.0905 (3)0.61822 (19)0.0607 (3)0.0474 (11)
C290.1096 (3)0.6355 (2)0.0257 (3)0.0561 (12)
H290.16040.62550.03920.07*
C300.0543 (3)0.6677 (2)0.0927 (3)0.0604 (13)
H300.06740.6790.15110.07*
C310.0197 (3)0.6825 (2)0.0714 (3)0.0565 (12)
C320.0409 (3)0.6663 (2)0.0139 (3)0.0568 (12)
H320.09170.67670.0270.07*
C330.0149 (3)0.6340 (2)0.0801 (3)0.0512 (12)
H330.00140.62290.13830.07*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0963 (5)0.0606 (3)0.0785 (4)0.0295 (3)0.0092 (3)0.0152 (3)
Cl10.0875 (10)0.0827 (9)0.0679 (8)0.0267 (8)0.0080 (7)0.0008 (7)
O10.050 (2)0.064 (2)0.0572 (19)0.0080 (16)0.0234 (17)0.0078 (16)
C10.042 (3)0.050 (3)0.040 (2)0.008 (2)0.008 (2)0.006 (2)
N20.048 (2)0.041 (2)0.058 (2)0.0007 (18)0.0195 (19)0.0019 (18)
N30.044 (2)0.045 (2)0.056 (2)0.0009 (18)0.0159 (18)0.0007 (18)
C40.041 (3)0.046 (3)0.045 (3)0.001 (2)0.009 (2)0.001 (2)
C50.044 (3)0.038 (2)0.047 (3)0.002 (2)0.010 (2)0.001 (2)
N60.053 (2)0.045 (2)0.053 (2)0.0099 (18)0.0142 (19)0.0012 (18)
N70.060 (2)0.045 (2)0.054 (2)0.005 (2)0.012 (2)0.0009 (19)
C80.059 (3)0.039 (2)0.056 (3)0.007 (2)0.012 (2)0.008 (2)
C90.051 (3)0.043 (2)0.048 (3)0.001 (2)0.013 (2)0.002 (2)
C100.049 (3)0.047 (3)0.049 (3)0.004 (2)0.013 (2)0.007 (2)
C110.060 (3)0.048 (3)0.070 (3)0.006 (3)0.014 (3)0.003 (2)
C120.099 (5)0.047 (3)0.086 (4)0.001 (3)0.028 (3)0.003 (3)
C130.109 (5)0.053 (4)0.093 (4)0.029 (4)0.016 (4)0.007 (3)
C140.078 (4)0.078 (4)0.101 (5)0.030 (4)0.015 (4)0.003 (4)
C150.056 (3)0.061 (3)0.081 (4)0.009 (3)0.008 (3)0.006 (3)
C160.039 (3)0.052 (3)0.053 (3)0.003 (2)0.012 (2)0.001 (2)
C170.061 (4)0.058 (3)0.100 (4)0.013 (3)0.027 (3)0.021 (3)
C180.086 (4)0.065 (4)0.136 (5)0.035 (4)0.038 (4)0.019 (4)
C190.059 (4)0.091 (5)0.107 (5)0.023 (3)0.030 (3)0.001 (4)
C200.060 (4)0.087 (4)0.118 (5)0.003 (3)0.048 (3)0.005 (4)
C210.054 (3)0.059 (3)0.096 (4)0.002 (3)0.032 (3)0.006 (3)
C220.047 (3)0.050 (3)0.050 (3)0.003 (2)0.010 (2)0.000 (2)
C230.083 (4)0.062 (3)0.054 (3)0.017 (3)0.008 (3)0.007 (3)
C240.120 (5)0.087 (4)0.054 (3)0.020 (4)0.017 (3)0.012 (3)
C250.089 (4)0.089 (4)0.045 (3)0.011 (3)0.003 (3)0.006 (3)
C260.094 (4)0.091 (4)0.062 (4)0.040 (3)0.003 (3)0.014 (3)
C270.086 (4)0.092 (4)0.051 (3)0.045 (3)0.010 (3)0.002 (3)
C280.051 (3)0.045 (3)0.049 (3)0.002 (2)0.014 (2)0.006 (2)
C290.054 (3)0.061 (3)0.057 (3)0.001 (3)0.019 (3)0.001 (3)
C300.068 (4)0.062 (3)0.054 (3)0.008 (3)0.016 (3)0.006 (3)
C310.061 (3)0.046 (3)0.056 (3)0.005 (2)0.005 (3)0.005 (2)
C320.051 (3)0.061 (3)0.057 (3)0.005 (2)0.005 (3)0.008 (3)
C330.054 (3)0.054 (3)0.048 (3)0.002 (2)0.015 (2)0.005 (2)
Geometric parameters (Å, º) top
Br1—C81.870 (4)C17—C181.382 (6)
Cl1—C311.748 (4)C17—H170.93
O1—C11.201 (4)C18—C191.352 (7)
C1—N21.366 (5)C18—H180.93
C1—C51.532 (5)C19—C201.368 (7)
N2—N31.408 (4)C19—H190.93
N2—C101.425 (5)C20—C211.368 (6)
N3—C41.288 (5)C20—H200.93
C4—C161.467 (5)C21—H210.93
C4—C51.506 (5)C22—C271.369 (6)
C5—N61.470 (5)C22—C231.372 (6)
C5—C91.576 (5)C23—C241.374 (6)
N6—N71.406 (4)C23—H230.93
N6—C221.428 (5)C24—C251.367 (7)
N7—C81.272 (5)C24—H240.93
C8—C91.487 (5)C25—C261.357 (7)
C9—C281.505 (6)C25—H250.93
C9—H90.98C26—C271.380 (6)
C10—C111.372 (6)C26—H260.93
C10—C151.382 (6)C27—H270.93
C11—C121.381 (6)C28—C291.378 (6)
C11—H110.93C28—C331.386 (6)
C12—C131.365 (7)C29—C301.388 (6)
C12—H120.93C29—H290.93
C13—C141.365 (7)C30—C311.366 (6)
C13—H130.93C30—H300.93
C14—C151.373 (7)C31—C321.372 (6)
C14—H140.93C32—C331.385 (6)
C15—H150.93C32—H320.93
C16—C211.376 (6)C33—H330.93
C16—C171.382 (6)
O1—C1—N2128.3 (4)C16—C17—H17119.9
O1—C1—C5127.6 (4)C18—C17—H17119.9
N2—C1—C5104.1 (3)C19—C18—C17120.6 (5)
C1—N2—N3113.1 (3)C19—C18—H18119.7
C1—N2—C10129.2 (4)C17—C18—H18119.7
N3—N2—C10117.7 (3)C18—C19—C20120.0 (5)
C4—N3—N2108.3 (3)C18—C19—H19120
N3—C4—C16120.4 (4)C20—C19—H19120
N3—C4—C5111.5 (4)C19—C20—C21119.7 (5)
C16—C4—C5127.8 (4)C19—C20—H20120.1
N6—C5—C4120.1 (3)C21—C20—H20120.1
N6—C5—C1113.3 (3)C20—C21—C16121.5 (5)
C4—C5—C1101.3 (3)C20—C21—H21119.2
N6—C5—C9101.5 (3)C16—C21—H21119.2
C4—C5—C9110.4 (3)C27—C22—C23119.6 (4)
C1—C5—C9110.4 (3)C27—C22—N6119.0 (4)
N7—N6—C22115.7 (3)C23—C22—N6121.3 (4)
N7—N6—C5110.7 (3)C22—C23—C24119.0 (5)
C22—N6—C5121.6 (3)C22—C23—H23120.5
C8—N7—N6107.4 (3)C24—C23—H23120.5
N7—C8—C9116.7 (4)C25—C24—C23122.1 (5)
N7—C8—Br1120.8 (3)C25—C24—H24119
C9—C8—Br1122.1 (3)C23—C24—H24119
C8—C9—C28119.0 (4)C26—C25—C24118.2 (5)
C8—C9—C599.1 (3)C26—C25—H25120.9
C28—C9—C5116.2 (3)C24—C25—H25120.9
C8—C9—H9107.2C25—C26—C27121.1 (5)
C28—C9—H9107.2C25—C26—H26119.5
C5—C9—H9107.2C27—C26—H26119.5
C11—C10—C15120.6 (4)C22—C27—C26120.0 (5)
C11—C10—N2120.0 (4)C22—C27—H27120
C15—C10—N2119.4 (4)C26—C27—H27120
C10—C11—C12119.6 (5)C29—C28—C33118.8 (4)
C10—C11—H11120.2C29—C28—C9119.2 (4)
C12—C11—H11120.2C33—C28—C9122.0 (4)
C13—C12—C11120.3 (5)C28—C29—C30121.0 (4)
C13—C12—H12119.8C28—C29—H29119.5
C11—C12—H12119.8C30—C29—H29119.5
C14—C13—C12119.4 (5)C31—C30—C29118.7 (4)
C14—C13—H13120.3C31—C30—H30120.6
C12—C13—H13120.3C29—C30—H30120.6
C13—C14—C15121.7 (6)C30—C31—C32122.0 (4)
C13—C14—H14119.2C30—C31—Cl1118.9 (4)
C15—C14—H14119.2C32—C31—Cl1119.1 (4)
C14—C15—C10118.4 (5)C31—C32—C33118.6 (4)
C14—C15—H15120.8C31—C32—H32120.7
C10—C15—H15120.8C33—C32—H32120.7
C21—C16—C17118.0 (4)C32—C33—C28120.9 (4)
C21—C16—C4119.7 (4)C32—C33—H33119.6
C17—C16—C4122.3 (4)C28—C33—H33119.6
C16—C17—C18120.1 (5)
O1—C1—N2—N3169.7 (4)N2—C10—C11—C12179.9 (4)
C5—C1—N2—N310.9 (4)C10—C11—C12—C130.1 (8)
O1—C1—N2—C106.7 (7)C11—C12—C13—C140.2 (9)
C5—C1—N2—C10172.7 (4)C12—C13—C14—C150.4 (9)
C1—N2—N3—C44.1 (5)C13—C14—C15—C100.4 (8)
C10—N2—N3—C4179.1 (4)C11—C10—C15—C140.2 (7)
N2—N3—C4—C16179.5 (3)N2—C10—C15—C14179.8 (4)
N2—N3—C4—C55.1 (5)N3—C4—C16—C211.8 (6)
N3—C4—C5—N6136.7 (4)C5—C4—C16—C21175.2 (4)
C16—C4—C5—N649.5 (6)N3—C4—C16—C17177.2 (4)
N3—C4—C5—C111.1 (4)C5—C4—C16—C173.8 (7)
C16—C4—C5—C1175.1 (4)C21—C16—C17—C180.3 (8)
N3—C4—C5—C9105.9 (4)C4—C16—C17—C18178.7 (5)
C16—C4—C5—C967.9 (5)C16—C17—C18—C190.5 (9)
O1—C1—C5—N638.1 (6)C17—C18—C19—C200.8 (10)
N2—C1—C5—N6142.5 (3)C18—C19—C20—C212.3 (9)
O1—C1—C5—C4168.1 (4)C19—C20—C21—C162.4 (9)
N2—C1—C5—C412.5 (4)C17—C16—C21—C201.1 (7)
O1—C1—C5—C974.9 (5)C4—C16—C21—C20179.8 (5)
N2—C1—C5—C9104.5 (4)N7—N6—C22—C27175.6 (4)
C4—C5—N6—N7143.2 (4)C5—N6—C22—C2736.5 (6)
C1—C5—N6—N797.0 (4)N7—N6—C22—C236.6 (6)
C9—C5—N6—N721.3 (4)C5—N6—C22—C23145.7 (4)
C4—C5—N6—C2275.9 (5)C27—C22—C23—C240.8 (7)
C1—C5—N6—C2243.9 (5)N6—C22—C23—C24178.6 (4)
C9—C5—N6—C22162.2 (4)C22—C23—C24—C251.2 (9)
C22—N6—N7—C8157.3 (4)C23—C24—C25—C261.2 (9)
C5—N6—N7—C813.9 (5)C24—C25—C26—C270.9 (9)
N6—N7—C8—C91.0 (5)C23—C22—C27—C260.5 (8)
N6—N7—C8—Br1173.5 (3)N6—C22—C27—C26178.3 (5)
N7—C8—C9—C28140.5 (4)C25—C26—C27—C220.6 (9)
Br1—C8—C9—C2847.0 (5)C8—C9—C28—C29144.0 (4)
N7—C8—C9—C513.7 (5)C5—C9—C28—C2997.7 (5)
Br1—C8—C9—C5173.9 (3)C8—C9—C28—C3336.5 (6)
N6—C5—C9—C819.4 (4)C5—C9—C28—C3381.8 (5)
C4—C5—C9—C8147.8 (3)C33—C28—C29—C300.6 (6)
C1—C5—C9—C8101.0 (4)C9—C28—C29—C30179.9 (4)
N6—C5—C9—C28148.1 (4)C28—C29—C30—C310.5 (7)
C4—C5—C9—C2883.4 (4)C29—C30—C31—C320.4 (7)
C1—C5—C9—C2827.8 (5)C29—C30—C31—Cl1177.9 (3)
C1—N2—C10—C11152.6 (4)C30—C31—C32—C330.2 (7)
N3—N2—C10—C1123.7 (6)Cl1—C31—C32—C33177.8 (3)
C1—N2—C10—C1527.4 (7)C31—C32—C33—C280.2 (6)
N3—N2—C10—C15156.3 (4)C29—C28—C33—C320.4 (6)
C15—C10—C11—C120.1 (7)C9—C28—C33—C32179.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O10.932.523.022 (6)114
C21—H21···N30.932.482.802 (6)100
C23—H23···N70.932.432.756 (6)101
(IV) 3-Bromo-1,7,9-triphenyl-4-p-tolyl-1,2,7,8-tetraazaspiro[4.4]nona-2,8-dien-6-one top
Crystal data top
C30H22.89Br1.11N4OF(000) = 1111
Mr = 544.11Dx = 1.391 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.107 (1) Åθ = 4.4–16.0°
b = 13.578 (3) ŵ = 1.78 mm1
c = 19.146 (3) ÅT = 298 K
β = 98.50 (1)°Prismatic, colourless
V = 2598.6 (8) Å30.36 × 0.34 × 0.18 mm
Z = 4
Data collection top
Bruker P4
diffractometer
Rint = 0.037
ω scansθmax = 25°, θmin = 1.9°
Absorption correction: ψ scan
(North et al., 1968)
h = 112
Tmin = 0.459, Tmax = 0.726k = 161
5812 measured reflectionsl = 2222
4510 independent reflections3 standard reflections every 197 reflections
2455 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.8649P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.149(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.36 e Å3
4510 reflectionsΔρmin = 0.45 e Å3
335 parameters
Crystal data top
C30H22.89Br1.11N4OV = 2598.6 (8) Å3
Mr = 544.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.107 (1) ŵ = 1.78 mm1
b = 13.578 (3) ÅT = 298 K
c = 19.146 (3) Å0.36 × 0.34 × 0.18 mm
β = 98.50 (1)°
Data collection top
Bruker P4
diffractometer
2455 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.037
Tmin = 0.459, Tmax = 0.7263 standard reflections every 197 reflections
5812 measured reflections intensity decay: none
4510 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.02Δρmax = 0.36 e Å3
4510 reflectionsΔρmin = 0.45 e Å3
335 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.62209 (7)1.11856 (5)0.06638 (3)0.0769 (3)
O10.8674 (4)0.9128 (3)0.24928 (19)0.0677 (10)
C10.7609 (5)0.9008 (4)0.2683 (3)0.0550 (13)
N20.7171 (4)0.8218 (3)0.3048 (2)0.0539 (10)
N30.5898 (4)0.8361 (3)0.3232 (2)0.0510 (10)
C40.5451 (5)0.9219 (3)0.3009 (2)0.0451 (11)
C50.6400 (4)0.9715 (3)0.2578 (2)0.0451 (11)
N60.6819 (4)1.0746 (3)0.2728 (2)0.0547 (11)
N70.6944 (4)1.1241 (3)0.2100 (2)0.0576 (11)
C80.6392 (5)1.0721 (4)0.1597 (3)0.0541 (13)
C90.5723 (5)0.9797 (3)0.1790 (2)0.0502 (12)
H90.47770.99520.17920.06*
C100.7911 (5)0.7366 (4)0.3333 (3)0.0602 (14)
C110.7323 (6)0.6741 (4)0.3764 (3)0.0788 (18)
H110.64770.68760.38760.095*
C120.8022 (8)0.5904 (5)0.4030 (4)0.109 (2)
H120.76390.54760.43220.131*
C130.9256 (8)0.5707 (6)0.3866 (5)0.124 (3)
H130.97210.51530.40530.148*
C140.9810 (7)0.6315 (6)0.3431 (5)0.115 (3)
H141.06470.61640.33120.137*
C150.9154 (6)0.7162 (5)0.3159 (3)0.0826 (18)
H150.95470.75820.28650.099*
C160.4132 (5)0.9544 (3)0.3121 (2)0.0480 (12)
C170.3749 (5)1.0528 (4)0.3059 (3)0.0589 (14)
H170.43391.10010.29360.071*
C180.2500 (6)1.0796 (4)0.3180 (3)0.0729 (16)
H180.22581.14570.31410.087*
C190.1597 (6)1.0129 (5)0.3356 (3)0.0830 (19)
H190.07491.03250.34350.1*
C200.1976 (6)0.9163 (5)0.3414 (3)0.0846 (19)
H200.13740.86990.35360.102*
C210.3213 (5)0.8859 (4)0.3299 (3)0.0692 (15)
H210.34420.81950.3340.083*
C220.7690 (5)1.1041 (4)0.3332 (3)0.0514 (12)
C230.8372 (5)1.1921 (4)0.3352 (3)0.0641 (15)
H230.83111.23070.29470.077*
C240.9144 (6)1.2238 (5)0.3965 (4)0.0865 (19)
H240.95981.28350.39710.104*
C250.9243 (6)1.1681 (5)0.4562 (3)0.0866 (19)
H250.97611.18990.49750.104*0.89
Br21.0110 (6)1.2117 (6)0.5333 (3)0.097 (2)0.11
C260.8592 (6)1.0810 (5)0.4556 (3)0.0754 (17)
H260.86681.0430.49640.091*
C270.7813 (5)1.0481 (4)0.3946 (3)0.0649 (15)
H270.73680.98820.39460.078*
C280.5780 (5)0.8881 (4)0.1336 (2)0.0524 (12)
C290.4679 (5)0.8280 (4)0.1215 (3)0.0623 (14)
H290.39170.84360.14120.075*
C300.4693 (7)0.7447 (4)0.0803 (3)0.0775 (18)
H300.39460.7040.07330.093*
C310.5799 (8)0.7209 (4)0.0496 (3)0.0761 (18)
C320.6902 (7)0.7816 (5)0.0617 (3)0.0751 (17)
H320.76620.76570.04190.09*
C330.6904 (5)0.8656 (4)0.1026 (3)0.0635 (14)
H330.76490.90660.10940.076*
C340.5829 (9)0.6280 (5)0.0055 (4)0.120 (3)
H34A0.66730.62350.01170.18*
H34B0.51190.63040.03380.18*
H34C0.57130.57140.0340.18*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1023 (5)0.0707 (4)0.0578 (3)0.0026 (4)0.0125 (3)0.0143 (3)
O10.051 (2)0.080 (3)0.075 (2)0.002 (2)0.0210 (19)0.010 (2)
C10.058 (4)0.055 (3)0.052 (3)0.006 (3)0.009 (3)0.000 (3)
N20.049 (3)0.051 (3)0.064 (3)0.006 (2)0.014 (2)0.003 (2)
N30.047 (3)0.049 (3)0.059 (2)0.002 (2)0.013 (2)0.003 (2)
C40.053 (3)0.038 (3)0.045 (3)0.002 (2)0.009 (2)0.003 (2)
C50.042 (3)0.045 (3)0.048 (3)0.001 (2)0.005 (2)0.001 (2)
N60.061 (3)0.050 (2)0.052 (2)0.013 (2)0.007 (2)0.002 (2)
N70.070 (3)0.050 (2)0.054 (2)0.006 (2)0.014 (2)0.002 (2)
C80.062 (3)0.052 (3)0.049 (3)0.001 (3)0.013 (3)0.012 (3)
C90.049 (3)0.055 (3)0.046 (3)0.003 (3)0.005 (2)0.001 (2)
C100.061 (4)0.056 (3)0.065 (3)0.007 (3)0.013 (3)0.000 (3)
C110.073 (4)0.066 (4)0.103 (5)0.021 (3)0.031 (4)0.018 (4)
C120.113 (6)0.070 (5)0.147 (7)0.022 (4)0.029 (5)0.035 (5)
C130.106 (6)0.099 (6)0.171 (8)0.055 (5)0.038 (6)0.048 (6)
C140.087 (5)0.097 (6)0.164 (8)0.040 (5)0.033 (5)0.032 (5)
C150.058 (4)0.092 (5)0.101 (5)0.016 (4)0.021 (3)0.015 (4)
C160.047 (3)0.047 (3)0.051 (3)0.005 (3)0.013 (2)0.008 (2)
C170.063 (4)0.050 (3)0.065 (3)0.005 (3)0.010 (3)0.003 (3)
C180.072 (4)0.061 (4)0.086 (4)0.019 (3)0.011 (3)0.014 (3)
C190.059 (4)0.102 (5)0.088 (4)0.013 (4)0.012 (3)0.017 (4)
C200.063 (4)0.082 (5)0.113 (5)0.004 (4)0.028 (4)0.005 (4)
C210.061 (4)0.060 (3)0.090 (4)0.005 (3)0.020 (3)0.007 (3)
C220.044 (3)0.052 (3)0.058 (3)0.005 (3)0.006 (2)0.003 (3)
C230.058 (4)0.061 (4)0.072 (4)0.008 (3)0.005 (3)0.001 (3)
C240.085 (5)0.075 (4)0.095 (5)0.030 (4)0.000 (4)0.012 (4)
C250.085 (5)0.091 (5)0.076 (4)0.023 (4)0.014 (3)0.018 (4)
Br20.090 (4)0.133 (6)0.065 (3)0.053 (4)0.000 (3)0.024 (4)
C260.071 (4)0.089 (5)0.062 (4)0.000 (4)0.005 (3)0.002 (3)
C270.072 (4)0.055 (3)0.066 (4)0.009 (3)0.003 (3)0.003 (3)
C280.060 (3)0.052 (3)0.045 (3)0.001 (3)0.005 (2)0.004 (3)
C290.069 (4)0.060 (3)0.060 (3)0.016 (3)0.013 (3)0.001 (3)
C300.119 (5)0.057 (4)0.055 (3)0.036 (4)0.006 (4)0.005 (3)
C310.124 (6)0.054 (4)0.050 (3)0.001 (4)0.010 (4)0.002 (3)
C320.094 (5)0.072 (4)0.062 (4)0.017 (4)0.017 (3)0.006 (3)
C330.066 (4)0.062 (4)0.063 (3)0.005 (3)0.008 (3)0.004 (3)
C340.211 (8)0.070 (4)0.077 (4)0.003 (5)0.013 (5)0.024 (4)
Geometric parameters (Å, º) top
Br1—C81.878 (5)C18—H180.93
O1—C11.198 (5)C19—C201.366 (8)
C1—N21.389 (6)C19—H190.93
C1—C51.543 (6)C20—C211.366 (7)
N2—N31.397 (5)C20—H200.93
N2—C101.441 (6)C21—H210.93
N3—C41.298 (6)C22—C231.377 (7)
C4—C161.450 (6)C22—C271.390 (7)
C4—C51.512 (6)C23—C241.379 (7)
C5—N61.478 (6)C23—H230.93
C5—C91.567 (6)C24—C251.362 (8)
N6—N71.398 (5)C24—H240.93
N6—C221.404 (6)C25—C261.353 (8)
N7—C81.257 (6)C25—Br21.707 (8)
C8—C91.497 (7)C25—H250.93
C9—C281.522 (6)C26—C271.383 (7)
C9—H90.98C26—H260.93
C10—C151.375 (7)C27—H270.93
C10—C111.377 (7)C28—C291.372 (7)
C11—C121.395 (8)C28—C331.391 (7)
C11—H110.93C29—C301.380 (7)
C12—C131.357 (9)C29—H290.93
C12—H120.93C30—C311.376 (8)
C13—C141.351 (9)C30—H300.93
C13—H130.93C31—C321.378 (8)
C14—C151.390 (8)C31—C341.521 (8)
C14—H140.93C32—C331.384 (7)
C15—H150.93C32—H320.93
C16—C171.391 (7)C33—H330.93
C16—C211.393 (7)C34—H34A0.96
C17—C181.366 (7)C34—H34B0.96
C17—H170.93C34—H34C0.96
C18—C191.364 (8)
O1—C1—N2128.7 (5)C17—C18—H18118.9
O1—C1—C5127.4 (5)C18—C19—C20117.9 (6)
N2—C1—C5103.9 (4)C18—C19—H19121.1
C1—N2—N3113.2 (4)C20—C19—H19121.1
C1—N2—C10128.7 (4)C21—C20—C19122.0 (6)
N3—N2—C10117.6 (4)C21—C20—H20119
C4—N3—N2109.3 (4)C19—C20—H20119
N3—C4—C16120.4 (4)C20—C21—C16119.8 (5)
N3—C4—C5111.2 (4)C20—C21—H21120.1
C16—C4—C5128.1 (4)C16—C21—H21120.1
N6—C5—C4120.2 (4)C23—C22—C27117.9 (5)
N6—C5—C1111.4 (4)C23—C22—N6121.4 (5)
C4—C5—C1101.9 (4)C27—C22—N6120.5 (4)
N6—C5—C9101.0 (4)C22—C23—C24120.9 (5)
C4—C5—C9109.6 (4)C22—C23—H23119.6
C1—C5—C9113.2 (4)C24—C23—H23119.6
N7—N6—C22116.4 (4)C25—C24—C23120.2 (6)
N7—N6—C5110.4 (4)C25—C24—H24119.9
C22—N6—C5123.8 (4)C23—C24—H24119.9
C8—N7—N6107.6 (4)C26—C25—C24120.2 (6)
N7—C8—C9116.6 (4)C26—C25—Br2119.8 (6)
N7—C8—Br1120.6 (4)C24—C25—Br2119.8 (6)
C9—C8—Br1122.3 (4)C26—C25—H25119.9
C8—C9—C28119.2 (4)C24—C25—H25119.9
C8—C9—C598.5 (4)Br2—C25—H253.4
C28—C9—C5116.3 (4)C25—C26—C27120.3 (6)
C8—C9—H9107.3C25—C26—H26119.9
C28—C9—H9107.3C27—C26—H26119.9
C5—C9—H9107.3C26—C27—C22120.5 (5)
C15—C10—C11120.8 (5)C26—C27—H27119.8
C15—C10—N2120.7 (5)C22—C27—H27119.8
C11—C10—N2118.4 (5)C29—C28—C33119.3 (5)
C10—C11—C12118.7 (6)C29—C28—C9119.0 (5)
C10—C11—H11120.6C33—C28—C9121.7 (5)
C12—C11—H11120.6C28—C29—C30120.5 (5)
C13—C12—C11120.6 (7)C28—C29—H29119.8
C13—C12—H12119.7C30—C29—H29119.8
C11—C12—H12119.7C31—C30—C29121.0 (6)
C14—C13—C12120.1 (7)C31—C30—H30119.5
C14—C13—H13120C29—C30—H30119.5
C12—C13—H13120C30—C31—C32118.4 (5)
C13—C14—C15121.2 (7)C30—C31—C34121.1 (7)
C13—C14—H14119.4C32—C31—C34120.5 (7)
C15—C14—H14119.4C31—C32—C33121.4 (6)
C10—C15—C14118.5 (6)C31—C32—H32119.3
C10—C15—H15120.7C33—C32—H32119.3
C14—C15—H15120.7C32—C33—C28119.4 (5)
C17—C16—C21118.4 (5)C32—C33—H33120.3
C17—C16—C4122.0 (5)C28—C33—H33120.3
C21—C16—C4119.6 (5)C31—C34—H34A109.5
C18—C17—C16119.6 (5)C31—C34—H34B109.5
C18—C17—H17120.2H34A—C34—H34B109.5
C16—C17—H17120.2C31—C34—H34C109.5
C19—C18—C17122.3 (6)H34A—C34—H34C109.5
C19—C18—H18118.9H34B—C34—H34C109.5
O1—C1—N2—N3175.3 (5)C10—C11—C12—C130.1 (11)
C5—C1—N2—N34.4 (5)C11—C12—C13—C141.2 (13)
O1—C1—N2—C104.4 (8)C12—C13—C14—C151.7 (14)
C5—C1—N2—C10175.2 (4)C11—C10—C15—C140.5 (9)
C1—N2—N3—C40.2 (5)N2—C10—C15—C14178.1 (6)
C10—N2—N3—C4171.7 (4)C13—C14—C15—C100.9 (12)
N2—N3—C4—C16178.9 (4)N3—C4—C16—C17163.2 (5)
N2—N3—C4—C55.0 (5)C5—C4—C16—C1724.1 (7)
N3—C4—C5—N6131.0 (4)N3—C4—C16—C2116.5 (7)
C16—C4—C5—N655.7 (6)C5—C4—C16—C21156.2 (5)
N3—C4—C5—C17.3 (5)C21—C16—C17—C180.6 (8)
C16—C4—C5—C1179.4 (4)C4—C16—C17—C18179.1 (4)
N3—C4—C5—C9112.8 (4)C16—C17—C18—C190.5 (9)
C16—C4—C5—C960.5 (6)C17—C18—C19—C200.3 (9)
O1—C1—C5—N643.7 (7)C18—C19—C20—C210.3 (10)
N2—C1—C5—N6136.0 (4)C19—C20—C21—C160.4 (10)
O1—C1—C5—C4173.1 (5)C17—C16—C21—C200.6 (8)
N2—C1—C5—C46.6 (4)C4—C16—C21—C20179.1 (5)
O1—C1—C5—C969.4 (6)N7—N6—C22—C2316.4 (7)
N2—C1—C5—C9110.9 (4)C5—N6—C22—C23159.7 (4)
C4—C5—N6—N7143.6 (4)N7—N6—C22—C27168.2 (4)
C1—C5—N6—N797.4 (4)C5—N6—C22—C2724.9 (7)
C9—C5—N6—N723.1 (5)C27—C22—C23—C240.5 (8)
C4—C5—N6—C2271.3 (6)N6—C22—C23—C24175.0 (5)
C1—C5—N6—C2247.7 (6)C22—C23—C24—C250.1 (9)
C9—C5—N6—C22168.2 (4)C23—C24—C25—C260.4 (10)
C22—N6—N7—C8161.7 (4)C23—C24—C25—Br2175.7 (5)
C5—N6—N7—C813.7 (5)C24—C25—C26—C270.4 (10)
N6—N7—C8—C93.1 (6)Br2—C25—C26—C27175.6 (6)
N6—N7—C8—Br1174.8 (3)C25—C26—C27—C220.0 (9)
N7—C8—C9—C28143.6 (5)C23—C22—C27—C260.4 (8)
Br1—C8—C9—C2844.9 (6)N6—C22—C27—C26175.1 (5)
N7—C8—C9—C516.9 (6)C8—C9—C28—C29142.4 (5)
Br1—C8—C9—C5171.6 (3)C5—C9—C28—C2999.8 (5)
N6—C5—C9—C821.8 (4)C8—C9—C28—C3335.7 (7)
C4—C5—C9—C8149.6 (4)C5—C9—C28—C3382.1 (6)
C1—C5—C9—C897.4 (4)C33—C28—C29—C301.5 (7)
N6—C5—C9—C28150.4 (4)C9—C28—C29—C30179.7 (4)
C4—C5—C9—C2881.8 (5)C28—C29—C30—C311.2 (8)
C1—C5—C9—C2831.2 (6)C29—C30—C31—C321.0 (8)
C1—N2—C10—C1511.4 (8)C29—C30—C31—C34178.7 (5)
N3—N2—C10—C15178.1 (5)C30—C31—C32—C331.2 (8)
C1—N2—C10—C11170.8 (5)C34—C31—C32—C33178.9 (5)
N3—N2—C10—C110.4 (7)C31—C32—C33—C281.6 (8)
C15—C10—C11—C120.9 (9)C29—C28—C33—C321.7 (7)
N2—C10—C11—C12178.7 (6)C9—C28—C33—C32179.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O10.932.352.967 (7)124
C11—H11···N30.932.392.742 (7)102

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC24H18BrN3O2C24H18BrN3O3C29H20BrClN4OC30H22.89Br1.11N4O
Mr460.32476.32555.85544.11
Crystal system, space groupOrthorhombic, PbcaMonoclinic, C2/cMonoclinic, C2/cMonoclinic, P21/c
Temperature (K)298298298298
a, b, c (Å)14.180 (2), 16.076 (2), 18.413 (2)35.375 (3), 9.200 (1), 12.807 (2)16.735 (1), 21.454 (2), 14.254 (1)10.107 (1), 13.578 (3), 19.146 (3)
α, β, γ (°)90, 90, 9090, 94.81 (1), 9090, 100.498 (6), 9090, 98.50 (1), 90
V3)4197.4 (9)4153.2 (9)5032.3 (7)2598.6 (8)
Z8884
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)1.982.011.771.78
Crystal size (mm)0.4 × 0.32 × 0.280.50 × 0.23 × 0.150.39 × 0.3 × 0.190.36 × 0.34 × 0.18
Data collection
DiffractometerBruker P4
diffractometer
Bruker P4
diffractometer
Bruker P4
diffractometer
Bruker P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Empirical (using intensity measurements)
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.414, 0.5730.388, 0.7390.577, 0.7140.459, 0.726
No. of measured, independent and
observed [I > 2σ(I)] reflections
5243, 4267, 1805 4814, 4047, 2153 5121, 4365, 2467 5812, 4510, 2455
Rint0.0430.0610.0230.037
(sin θ/λ)max1)0.6250.6170.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.105, 1.00 0.067, 0.200, 1.08 0.049, 0.104, 1.03 0.057, 0.149, 1.02
No. of reflections4267404743654510
No. of parameters273282327335
No. of restraints0010
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0333P)2 + 1.0734P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.1P)2
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0238P)2 + 11.4647P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0641P)2 + 0.8649P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.26, 0.271.46, 0.380.37, 0.320.36, 0.45

Computer programs: XSCANS (Siemens, 1989), XSCANS, XPREPW (Bruker, 1997), SIR97 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), XPW (Bruker, 1997), PARST97 (Nardelli, 1995) and WinGX-PC (Version 1.6.4.05; Farrugia, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C28—H28C···O1i0.962.553.482 (5)163
Symmetry code: (i) x1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O10.932.523.022 (6)114
C21—H21···N30.932.482.802 (6)100
C23—H23···N70.932.432.756 (6)101
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O10.932.352.967 (7)124
C11—H11···N30.932.392.742 (7)102
Comparison of selected distances, torsion angles and angles between mean planes (Å and °) for (I), (II), (III) and (IV) top
Geometric parameter(I)(II)(III)(IV)
Br1-C81.864 (4)1.873 (6)1.870 (4)1.878 (5)
O1-C11.189 (5)1.181 (7)1.201 (4)1.198 (5)
N3-O2[N2]1.454 (4)1.451 (7)1.408 (4)1.397 (5)
N3-C41.286 (4)1.275 (7)1.288 (5)1.298 (6)
C4-C10[C16]1.455 (5)1.483 (8)1.467 (5)1.450 (6)
N6-N71.418 (4)1.412 (7)1.406 (4)1.398 (5)
N6-C16[C22]1.422 (5)1.420 (8)1.428 (6)1.404 (6)
N7-C81.273 (5)1.272 (8)1.272 (5)1.257 (6)
N3-C4-C10[C16]-C15[C21]146.3 (4)8.4 (9)1.8 (6)-16.5 (7)
C5-C4-C10[C16]-C15[C21]-43.2 (6)-173.2 (6)175.2 (4)156.2 (5)
N3-C4-C10[C16]-C11[C21]-32.6 (6)-171.9 (6)-177.2 (4)163.2 (5)
C5-C4-C10[C16]-C11[C21]138.0 (4)6.5 (9)-3.8 (7)-24.1 (7)
N7-N6-C16[22]-C21[C23]175.0 (3)9.8 (8)6.6 (6)16.4 (7)
C5-N6-C16[22]-C21[C23]-51.4 (5)149.6 (6)145.7 (4)159.7 (4)
N7-N6-C16[22]-C17[C27]-2.2 (5)-173.1 (5)-175.6 (4)-168.2 (4)
C5-N6-C16[22]-C17[C27]131.4 (4)-33.3 (8)-36.5 (6)-24.9 (7)
O2[N2]-N3-C4-C54.5 (5)7.1 (7)5.1 (5)5.0 (5)
O2[N3]-N3-C4-C10[C16]176.3 (3)-174.3 (5)179.5 (3)178.9 (4)
pyrazolone-N3Ph23.8 (2)5.2 (2)
isox[pyr]azolone-C4Ph36.9 (1)9.2 (2)0.9 (2)19.7 (2)
pyrazoline-N6Ph27.7 (1)24.2 (2)20.4 (2)9.9 (2)
Numbers in square brackets indicate the corresponding atom numbers for (III) and (IV), when these differ from (I) and (II).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds