Download citation
Download citation
link to html
The title compound, di­methyl 10b'-(4-fluoro­styryl)-8',9'-di­methoxy-4-nitro-5',6'-di­hydrospiro­[9H-fluorene-9,1'(10b'H)-pyrrolo­[2,1-a]­iso­quinoline]-2',3'-di­carboxyl­ate, C38H31FN2O8, is a new photochromic tetra­hydro­indolizine. One of the C-C bonds at the spiro C atom is very long [1.630 (2) Å], thus explaining the photochromic behaviour.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104010583/gd1322sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104010583/gd1322Isup2.hkl
Contains datablock I

CCDC reference: 245878

Comment top

Photochromism, one of the most noticeable phenomena of photochemistry, which involves light-induced reversible transformation of a molecule between two states with different distinguishable absorption spectra, has attracted increasing interest in recent years. Amongst the many known photochromic systems, photochromic tetrahydroindolizines (THIs; Dürr et al., 1983) have received particular attention owing to their remarkable photofatigue resistence and the range of photochromic properties that they possess (Tan et al., 2001).

We report here the structue of the title compound, (I) (Fig. 1) (Tan et al., 2001). The photochromic properties of (I) have been studied by laser flash photolysis [308 nm; the maximum full width at middle height (fwmh) is 20 ns (Jian et al., 1991)], which shows that there are three transients.

All the THI regions [i.e. the fluorene, ester and dihydroisoquinoline groups, denoted A, B and C (Dürr et al., 1983)] are clearly present. The molecule comprises seven rings, denoted D, E, F, G, H, I and J (see scheme). The dihedral angles between these planes are 80.11 (14) (D/E; plane through C2, C3 and C4), 42.31 (16) [E (plane through C2, C3 and C4)/F (plane through C1, C5, C10 and C11), 79.48 (14) [E (plane through C2, C3 and C4)/H], 40.52 (7) (H/I), 37.72 (7) (H/J) and 2.85 (3)° (I/J).

The bonds and dihedral angles of the C3—C2—C1—N1 fragment show clearly that the dihydroisoquinoline region is not planar, the C1/N1/C12 and N1/C12/C11 planes making angles of, respectively, 11.56 (13)° below and 47.76 (13)° above the C1/C5/C10/C11 plane. The vertical distances between atom N1 and the C1/C5/C10/C11 plane, and between atom C12 and the C1/C5/C10/C11 plane, are 0.096 (3) and 0.600 (3) Å, respectively. The pyrroline ring is also not planar, the plane through atoms C1, N1 and C4 being 11.56 (13)° above, and the plane through N1, sp3-hybridized C1 and C2 being 21.91 (10)° above the C2/C3/C4 plane. The vertical distances between atom N1 and the C2/C3/C4 plane, and between atom C1 and the C2/C3/C4 plane, are 0.168 (4) and 0.449 (5) Å, respectively. Atoms N1, C3 and C4 all exhibit planar coordination.

The bond lengths (Table 1) in the non-aromatic portion of the molecule show clear evidence of bond fixation, most of the single- and double-bond distances being typical of their types (Dorweiler et al., 1985). However, the C1—C2 bond is significantly longer than a typical single bond between four-connected C atoms. This lengthening may be due to the spiro-concatenation on C2. This effect is also shown by a MINDO/3 calculation in the spiro-azanonatriene system ((Dorweiler et al., 1988). This long bond is relatively weak and is easily cleaved by UV light, leading to ring opening (Dorweiler et al., 1988).

The C2—C23 and C2—C34 bonds are ca 0.06 Å longer than the corrsponding bonds in the unsubstituted fluorene molecule (Burns & Hall, 1954). They are, however, in good agreement with those in bisfluorene systems (Neupert-Laes & Dobler, 1981). The C23—C2—C34 angle is almost identical to those found in bisfluorenes and spiro-linked systems (Ege et al., 1981).

Experimental top

The title compound, (I), was synthesized as described by Tan et al. (2001). Recrystallization from dichloromethane–ether solution gave yellow prisms of (I) (m.p. 448–450 K).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1999); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 10% probability level.
dimethyl 10b'-(4-fluorostyryl)-8',9'-dimethoxy-4-nitro-5',6'-dihydro-spiro[9H- fluorene-9,1'(10b'H)-pyrrolo[2,1-a]isoquinoline]-2',3'-dicarboxylate top
Crystal data top
C38H31FN2O8F(000) = 1384
Mr = 662.65Dx = 1.351 Mg m3
MONOCLINIC, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6208 reflections
a = 12.2895 (16) Åθ = 2.3–26.8°
b = 20.015 (3) ŵ = 0.10 mm1
c = 13.4042 (18) ÅT = 298 K
β = 98.739 (2)°Prism, yellow
V = 3258.8 (8) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
6400 independent reflections
Radiation source: fine-focus sealed tube4837 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1510
Tmin = 0.962, Tmax = 0.981k = 2424
14831 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0831P)2 + 0.2767P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.014
6400 reflectionsΔρmax = 0.48 e Å3
447 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0088 (9)
Crystal data top
C38H31FN2O8V = 3258.8 (8) Å3
Mr = 662.65Z = 4
MONOCLINIC, P21/nMo Kα radiation
a = 12.2895 (16) ŵ = 0.10 mm1
b = 20.015 (3) ÅT = 298 K
c = 13.4042 (18) Å0.40 × 0.30 × 0.20 mm
β = 98.739 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6400 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4837 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.981Rint = 0.035
14831 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.01Δρmax = 0.48 e Å3
6400 reflectionsΔρmin = 0.25 e Å3
447 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.3715 (2)0.07142 (10)0.38067 (19)0.1560 (10)
N10.13174 (11)0.27379 (8)0.61325 (11)0.0395 (4)
N20.17940 (16)0.54469 (10)0.72109 (15)0.0642 (5)
O10.45098 (10)0.44908 (6)0.41767 (10)0.0453 (3)
O20.27302 (11)0.51678 (7)0.35152 (10)0.0543 (4)
O30.20694 (17)0.60217 (9)0.7099 (2)0.1072 (8)
O40.08452 (15)0.52841 (10)0.72176 (17)0.0975 (7)
O50.32026 (11)0.29583 (8)0.93543 (10)0.0566 (4)
O60.15590 (11)0.24502 (8)0.91979 (9)0.0563 (4)
O70.04992 (12)0.28166 (8)0.76151 (14)0.0683 (5)
O80.00211 (9)0.17923 (6)0.71812 (10)0.0450 (3)
C10.24502 (13)0.28762 (8)0.59700 (12)0.0339 (4)
C20.30456 (12)0.30471 (8)0.71124 (12)0.0319 (4)
C30.22253 (13)0.27437 (8)0.77303 (12)0.0335 (4)
C40.12617 (13)0.26350 (8)0.71161 (12)0.0344 (4)
C50.24632 (13)0.34658 (8)0.52512 (12)0.0334 (4)
C60.34786 (13)0.36864 (9)0.50196 (12)0.0355 (4)
H60.41130.34480.52630.043*
C70.35580 (14)0.42469 (9)0.44402 (13)0.0371 (4)
C80.25929 (15)0.46056 (9)0.40716 (13)0.0410 (4)
C90.16005 (14)0.43762 (10)0.42719 (14)0.0431 (4)
H90.09640.46090.40140.052*
C100.15113 (13)0.38022 (9)0.48527 (13)0.0378 (4)
C110.03847 (14)0.35631 (10)0.50146 (15)0.0470 (5)
H11A0.01340.38250.55440.056*
H11B0.01330.36270.44000.056*
C120.04175 (14)0.28339 (10)0.53044 (14)0.0440 (4)
H12A0.02750.27040.55120.053*
H12B0.05330.25610.47320.053*
C130.55041 (15)0.41623 (10)0.45945 (16)0.0500 (5)
H13A0.55500.41400.53150.075*
H13B0.61220.44080.44260.075*
H13C0.55090.37180.43240.075*
C140.1883 (2)0.56543 (12)0.3465 (2)0.0779 (8)
H14A0.12180.54790.30860.117*
H14B0.21000.60490.31400.117*
H14C0.17570.57640.41350.117*
C150.29176 (15)0.22565 (9)0.55389 (13)0.0395 (4)
H150.35910.22980.53080.047*
C160.24431 (17)0.16624 (9)0.54662 (14)0.0472 (5)
H160.17870.16290.57290.057*
C170.28167 (19)0.10508 (10)0.50260 (15)0.0549 (5)
C180.2213 (2)0.04692 (12)0.50706 (19)0.0752 (7)
H180.15840.04820.53770.090*
C190.2514 (3)0.01269 (14)0.4675 (3)0.0998 (10)
H190.21090.05140.47280.120*
C200.3413 (4)0.01327 (15)0.4210 (3)0.1013 (11)
C210.4042 (3)0.04191 (16)0.4146 (2)0.0947 (9)
H210.46680.03950.38340.114*
C220.3745 (2)0.10199 (13)0.45488 (19)0.0722 (7)
H220.41660.14010.45000.087*
C230.42494 (13)0.28281 (8)0.73462 (12)0.0326 (4)
C240.47051 (15)0.21956 (9)0.73820 (13)0.0410 (4)
H240.42600.18200.72510.049*
C250.58436 (15)0.21315 (10)0.76187 (14)0.0459 (5)
H250.61590.17080.76410.055*
C260.65137 (15)0.26837 (11)0.78215 (14)0.0474 (5)
H260.72720.26290.79750.057*
C270.60647 (14)0.33151 (10)0.77980 (13)0.0423 (4)
H270.65130.36880.79400.051*
C280.49324 (13)0.33857 (8)0.75588 (12)0.0345 (4)
C290.42580 (13)0.39880 (8)0.75151 (12)0.0341 (4)
C300.45536 (15)0.46548 (9)0.76487 (14)0.0443 (4)
H300.52900.47760.78030.053*
C310.37401 (16)0.51340 (10)0.75497 (15)0.0475 (5)
H310.39190.55850.76200.057*
C320.26501 (15)0.49335 (9)0.73431 (14)0.0433 (4)
C330.23293 (14)0.42697 (9)0.72277 (13)0.0385 (4)
H330.15900.41490.71130.046*
C340.31515 (13)0.37985 (8)0.72904 (12)0.0329 (4)
C350.24083 (14)0.27307 (9)0.88194 (13)0.0384 (4)
C360.1594 (2)0.25083 (14)1.02722 (15)0.0713 (7)
H36A0.22300.22791.06110.107*
H36B0.09420.23131.04620.107*
H36C0.16330.29711.04600.107*
C370.01561 (14)0.24369 (9)0.73665 (13)0.0370 (4)
C380.11209 (16)0.15487 (11)0.72289 (19)0.0618 (6)
H38A0.13390.16800.78590.093*
H38B0.11290.10700.71790.093*
H38C0.16240.17340.66810.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.222 (3)0.0742 (13)0.166 (2)0.0406 (14)0.0133 (18)0.0555 (13)
N10.0308 (7)0.0492 (9)0.0380 (8)0.0096 (6)0.0040 (6)0.0005 (7)
N20.0622 (13)0.0468 (12)0.0804 (13)0.0162 (9)0.0002 (10)0.0093 (9)
O10.0377 (7)0.0439 (7)0.0566 (8)0.0011 (5)0.0144 (6)0.0108 (6)
O20.0497 (8)0.0468 (8)0.0672 (9)0.0060 (6)0.0115 (7)0.0215 (7)
O30.0975 (15)0.0374 (10)0.185 (2)0.0203 (9)0.0159 (14)0.0024 (12)
O40.0506 (11)0.0768 (13)0.159 (2)0.0209 (9)0.0023 (11)0.0079 (12)
O50.0427 (8)0.0807 (11)0.0438 (7)0.0139 (7)0.0019 (6)0.0032 (7)
O60.0626 (9)0.0714 (10)0.0371 (7)0.0304 (7)0.0149 (6)0.0031 (6)
O70.0495 (9)0.0566 (10)0.1054 (13)0.0024 (7)0.0332 (8)0.0174 (9)
O80.0348 (7)0.0372 (7)0.0637 (8)0.0081 (5)0.0091 (6)0.0017 (6)
C10.0283 (8)0.0379 (10)0.0355 (8)0.0059 (7)0.0053 (6)0.0009 (7)
C20.0283 (8)0.0318 (9)0.0357 (8)0.0020 (7)0.0049 (6)0.0013 (7)
C30.0311 (8)0.0319 (9)0.0379 (9)0.0033 (7)0.0065 (7)0.0005 (7)
C40.0351 (9)0.0294 (9)0.0398 (9)0.0030 (7)0.0092 (7)0.0001 (7)
C50.0335 (9)0.0345 (9)0.0320 (8)0.0015 (7)0.0047 (6)0.0025 (7)
C60.0332 (9)0.0367 (10)0.0371 (9)0.0028 (7)0.0073 (7)0.0014 (7)
C70.0374 (9)0.0381 (10)0.0370 (9)0.0023 (7)0.0102 (7)0.0026 (7)
C80.0447 (10)0.0383 (10)0.0396 (9)0.0010 (8)0.0049 (7)0.0050 (8)
C90.0351 (9)0.0460 (11)0.0461 (10)0.0047 (8)0.0003 (7)0.0045 (8)
C100.0335 (9)0.0426 (10)0.0368 (9)0.0015 (7)0.0042 (7)0.0017 (8)
C110.0321 (9)0.0579 (13)0.0499 (11)0.0006 (8)0.0026 (8)0.0042 (9)
C120.0323 (9)0.0570 (12)0.0412 (10)0.0114 (8)0.0005 (7)0.0004 (9)
C130.0380 (10)0.0506 (12)0.0634 (12)0.0005 (9)0.0143 (9)0.0066 (10)
C140.0654 (15)0.0572 (15)0.113 (2)0.0159 (12)0.0206 (14)0.0364 (14)
C150.0411 (10)0.0393 (10)0.0377 (9)0.0022 (8)0.0049 (7)0.0003 (7)
C160.0550 (12)0.0421 (11)0.0438 (10)0.0064 (9)0.0053 (8)0.0012 (8)
C170.0762 (15)0.0406 (11)0.0442 (11)0.0010 (10)0.0030 (10)0.0032 (9)
C180.108 (2)0.0493 (14)0.0666 (15)0.0164 (13)0.0086 (14)0.0101 (11)
C190.153 (3)0.0460 (16)0.095 (2)0.0113 (18)0.002 (2)0.0190 (15)
C200.151 (3)0.0527 (18)0.093 (2)0.0250 (19)0.003 (2)0.0270 (16)
C210.109 (2)0.078 (2)0.097 (2)0.0287 (18)0.0148 (17)0.0215 (17)
C220.0835 (17)0.0547 (15)0.0780 (16)0.0092 (12)0.0106 (13)0.0112 (12)
C230.0305 (8)0.0351 (9)0.0322 (8)0.0006 (7)0.0046 (6)0.0029 (7)
C240.0435 (10)0.0371 (10)0.0422 (10)0.0017 (8)0.0057 (8)0.0054 (8)
C250.0466 (11)0.0480 (11)0.0440 (10)0.0173 (9)0.0095 (8)0.0055 (8)
C260.0337 (9)0.0649 (14)0.0434 (10)0.0098 (9)0.0048 (8)0.0010 (9)
C270.0293 (9)0.0544 (12)0.0432 (10)0.0026 (8)0.0061 (7)0.0043 (8)
C280.0312 (8)0.0389 (10)0.0338 (8)0.0014 (7)0.0064 (6)0.0004 (7)
C290.0329 (8)0.0350 (9)0.0345 (8)0.0039 (7)0.0052 (7)0.0007 (7)
C300.0389 (10)0.0390 (10)0.0543 (11)0.0091 (8)0.0048 (8)0.0042 (8)
C310.0540 (12)0.0326 (10)0.0561 (11)0.0059 (8)0.0086 (9)0.0058 (8)
C320.0473 (11)0.0362 (10)0.0452 (10)0.0081 (8)0.0033 (8)0.0045 (8)
C330.0321 (9)0.0411 (10)0.0411 (9)0.0011 (7)0.0018 (7)0.0037 (8)
C340.0321 (8)0.0349 (9)0.0317 (8)0.0032 (7)0.0046 (6)0.0000 (7)
C350.0388 (9)0.0380 (10)0.0388 (9)0.0024 (8)0.0075 (8)0.0026 (7)
C360.0868 (17)0.0893 (19)0.0418 (11)0.0339 (14)0.0229 (11)0.0056 (11)
C370.0339 (9)0.0383 (10)0.0392 (9)0.0029 (8)0.0074 (7)0.0002 (7)
C380.0374 (11)0.0574 (14)0.0897 (16)0.0150 (9)0.0065 (10)0.0161 (12)
Geometric parameters (Å, º) top
F1—C201.359 (3)C14—H14A0.9600
N1—C11.468 (2)C14—H14B0.9600
N1—C41.347 (2)C14—H14C0.9600
N1—C121.456 (2)C15—C161.321 (2)
N2—O41.212 (2)C15—H150.9300
N2—O31.215 (3)C16—C171.463 (3)
N2—C321.462 (2)C16—H160.9300
O1—C71.363 (2)C17—C181.387 (3)
O1—C131.425 (2)C17—C221.391 (3)
O2—C81.375 (2)C18—C191.379 (4)
O2—C141.420 (3)C18—H180.9300
O5—C351.209 (2)C19—C201.348 (5)
O6—C351.350 (2)C19—H190.9300
O6—C361.439 (2)C20—C211.358 (5)
O7—C371.191 (2)C21—C221.390 (4)
O8—C371.326 (2)C21—H210.9300
O8—C381.447 (2)C22—H220.9300
C1—C21.630 (2)C23—C241.382 (2)
C1—C51.525 (2)C23—C281.400 (2)
C1—C151.518 (2)C24—C251.393 (3)
C2—C31.525 (2)C24—H240.9300
C2—C231.529 (2)C25—C261.380 (3)
C2—C341.525 (2)C25—H250.9300
C3—C41.353 (2)C26—C271.377 (3)
C3—C351.443 (2)C26—H260.9300
C4—C371.501 (2)C27—C281.387 (2)
C5—C101.385 (2)C27—H270.9300
C5—C61.402 (2)C28—C291.459 (2)
C6—C71.376 (2)C29—C301.388 (2)
C6—H60.9300C29—C341.400 (2)
C7—C81.410 (2)C30—C311.377 (3)
C8—C91.367 (3)C30—H300.9300
C9—C101.401 (3)C31—C321.385 (3)
C9—H90.9300C31—H310.9300
C10—C111.511 (2)C32—C331.388 (3)
C11—C121.509 (3)C33—C341.375 (2)
C11—H11A0.9700C33—H330.9300
C11—H11B0.9700C36—H36A0.9600
C12—H12A0.9700C36—H36B0.9600
C12—H12B0.9700C36—H36C0.9600
C13—H13A0.9600C38—H38A0.9600
C13—H13B0.9600C38—H38B0.9600
C13—H13C0.9600C38—H38C0.9600
C4—N1—C12128.39 (14)C15—C16—H16115.8
C4—N1—C1111.39 (13)C17—C16—H16115.8
C12—N1—C1119.33 (14)C18—C17—C22117.6 (2)
O4—N2—O3122.8 (2)C18—C17—C16118.8 (2)
O4—N2—C32119.05 (19)C22—C17—C16123.5 (2)
O3—N2—C32118.1 (2)C19—C18—C17122.2 (3)
C7—O1—C13116.83 (14)C19—C18—H18118.9
C8—O2—C14115.95 (15)C17—C18—H18118.9
C35—O6—C36115.81 (15)C20—C19—C18118.2 (3)
C37—O8—C38116.59 (15)C20—C19—H19120.9
N1—C1—C15108.95 (13)C18—C19—H19120.9
N1—C1—C5109.93 (13)C19—C20—F1118.9 (4)
C15—C1—C5110.55 (13)C19—C20—C21122.5 (3)
N1—C1—C2101.58 (12)F1—C20—C21118.6 (4)
C15—C1—C2112.79 (13)C20—C21—C22119.5 (3)
C5—C1—C2112.63 (13)C20—C21—H21120.3
C1—C2—C3100.79 (12)C22—C21—H21120.3
C1—C2—C23114.50 (13)C21—C22—C17120.0 (3)
C1—C2—C34111.68 (13)C21—C22—H22120.0
C3—C2—C23118.26 (13)C17—C22—H22120.0
C3—C2—C34110.82 (13)C24—C23—C28119.73 (15)
C23—C2—C34101.17 (12)C24—C23—C2130.09 (15)
C4—C3—C35126.87 (15)C28—C23—C2110.17 (14)
C4—C3—C2108.86 (14)C23—C24—C25118.69 (17)
C35—C3—C2122.85 (14)C23—C24—H24120.7
N1—C4—C3113.65 (14)C25—C24—H24120.7
N1—C4—C37116.21 (14)C26—C25—C24121.31 (17)
C3—C4—C37130.13 (16)C26—C25—H25119.3
C10—C5—C6119.31 (15)C24—C25—H25119.3
C10—C5—C1122.05 (15)C27—C26—C25120.34 (17)
C6—C5—C1118.60 (14)C27—C26—H26119.8
C7—C6—C5121.56 (15)C25—C26—H26119.8
C7—C6—H6119.2C26—C27—C28118.90 (18)
C5—C6—H6119.2C26—C27—H27120.6
O1—C7—C6125.13 (15)C28—C27—H27120.6
O1—C7—C8115.87 (15)C27—C28—C23121.03 (16)
C6—C7—C8119.00 (15)C27—C28—C29129.60 (16)
C9—C8—O2124.62 (16)C23—C28—C29109.34 (14)
C9—C8—C7119.22 (16)C30—C29—C34121.00 (16)
O2—C8—C7116.16 (15)C30—C29—C28130.80 (16)
C8—C9—C10122.12 (16)C34—C29—C28108.19 (14)
C8—C9—H9118.9C31—C30—C29119.04 (17)
C10—C9—H9118.9C31—C30—H30120.5
C5—C10—C9118.70 (15)C29—C30—H30120.5
C5—C10—C11121.96 (16)C30—C31—C32118.90 (17)
C9—C10—C11119.34 (15)C30—C31—H31120.6
C12—C11—C10110.72 (15)C32—C31—H31120.6
C12—C11—H11A109.5C31—C32—C33123.32 (17)
C10—C11—H11A109.5C31—C32—N2118.48 (17)
C12—C11—H11B109.5C33—C32—N2118.18 (17)
C10—C11—H11B109.5C34—C33—C32117.13 (16)
H11A—C11—H11B108.1C34—C33—H33121.4
N1—C12—C11108.14 (14)C32—C33—H33121.4
N1—C12—H12A110.1C33—C34—C29120.54 (16)
C11—C12—H12A110.1C33—C34—C2128.47 (15)
N1—C12—H12B110.1C29—C34—C2110.97 (14)
C11—C12—H12B110.1O5—C35—O6122.31 (16)
H12A—C12—H12B108.4O5—C35—C3125.50 (16)
O1—C13—H13A109.5O6—C35—C3112.15 (14)
O1—C13—H13B109.5O6—C36—H36A109.5
H13A—C13—H13B109.5O6—C36—H36B109.5
O1—C13—H13C109.5H36A—C36—H36B109.5
H13A—C13—H13C109.5O6—C36—H36C109.5
H13B—C13—H13C109.5H36A—C36—H36C109.5
O2—C14—H14A109.5H36B—C36—H36C109.5
O2—C14—H14B109.5O7—C37—O8125.07 (16)
H14A—C14—H14B109.5O7—C37—C4124.57 (17)
O2—C14—H14C109.5O8—C37—C4110.09 (14)
H14A—C14—H14C109.5O8—C38—H38A109.5
H14B—C14—H14C109.5O8—C38—H38B109.5
C16—C15—C1125.11 (17)H38A—C38—H38B109.5
C16—C15—H15117.4O8—C38—H38C109.5
C1—C15—H15117.4H38A—C38—H38C109.5
C15—C16—C17128.4 (2)H38B—C38—H38C109.5

Experimental details

Crystal data
Chemical formulaC38H31FN2O8
Mr662.65
Crystal system, space groupMONOCLINIC, P21/n
Temperature (K)298
a, b, c (Å)12.2895 (16), 20.015 (3), 13.4042 (18)
β (°) 98.739 (2)
V3)3258.8 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.962, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
14831, 6400, 4837
Rint0.035
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.143, 1.01
No. of reflections6400
No. of parameters447
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.25

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1999), SHELXTL.

Selected geometric parameters (Å, º) top
N1—C11.468 (2)C2—C231.529 (2)
N1—C41.347 (2)C2—C341.525 (2)
N1—C121.456 (2)C10—C111.511 (2)
C1—C21.630 (2)C11—C121.509 (3)
C1—C51.525 (2)C15—C161.321 (2)
C1—C151.518 (2)C16—C171.463 (3)
C2—C31.525 (2)C28—C291.459 (2)
C1—C2—C3100.79 (12)C3—C2—C23118.26 (13)
C1—C2—C23114.50 (13)C3—C2—C34110.82 (13)
C1—C2—C34111.68 (13)C23—C2—C34101.17 (12)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds