Download citation
Download citation
link to html
The structure of the cation in the yl­ide hydro­chloride [Me3NNHC(O)C6H4-Cl-p]Cl·H2O, or C10H14ClN2O+·Cl·H2O, is compared with that of the free yl­ide. Protonation lengthens the N—C(O) bond but shortens the C=O and N—N bonds by ∼0.03 Å and increases the dihedral angle between the phenyl and yl­ide planes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103029421/gd1295sup1.cif
Contains datablocks global, IIa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103029421/gd1295IIasup2.hkl
Contains datablock IIa

CCDC reference: 233131

Comment top

The structures of trimethylammonio-nitrogen ylides, Me3N(+)—N(-)—X, (I), are known for many of the common electron-withdrawing stabilizing groups X, such as C(O)C6H4—Cl-p [(Ia); Morris et al., 2003], P(O)Ph2 [(Ib); Muir et al., 1999], SO2Tol [(Ic); Cameron et al., 1976], C6Cl3N2 [(Id); Kartsev et al., 1994], C(O)Ph [(Ie); Cameron et al., 1972] and NO2 [(If); Smith et al., 1997; Cameron et al., 1972]. These compounds are bases and form hydrochlorides [Me3N—NH—X]+Cl, (II). In the course of studying the ability of nitrogen ylides, (I), to act as ligands (Morris et al., 2003), we were surprised to find that there is no structural example of a corresponding hydrochloride, (II) (QUEST and CONQUEST search programs were used with Version 5.24 of the Cambridge Structural Database (Allen, 2002; 272066 entries, November 2002) to obtain results not otherwise accessible]. Accordingly, we report here the structure of (IIa), X = C(O)C6H4—Cl-p, and compare it with that of its parent ylide, (Ia).

Crystals of (IIa) contain equal numbers of [Me3NNHC(O)C6H4—Cl-p]+ cations, Cl anions and water molecules. Conventional hydrogen bonds link the Cl anions and water molecules into infinite chains (Fig. 1 and Table 2) running along b: each H2O unit bridges Cl ions related by the operation of a 21 screw axis. An N—H···O hydrogen bond links each cation to a chain. The structure also contains C—H···Cl hydrogen bonds [C1···Cl1ii = 3.611 (2) Å and C3···Cl1iii = 3.703 (2) Å; symmetry codes: (ii) 1 − x, 1/2 + y, 1/2 − z; (iii) 1 + x, y, z] and ππ interactions between interleaved phenyl rings (see Fig. 2), which lead to several short C···C contacts, the shortest being C6···C8iv [3.308 (2) Å; symmetry code: (iv) 2 − x, 1 − y, −z] and C8···C10v [3.346 (2) Å;symmetry code: (v) 1 − x, 1 − y, −z]. Except for the C1—H···Cl1ii hydrogen bond, these interactions link different chains together.

Protonation of (Ia) at atom N1 causes only minor changes in conformation and bonding. The N1—C4—C5–C6 torsion angle opens from −5.1 (2)° in (Ia) to −21.2 (2)° in (IIa), thereby relieving the intramolecular H1···H6 contact of 2.23 Å. In (IIa), atoms Cl2 and C4–C10 are coplanar to within 0.008 (1) Å, and the sequence C3—N2—N1—C4—C5 is nearly planar, with torsion angles across N2—N1 and N1—C4 of 179.3 (1) and −176.7 (1)° [cf. 178.7 (1) and −179.7 (1)° in (Ia)]. The N1—C4 and C4—O1 bond lengths in (IIa) [1.374 (2) and 1.221 (2) Å] are respectively longer and shorter than corresponding values in (Ia) [1.338 (2) and 1.258 (2) Å] and (Ie) [1.313 (6) and 1.243 (5) Å], indicating less delocalization across the N—C bond in the hydrochloride, though rehydridization at atom N1 may also be significant (see below). More surprisingly, given the larger coordination number of atom N1 in (IIa), its N1—N2 bond [1.447 (2) Å] is shorter than the value in (Ia) [1.474 (2) Å]. N—N bonds in (Ia)–(If) fall in the narrow range 1.470–1.476 Å, except for the value in (Ib) [1.450 (4) Å]. The N2—N1—C4 angle in (IIa) of 119.7 (1)° is more obtuse than the values in (Ia) [113.5 (1)°] or (Ie) [114.2 (3)°]. A change in the hybridization at atom N1, so that it contributes more s-character to the N1—N2 and N1—C4 bonds of (IIa) than to the corresponding bonds of (Ia), would explain these trends. Although the zwitterion Me3N(+)NHCH2CH2CO2 is formally analogous to (II), its three-coordinate N atom is linked to the unsaturated –CO2 group through a fully saturated C atom, resulting in marked differences in coordination [N—N = 1.491, N—C = 1.444,Å and N—N—C = 113.9°; Kemme et al., 1983; Allen & Kennard, 1993] from (IIa).

The atomic Uij values are moderately well reproduced by a TLS analysis (Schomacher & Trueblood, 1968) [R2 = (ΣΔU2/ΣU2)1/2 = 0.13]; they also pass the Hirshfeld (1976) rigid-bond test; the worst discrepancy is ΔU = 0.0021 (8) Å2 for C4—O1.

Experimental top

An aqueous solution of the parent ylide was prepared by the method of Morris et al. (2003). It was then added to an equimolar quantity of 0.1 M HCl. The resulting solution was concentrated by heating in a rotarary evaporator to the point where crystals of the title compound precipitated on cooling.

Refinement top

Non-H atoms were refined anisotropically and all H-atoms were initially located from difference syntheses. H atoms bonded to atoms N1 and O1W were refined freely. The positions of other H atoms were finally determined using the HFIX function and riding constraints of SHELXL97 (Sheldrick, 1997), assuming C—H bond lengths of 0.95 and 0.98 Å, respectively, for sp2 and sp3 C atoms. For each methyl group, a single orientation parameter was also refined.

Computing details top

Data collection: Collect (Nonius BV, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO (Otwinowski & Minor 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (IIa), with displacement ellipsoids shown at the 50% probability level. Hydrogen bonds are shown as broken lines.
[Figure 2] Fig. 2. A view of the unit-cell contents (H-atoms omitted).
(IIa) top
Crystal data top
C10H14ClN2O+·Cl·H2OF(000) = 560
Mr = 267.15Dx = 1.437 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2648 reflections
a = 7.0302 (2) Åθ = 1.0–27.5°
b = 9.9377 (2) ŵ = 0.51 mm1
c = 17.8571 (5) ÅT = 100 K
β = 98.279 (1)°Needle, colourless
V = 1234.57 (6) Å30.4 × 0.12 × 0.12 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.049
CCD rotation images, thick slice scansθmax = 27.5°, θmin = 2.4°
10868 measured reflectionsh = 99
2806 independent reflectionsk = 1212
2465 reflections with I > 2σ(I)l = 2323
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.026P)2 + 0.67P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.35 e Å3
2806 reflectionsΔρmin = 0.29 e Å3
160 parameters
Crystal data top
C10H14ClN2O+·Cl·H2OV = 1234.57 (6) Å3
Mr = 267.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0302 (2) ŵ = 0.51 mm1
b = 9.9377 (2) ÅT = 100 K
c = 17.8571 (5) Å0.4 × 0.12 × 0.12 mm
β = 98.279 (1)°
Data collection top
Nonius KappaCCD
diffractometer
2465 reflections with I > 2σ(I)
10868 measured reflectionsRint = 0.049
2806 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.35 e Å3
2806 reflectionsΔρmin = 0.29 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6093 (2)1.04442 (15)0.12359 (8)0.0160 (3)
H1A0.59011.04780.06820.024*
H1B0.61311.13620.14380.024*
H1C0.50300.99490.14080.024*
C20.9659 (2)1.04958 (15)0.12910 (9)0.0169 (3)
H2A1.0840.99860.14540.025*
H2B0.97511.13820.15350.025*
H2C0.94891.06090.0740.025*
C30.8211 (2)0.96659 (15)0.23638 (8)0.0160 (3)
H3A0.71270.91740.25210.024*
H3B0.82541.05780.25740.024*
H3C0.94110.91960.25490.024*
C40.77291 (18)0.81360 (14)0.04700 (8)0.0122 (3)
C50.76383 (18)0.66760 (14)0.02648 (8)0.0123 (3)
C60.83602 (19)0.56595 (14)0.07634 (8)0.0133 (3)
H60.89380.58830.12620.016*
C70.82417 (19)0.43234 (14)0.05375 (8)0.0140 (3)
H70.87350.36290.08760.017*
C80.73898 (19)0.40194 (14)0.01925 (8)0.0138 (3)
C90.66555 (19)0.50115 (15)0.06997 (8)0.0148 (3)
H90.60670.47820.11960.018*
C100.67965 (19)0.63441 (14)0.04700 (8)0.0138 (3)
H100.63190.70360.08130.017*
Cl10.32457 (5)0.84579 (3)0.262707 (19)0.01625 (10)
Cl20.72520 (5)0.23452 (3)0.04804 (2)0.01815 (10)
N10.79562 (17)0.83738 (12)0.12357 (7)0.0126 (2)
N20.79629 (16)0.97424 (11)0.15125 (6)0.0124 (2)
O10.76408 (14)0.90229 (10)0.00071 (6)0.0155 (2)
O1W0.67018 (16)0.66488 (12)0.22895 (6)0.0202 (2)
H10.758 (3)0.7808 (19)0.1548 (10)0.023 (5)*
H1W0.558 (3)0.696 (2)0.2388 (13)0.047 (6)*
H2W0.664 (3)0.587 (3)0.2300 (14)0.056 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0146 (6)0.0132 (7)0.0195 (7)0.0039 (5)0.0006 (5)0.0017 (6)
C20.0155 (7)0.0140 (7)0.0210 (7)0.0044 (5)0.0019 (5)0.0007 (6)
C30.0199 (7)0.0149 (7)0.0128 (7)0.0000 (6)0.0006 (5)0.0020 (6)
C40.0090 (6)0.0126 (7)0.0151 (6)0.0011 (5)0.0021 (5)0.0001 (6)
C50.0097 (6)0.0130 (7)0.0147 (7)0.0008 (5)0.0034 (5)0.0012 (6)
C60.0132 (6)0.0138 (7)0.0127 (6)0.0013 (5)0.0017 (5)0.0008 (6)
C70.0141 (6)0.0128 (7)0.0155 (7)0.0013 (5)0.0030 (5)0.0017 (6)
C80.0128 (6)0.0108 (7)0.0186 (7)0.0013 (5)0.0049 (5)0.0040 (6)
C90.0124 (6)0.0179 (7)0.0141 (7)0.0001 (5)0.0014 (5)0.0027 (6)
C100.0125 (6)0.0147 (7)0.0141 (7)0.0026 (5)0.0016 (5)0.0013 (6)
Cl10.01776 (17)0.01201 (17)0.01916 (18)0.00229 (12)0.00327 (12)0.00137 (13)
Cl20.01974 (18)0.01195 (17)0.02273 (19)0.00116 (13)0.00290 (13)0.00496 (14)
N10.0159 (6)0.0073 (6)0.0146 (6)0.0004 (4)0.0027 (4)0.0001 (5)
N20.0135 (5)0.0088 (5)0.0145 (6)0.0001 (4)0.0010 (4)0.0011 (5)
O10.0176 (5)0.0128 (5)0.0161 (5)0.0006 (4)0.0021 (4)0.0026 (4)
O1W0.0240 (6)0.0121 (6)0.0263 (6)0.0013 (4)0.0099 (4)0.0031 (5)
Geometric parameters (Å, º) top
C1—N21.5072 (17)C5—C61.3931 (19)
C1—H1A0.98C5—C101.3989 (19)
C1—H1B0.98C6—C71.387 (2)
C1—H1C0.98C6—H60.95
C2—N21.5084 (17)C7—C81.3872 (19)
C2—H2A0.98C7—H70.95
C2—H2B0.98C8—C91.387 (2)
C2—H2C0.98C8—Cl21.7399 (14)
C3—N21.5069 (17)C9—C101.386 (2)
C3—H3A0.98C9—H90.95
C3—H3B0.98C10—H100.95
C3—H3C0.98N1—N21.4469 (16)
C4—O11.2212 (17)N1—H10.860 (19)
C4—N11.3739 (18)O1W—H1W0.89 (2)
C4—C51.4956 (19)O1W—H2W0.78 (3)
N2—C1—H1A109.5C7—C6—H6119.8
N2—C1—H1B109.5C5—C6—H6119.8
H1A—C1—H1B109.5C6—C7—C8118.79 (13)
N2—C1—H1C109.5C6—C7—H7120.6
H1A—C1—H1C109.5C8—C7—H7120.6
H1B—C1—H1C109.5C9—C8—C7121.90 (13)
N2—C2—H2A109.5C9—C8—Cl2119.15 (11)
N2—C2—H2B109.5C7—C8—Cl2118.94 (11)
H2A—C2—H2B109.5C10—C9—C8118.81 (13)
N2—C2—H2C109.5C10—C9—H9120.6
H2A—C2—H2C109.5C8—C9—H9120.6
H2B—C2—H2C109.5C9—C10—C5120.37 (13)
N2—C3—H3A109.5C9—C10—H10119.8
N2—C3—H3B109.5C5—C10—H10119.8
H3A—C3—H3B109.5C4—N1—N2119.73 (11)
N2—C3—H3C109.5C4—N1—H1122.0 (12)
H3A—C3—H3C109.5N2—N1—H1112.3 (12)
H3B—C3—H3C109.5N1—N2—C3106.94 (10)
O1—C4—N1123.85 (13)N1—N2—C1111.30 (10)
O1—C4—C5122.22 (12)C3—N2—C1108.82 (11)
N1—C4—C5113.92 (12)N1—N2—C2109.92 (10)
C6—C5—C10119.64 (13)C3—N2—C2107.98 (10)
C6—C5—C4123.24 (12)C1—N2—C2111.69 (11)
C10—C5—C4117.13 (12)H1W—O1W—H2W107 (2)
C7—C6—C5120.48 (13)
O1—C4—C5—C6157.62 (13)Cl2—C8—C9—C10179.04 (10)
N1—C4—C5—C621.17 (18)C8—C9—C10—C51.0 (2)
O1—C4—C5—C1021.75 (19)C6—C5—C10—C90.9 (2)
N1—C4—C5—C10159.46 (12)C4—C5—C10—C9179.76 (12)
C10—C5—C6—C70.3 (2)O1—C4—N1—N24.53 (19)
C4—C5—C6—C7179.64 (12)C5—C4—N1—N2176.70 (11)
C5—C6—C7—C80.1 (2)C4—N1—N2—C3179.31 (11)
C6—C7—C8—C90.1 (2)C4—N1—N2—C160.57 (15)
C6—C7—C8—Cl2179.59 (10)C4—N1—N2—C263.71 (14)
C7—C8—C9—C100.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.86 (2)1.92 (2)2.7813 (17)176 (2)
O1W—H1W···Cl10.89 (2)2.30 (2)3.1497 (12)160 (2)
O1W—H2W···Cl1i0.78 (3)2.40 (3)3.1745 (12)175 (2)
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H14ClN2O+·Cl·H2O
Mr267.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.0302 (2), 9.9377 (2), 17.8571 (5)
β (°) 98.279 (1)
V3)1234.57 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.4 × 0.12 × 0.12
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10868, 2806, 2465
Rint0.049
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.073, 1.05
No. of reflections2806
No. of parameters160
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.29

Computer programs: Collect (Nonius BV, 2000), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO (Otwinowski & Minor 1997) and SCALEPACK, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
C4—O11.2212 (17)C4—C51.4956 (19)
C4—N11.3739 (18)N1—N21.4469 (16)
O1—C4—N1123.85 (13)C4—N1—N2119.73 (11)
O1—C4—C5122.22 (12)C4—N1—H1122.0 (12)
N1—C4—C5113.92 (12)N2—N1—H1112.3 (12)
N1—C4—C5—C621.17 (18)C5—C4—N1—N2176.70 (11)
N1—C4—C5—C10159.46 (12)C4—N1—N2—C3179.31 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.86 (2)1.92 (2)2.7813 (17)176 (2)
O1W—H1W···Cl10.89 (2)2.30 (2)3.1497 (12)160 (2)
O1W—H2W···Cl1i0.78 (3)2.40 (3)3.1745 (12)175 (2)
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds