Download citation
Download citation
link to html
The title compound, C15H8O7S, contains the first structurally characterized example of a cyclic sulfate grouping fused to an aromatic ring system.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103020420/gd1278sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103020420/gd1278Isup2.hkl
Contains datablock I

CCDC reference: 226119

Comment top

The title compound, (I), was prepared as an intermediate in the synthesis of carminomycinone systems (Cameron et al., 1989). It is an unusual example of a cyclic sulfate system fused to an aromatic array, and as such was considered worthy of structural confirmation and definition, as described here.

The results of the room-temperature single-crystal X-ray study are consistent in terms of stoichiometry and connectivity with the formulation proposed (Fig. 1). The fused C14 carbocyclic ring system is essentially planar (χ2 2170) (Fig. 2); the molecules are stacked normal to the bc cell diagonal, with the methoxy methyl group projecting normal to the plane, presumably in consequence of the steric demands of atoms H6 and O8, which lie on opposite faces of the molecule; the S atom lies out of the plane by 0.637 (2) Å.

The geometry of the anthracenoid carbocyclic array in (I) (Table 1) can be compared with that of a usefully precise determination of the unsubstituted parent 1,4-anthraquinone (polymorph 1) also at room-temperature (Dzyabchenko & Zavodnik, 1984) and the corresponding values are generally very similar. In the quinonoid ring, the asymmetries in the exocyclic angles at atoms C8 and C11 are consistent, suggesting that the origin lies not in steric interactions with the substituents at atoms C1 and C7, but rather in the increased C7a—C11a separation compared with C9—C10; the latter is a typical double bond, and the former is greater than 1.427 (4) Å in both. Disparities are observed in the C1—C1a—C3—C4, string, in the associated angles, rather than the distances, presumably consequent upon the introduction of substituents at atoms C1 and C3; the angles at these atoms (C11a—C1—C1a and C1a—C3—C4) are slightly larger in (I) and the C1—C1a—C3 angle is slightly smaller. In both compounds, C7—C7a and C1—C11a lie well below 1.40 Å, with all distances in the C1—C1a—C6a—C7 string being above that value. In the non-quinonoid peripheral ring, the distances in the C3—C1a—C6a—-C6 string are all above 1.40 Å, and those in the C3—C6 string are close to or below that value, with considerable double-bond character in the C3—C4 and C5—C6 bonds, typical of naphthalene-type bond fixation.

The sulfate ring is essentially symmetrical about the quasi-mirror plane containing atoms C1a, S, O21 and O22; the angles at the C and O atoms are all greater than 116°, but the only O—S—O angle is just 101.15 (8)°, compensated by a greatly enlarged O21—S2—O22 angle between the two short S—O bonds. Torsion angles are given in Table 1. Compound (I) is the first example of a sulfate substituting a pair of aromatic sites, although there are a limited number of other examples of systems incorporating rigid support of other types. Nevertheless, O···O distances bridged by the simple polymethylene sequences (CH2)n, (for n=2, 3 or 4,), 2.32, 2.421 (3), 2.415 (3)/2.427 (3) Å, respectively (Boer et al., 1968; Lowe et al., 1988; Kruger et al., 1998), suggest the present value [O1···O3 = 2.433 (2) Å] to be relatively unstrained.

Experimental top

The synthesis is recorded in Cameron et al. (1989). Crystals (m.p. 210–213°) were obtained from light petroleum. Analysis found: C 54.2, H 2.5, S 9.7; C15H8O7S requires C 54.2, H 2.4, S 9.6%. λmax (log ε)236, 283 s h, 295 s h, 330 s h, 415 nm (4.70, 3.82, 3.80, 3.47, 3.71). νmax 1660, 1618 cm−1. δ 4,10, s, OCH3; 6.98, s, H9, H10; 7.50, dd, J8, 1 Hz, H4; 7.84, t, J 8 Hz, H5; 8.31, dd, J 8, 1 Hz, H6. m/z 332 (M+ 100%).

Refinement top

H atoms were found in difference Fourier maps and were placed at idealized positions [C—H = 0.95 Å, Uiso(H) = 1.25Ueq(C) for CH and 1.5Ueq(C) for CH3] and not refined.

Computing details top

Data collection: Enraf Nonius software; cell refinement: Enraf Nonius software; data reduction: Xtal (Hall et al., 1995); program(s) used to solve structure: Xtal; program(s) used to refine structure: CRYLSQ in Xtal; molecular graphics: Xtal; software used to prepare material for publication: BONDLA CIFIO in Xtal.

Figures top
[Figure 1] Fig. 1. Projection of a single molecule of (I) normal to the aromatic plane. Displacement ellipsoids are shown at the 20% probability level for non-H atoms and H atoms are shown as spheres of arbitrary radii (0.1 Å).
[Figure 2] Fig. 2. Unit-cell contents projected along c (H atoms have been omitted) showing the crystal packing.
(I) top
Crystal data top
C15H8O7SZ = 2
Mr = 332.29F(000) = 340
Triclinic, P1Dx = 1.69 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 9.359 (2) ÅCell parameters from 6 reflections
b = 9.406 (2) Åθ = 19.8–21.1°
c = 9.509 (2) ŵ = 0.29 mm1
α = 68.05 (2)°T = 293 K
β = 64.17 (2)°Block, colourless
γ = 62.58 (1)°0.42 × 0.2 × 0.2 mm
V = 652.9 (3) Å3
Data collection top
CAD4
diffractometer
θmax = 32.5°, θmin = 2.4°
Radiation source: sealed tubeh = 014
Graphite monochromatork = 1214
2θω scansl = 1212
4485 measured reflections6 standard reflections every 60 min
4485 independent reflections intensity decay: none
3316 reflections with I > 3σ(I)
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.058H-atom parameters not refined
S = 1.01 w = 1/(σ2(Fo) + 0.0003F2)
where σ(I) = [σ(I)meas + .0004(Inet)2]1/2
3316 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.30 e Å3
0 constraints
Crystal data top
C15H8O7Sγ = 62.58 (1)°
Mr = 332.29V = 652.9 (3) Å3
Triclinic, P1Z = 2
a = 9.359 (2) ÅMo Kα radiation
b = 9.406 (2) ŵ = 0.29 mm1
c = 9.509 (2) ÅT = 293 K
α = 68.05 (2)°0.42 × 0.2 × 0.2 mm
β = 64.17 (2)°
Data collection top
CAD4
diffractometer
3316 reflections with I > 3σ(I)
4485 measured reflections6 standard reflections every 60 min
4485 independent reflections intensity decay: none
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.058H-atom parameters not refined
S = 1.01Δρmax = 0.35 e Å3
3316 reflectionsΔρmin = 0.30 e Å3
208 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3823 (2)0.2112 (2)0.5455 (2)0.0359 (18)
O10.26906 (18)0.12588 (17)0.62353 (16)0.0455 (16)
S20.23601 (7)0.05250 (6)0.80860 (6)0.0454 (5)
O210.1547 (2)0.0579 (2)0.8497 (2)0.066 (2)
O220.16749 (19)0.17939 (19)0.88886 (17)0.0539 (18)
C1a0.5196 (2)0.1553 (2)0.6018 (2)0.0359 (17)
C30.5410 (2)0.0253 (2)0.7356 (2)0.042 (2)
O30.42242 (19)0.05549 (17)0.81311 (17)0.0509 (17)
C40.6739 (3)0.0307 (3)0.7897 (3)0.052 (2)
C50.7948 (3)0.0452 (3)0.7077 (3)0.057 (3)
C60.7818 (3)0.1718 (3)0.5773 (3)0.051 (3)
C6a0.6422 (2)0.2309 (2)0.5216 (2)0.039 (2)
C70.6202 (2)0.3638 (2)0.3869 (2)0.041 (2)
O70.7336 (2)0.4408 (2)0.32403 (18)0.058 (2)
C710.8695 (3)0.4004 (3)0.1808 (3)0.060 (3)
C7a0.4844 (3)0.4164 (2)0.3340 (2)0.041 (2)
C80.4577 (3)0.5587 (3)0.1968 (2)0.053 (2)
O80.5579 (3)0.6298 (2)0.1170 (2)0.084 (3)
C90.3013 (4)0.6148 (3)0.1590 (3)0.067 (3)
C100.1890 (4)0.5420 (3)0.2342 (3)0.064 (3)
C110.2098 (3)0.3962 (3)0.3635 (3)0.049 (2)
O110.1078 (3)0.3277 (3)0.4229 (3)0.077 (3)
C11a0.3599 (2)0.3379 (2)0.4162 (2)0.0376 (19)
H40.684020.119370.881340.06400*
H50.889580.008120.744260.07200*
H60.866830.221450.523180.06300*
H71a0.969360.319930.207160.09100*
H71b0.894450.495490.111990.09100*
H71c0.839340.356980.126030.09100*
H90.279720.710190.074860.08200*
H100.088890.586440.202760.08000*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0371 (8)0.0379 (8)0.0322 (8)0.0176 (7)0.0084 (6)0.0049 (6)
O10.0515 (8)0.0524 (8)0.0396 (7)0.0329 (6)0.0147 (6)0.0017 (6)
S20.0486 (3)0.0448 (2)0.0395 (2)0.0262 (2)0.00916 (18)0.00066 (17)
O210.0751 (11)0.0650 (10)0.0625 (10)0.0501 (9)0.0139 (8)0.0041 (8)
O220.0515 (8)0.0564 (9)0.0454 (8)0.0217 (7)0.0065 (6)0.0102 (6)
C1a0.0353 (8)0.0358 (8)0.0334 (8)0.0132 (6)0.0090 (6)0.0060 (6)
C30.0424 (9)0.0381 (9)0.0392 (9)0.0130 (7)0.0126 (7)0.0035 (7)
O30.0537 (8)0.0386 (7)0.0491 (8)0.0195 (6)0.0170 (6)0.0065 (6)
C40.0509 (11)0.0460 (10)0.0511 (11)0.0061 (9)0.0248 (9)0.0058 (9)
C50.0429 (10)0.0631 (13)0.0642 (14)0.0070 (10)0.0257 (10)0.0170 (11)
C60.0366 (9)0.0627 (13)0.0550 (12)0.0182 (9)0.0101 (8)0.0195 (10)
C6a0.0357 (8)0.0426 (9)0.0383 (8)0.0162 (7)0.0064 (7)0.0108 (7)
C70.0434 (9)0.0426 (9)0.0354 (8)0.0236 (8)0.0014 (7)0.0097 (7)
O70.0626 (9)0.0716 (10)0.0480 (8)0.0473 (8)0.0034 (7)0.0161 (7)
C710.0499 (12)0.0708 (15)0.0536 (12)0.0341 (11)0.0045 (9)0.0154 (11)
C7a0.0493 (10)0.0364 (8)0.0303 (8)0.0183 (7)0.0069 (7)0.0040 (6)
C80.0652 (13)0.0416 (10)0.0362 (9)0.0191 (9)0.0084 (9)0.0012 (7)
O80.0746 (12)0.0611 (11)0.0699 (11)0.0302 (9)0.0070 (9)0.0212 (9)
C90.097 (2)0.0515 (13)0.0490 (12)0.0249 (13)0.0389 (13)0.0086 (10)
C100.0843 (18)0.0560 (13)0.0620 (14)0.0192 (12)0.0481 (14)0.0002 (11)
C110.0555 (11)0.0500 (11)0.0458 (10)0.0173 (9)0.0254 (9)0.0070 (8)
O110.0736 (12)0.0884 (13)0.0859 (13)0.0436 (11)0.0489 (10)0.0111 (10)
C11a0.0421 (9)0.0383 (8)0.0321 (8)0.0157 (7)0.0119 (7)0.0054 (6)
Geometric parameters (Å, º) top
C1—O11.404 (3)C6a—C71.428 (2)
C1—C1a1.408 (3)C7—O71.356 (3)
C1—C11a1.369 (2)C7—C7a1.380 (3)
O1—S21.5759 (14)O7—C711.431 (3)
S2—O211.405 (3)C71—H71a0.959
S2—O221.403 (2)C71—H71b0.951
S2—O31.5741 (17)C71—H71c0.955
C1a—C31.410 (2)C7a—C81.493 (2)
C1a—C6a1.410 (3)C7a—C11a1.443 (3)
C3—O31.414 (3)C8—O81.217 (4)
C3—C41.356 (4)C8—C91.468 (5)
C4—C51.399 (4)C9—C101.314 (5)
C4—H40.959C9—H90.961
C5—C61.366 (3)C10—C111.461 (3)
C5—H50.960C10—H100.965
C6—C6a1.418 (4)C11—O111.212 (4)
C6—H60.960C11—C11a1.492 (4)
O1—C1—C1a117.06 (14)C6a—C7—O7115.4 (2)
O1—C1—C11a119.7 (2)C6a—C7—C7a121.4 (2)
C1a—C1—C11a123.2 (2)O7—C7—C7a123.01 (16)
C1—O1—S2117.08 (17)C7—O7—C71117.1 (2)
O1—S2—O21105.98 (12)O7—C71—H71a109.7
O1—S2—O22109.70 (9)O7—C71—H71b110.1
O1—S2—O3101.15 (8)O7—C71—H71c110.4
O21—S2—O22122.14 (10)H71a—C71—H71b108.6
O21—S2—O3106.17 (10)H71a—C71—H71c108.9
O22—S2—O3109.64 (12)H71b—C71—H71c109.1
C1—C1a—C3122.8 (2)C7—C7a—C8121.6 (2)
C1—C1a—C6a119.18 (15)C7—C7a—C11a119.98 (16)
C3—C1a—C6a118.0 (2)C8—C7a—C11a118.3 (2)
C1a—C3—O3118.5 (2)C7a—C8—O8123.2 (3)
C1a—C3—C4123.2 (2)C7a—C8—C9117.5 (2)
O3—C3—C4118.23 (17)O8—C8—C9119.3 (2)
S2—O3—C3116.04 (11)C8—C9—C10123.7 (2)
C3—C4—C5117.9 (2)C8—C9—H9118.2
C3—C4—H4120.8C10—C9—H9118.2
C5—C4—H4121.3C9—C10—C11122.5 (3)
C4—C5—C6121.9 (3)C9—C10—H10118.8
C4—C5—H5119.4C11—C10—H10118.6
C6—C5—H5118.7C10—C11—O11120.1 (3)
C5—C6—C6a120.1 (2)C10—C11—C11a117.1 (2)
C5—C6—H6120.1O11—C11—C11a122.83 (19)
C6a—C6—H6119.7C1—C11a—C7a117.9 (2)
C1a—C6a—C6118.81 (17)C1—C11a—C11121.4 (2)
C1a—C6a—C7118.3 (2)C7a—C11a—C11120.71 (16)
C6—C6a—C7122.9 (2)
C1a—C1—O1—S233.7 (2)C5—C6—C6a—C1a0.9 (4)
C11a—C1—O1—S2149.08 (15)C5—C6—C6a—C7179.4 (2)
O1—C1—C1a—C33.3 (3)C1a—C6a—C7—O7174.31 (18)
O1—C1—C1a—C6a176.41 (17)C1a—C6a—C7—C7a0.9 (3)
C11a—C1—C1a—C3179.6 (2)C6—C6a—C7—O76.0 (3)
C11a—C1—C1a—C6a0.7 (3)C6—C6a—C7—C7a178.8 (2)
O1—C1—C11a—C7a176.64 (17)C6a—C7—O7—C71101.7 (2)
O1—C1—C11a—C114.7 (3)C7a—C7—O7—C7183.1 (2)
C1a—C1—C11a—C7a0.4 (3)C6a—C7—C7a—C8177.93 (19)
C1a—C1—C11a—C11178.2 (2)C6a—C7—C7a—C11a0.6 (3)
C1—O1—S2—O21166.00 (12)O7—C7—C7a—C83.1 (3)
C1—O1—S2—O2260.34 (15)O7—C7—C7a—C11a174.23 (18)
C1—O1—S2—O355.41 (14)C7—C7a—C8—O85.0 (4)
O1—S2—O3—C353.3 (2)C7—C7a—C8—C9174.5 (2)
O21—S2—O3—C3163.71 (17)C11a—C7a—C8—O8177.7 (2)
O22—S2—O3—C362.54 (18)C11a—C7a—C8—C92.8 (3)
C1—C1a—C3—O32.1 (3)C7—C7a—C11a—C10.3 (3)
C1—C1a—C3—C4179.2 (2)C7—C7a—C11a—C11178.3 (2)
C6a—C1a—C3—O3177.62 (17)C8—C7a—C11a—C1177.72 (19)
C6a—C1a—C3—C40.5 (3)C8—C7a—C11a—C110.9 (3)
C1—C1a—C6a—C6178.8 (2)C7a—C8—C9—C103.3 (4)
C1—C1a—C6a—C70.9 (3)O8—C8—C9—C10177.2 (3)
C3—C1a—C6a—C60.9 (3)C8—C9—C10—C110.3 (5)
C3—C1a—C6a—C7179.37 (19)C9—C10—C11—O11175.6 (3)
C1a—C3—O3—S231.0 (3)C9—C10—C11—C11a4.1 (4)
C4—C3—O3—S2151.76 (18)C10—C11—C11a—C1174.2 (2)
C1a—C3—C4—C50.0 (4)C10—C11—C11a—C7a4.3 (3)
O3—C3—C4—C5177.2 (2)O11—C11—C11a—C16.0 (3)
C3—C4—C5—C60.0 (4)O11—C11—C11a—C7a175.4 (2)
C4—C5—C6—C6a0.5 (4)

Experimental details

Crystal data
Chemical formulaC15H8O7S
Mr332.29
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.359 (2), 9.406 (2), 9.509 (2)
α, β, γ (°)68.05 (2), 64.17 (2), 62.58 (1)
V3)652.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.42 × 0.2 × 0.2
Data collection
DiffractometerCAD4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 3σ(I)] reflections
4485, 4485, 3316
Rint?
(sin θ/λ)max1)0.755
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.058, 1.01
No. of reflections3316
No. of parameters208
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.35, 0.30

Computer programs: Enraf Nonius software, Xtal (Hall et al., 1995), CRYLSQ in Xtal, BONDLA CIFIO in Xtal.

Selected geometric parameters (Å, º) top
C1—O11.404 (3)C6a—C71.428 (2)
C1—C1a1.408 (3)C7—O71.356 (3)
C1—C11a1.369 (2)C7—C7a1.380 (3)
O1—S21.5759 (14)O7—C711.431 (3)
S2—O211.405 (3)C7a—C81.493 (2)
S2—O221.403 (2)C7a—C11a1.443 (3)
S2—O31.5741 (17)C8—O81.217 (4)
C1a—C31.410 (2)C8—C91.468 (5)
C1a—C6a1.410 (3)C9—C101.314 (5)
C3—O31.414 (3)C10—C111.461 (3)
C3—C41.356 (4)C11—O111.212 (4)
C5—C61.366 (3)C11—C11a1.492 (4)
C6—C6a1.418 (4)
O1—C1—C1a117.06 (14)O22—S2—O3109.64 (12)
O1—C1—C11a119.7 (2)C1—C1a—C3122.8 (2)
C1a—C1—C11a123.2 (2)C1—C1a—C6a119.18 (15)
C1—O1—S2117.08 (17)C3—C1a—C6a118.0 (2)
O1—S2—O21105.98 (12)C1a—C3—O3118.5 (2)
O1—S2—O22109.70 (9)C1a—C3—C4123.2 (2)
O1—S2—O3101.15 (8)O3—C3—C4118.23 (17)
O21—S2—O22122.14 (10)S2—O3—C3116.04 (11)
O21—S2—O3106.17 (10)C3—C4—C5117.9 (2)
C1a—C1—O1—S233.7 (2)O1—S2—O3—C353.3 (2)
O1—C1—C1a—C33.3 (3)C1—C1a—C3—O32.1 (3)
C1—O1—S2—O355.41 (14)C1a—C3—O3—S231.0 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds