Download citation
Download citation
link to html
The title compound, C14H26N8O2, belongs to a class of retropeptides with an oxal­amide unit (–NH–CO–CO–NH–), and is a precursor for the synthesis of an amine-terminal gelator. The compound is a good synthon for one-dimensional hydrogen bonding. The crystal structure reveals a hydrogen-bonded cyclic dimer with unusual twofold rotation symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103005286/gd1245sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103005286/gd1245Isup2.hkl
Contains datablock I

CCDC reference: 214387

Comment top

The present structure determination is part of a systematic study related to hydrogen bonding and gelation properties of bis(amino acid) and bis(amino alcohol) oxalamide derivatives (Makaravić et al., 2001, 2003). A number of compounds of this class have been designed and synthesized to introduce the proton donor/acceptor functionalities required for one-dimensional or two-dimensional hydrogen-bonded assemblies in order to investigate the delicate interplay of structure, noncovalent interactions and gelating properties (Jokić et al., 1995; Perić, Makarević et al., 2001; Perić, Kojić-Prodić et al., 2001). The oxalamide moiety was selected as a good structural unit for the design of molecular solids (Coe et al., 1997; Nguyen et al., 1998). Coe et al. (1997) studied centrosymmetric oxalamide with terminal substituted carboxyl groups. In this group of compounds there are two distinctive hydrogen-bonding patterns, both generating two-dimensional β-network: (i) N—H···O hydrogen bonds between oxalamide units and O—H···O hydrogen bonds between terminal carboxyl groups (forming polymorph A) and (ii) O—H···O hydrogen bonds between oxalamide and carboxyl groups (forming polymorph B). Pattern (i) is composed of an α-network generated by hydrogen bonding within oxalamide groups that are self assembled into a β-network via hydrogen bonds between carboxyl groups, including centrosymmetric cyclic carboxylic acid dimers. The title compound, (I), served as a precursor of a novel aminoterminal oxalamide gelator; substitution of azide groups precludes hydrogen bonding at the terminal sides of the molecule. However, the oxalamide groups are available for intermolecular N—H···O hydrogen bonds generating the α-network.

In this paper the structure of (I) is presented. The ORTEP-3 (Burnett, 1996) drawing (Fig. 1) reveals two molecules, viz. A and B, in an asymmetric unit. The overall conformational differences of A and B are illustrated in Fig. 2. The (S)-leucyl residues are positioned on the same side of the central oxalamide unit with the similar conformations (Fig. 2 and Table 1). Torsion angles ω, ω', ϕ, ϕ', ψ, ψ', χ and χ' are labelled according to the literature (IUPAC-IUB Commission on Biochemical Nomenclature, http://www.chem.qmul.ac.uk/iupac/misc/ppep1.html Karle et al. 1994). The significantly different conformation is associated with ψ' of molecule A because of the unique conformation of the N21—N31—N41 azide group. Among the four azide groups, three are perpendicular to the plane of oxalamide units, whereas the N21—N31—N41 group is parallel to this plane (Table 2). The average values of bond lengths and angles of azide groups are ??1.146 (4) and 1.173 (5) Å for N—N bonds and 1.517 (4) Å for N—C bonds, with a bonding angle of 173.0 (4) °. This observation is based on the analysis of bond-geometry parameters that exceed differences larger than 3σ. The crystal packing is defined as the α-network (Coe et al., 1997) realised by the N—H···O hydrogen bonds between oxalamide groups (Table 2, Fig. 3) forming three crystallographically different dimers. Two crystallographically independent molecules, A and B, are connected by a pair of N—H···O hydrogen bonds to form a dimer of approximately digonal symmetry. The crystallographic twofold axes generate hydrogen-bonded dimers of types A···A and B···B, defined by graph-set notation as R22(10) (Bernstein et al., 1995). An inspection of the Cambridge Structural Database (version 5.24 of November 2002; Allen, 2002) using the oxalamide fragment revealed 33 structures, among which a single example of a hydrogen bonded dimer with digonal symmetry was found. The structure of N-hydroxyoxamide (Larsen, 1980) crystallizes in the space group C2/c. However, the three-dimensional hydrogen-bonded network of N-hydroxyoxamide cannot be compared with the one-dimensional network of (I). Dimers of sequence B···B···A···A···B···B··· are connected in the direction of the c axes. A ladder pattern (Fig. 3 and Table 2) formed in this way is based on intramolecular N—H···O hydrogen bonds of a pseudo-C5 arrangement typical of retropeptides and intermolecular hydrogen bonds involving chemically identical but crystallographically different amide groups. Each amide H atom acts as a double donor (three-centred or bifurcated hydrogen bond).

Experimental top

To a solution of the diol (b, R is iso-butyl) (1.12 g, 3.88 mmol) in dry pyridine (20 ml), p-TsCl (1.77 g, 9.28 mmol) was added, and the reaction mixture was stirred for 2 d at room temperature. When the reaction was complete (TLC), the solvent was evaporated under reduced pressure, and the residue was dissolved in CH2Cl2 (20 ml) and washed with H2O, HOAc (5%), and H2O. The organic phase was dried (Na2SO4) and evaporated. The crude tosylate was used in the next step without further purification. The tosylate was reacted with sodium azide (0.60 g, 9.23 mmol) in DMF (30 ml). The reaction mixture was heated for 1 h at 100 °C, and stirred overnight at room temperature. The salt was removed by filtration and the filtrate evaporated under reduced pressure. The remaining solid was purified by ash chromatography using petroleum ether/ethyl acetate (5:2) as eluent. Compound (I) was obtained as a white solid (0.96 g, 73.1% total yield; m.p. 380–381 K; from ethanol). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a dilute ethanol solution of (I). [α]D20 = −90 (c = 1 in CH2Cl2); 1H NMR (CDCl3, 300 MHz, δ, p.p.m.): 7.53 (d, J = 9.1 Hz, 2H, NH), 4.13 (dt, J = 9.5 Hz, J' = 4.7 Hz, 2H, CHα), 3.46 (m, 4H, CH2), 1.65–1.39 (m, 6H, CHγ and CHβ), 0.95/0.94 (2 d, J = 5.1 Hz, 6H each, CH3); 13C NMR (CDCl3, 75 MHz, δ, p.p.m.): 159.3 (CONH), 54.6 (CH2) 47.8 (CHα), 40.8 (CHβ), 24.7 (CHγ), 23.0 and 22.0 (CH3); IR (KBr, νmax, cm-1): 3295 (NH), 2099 (azide), 1654 (amide 1), 1522 (amide 2).

Refinement top

Atomic scattering factors were those included in SHELXL97. The H-atom coordinates were calculated geometrically and refined using the SHELXL97 riding model.

Computing details top

Data collection: COLLECT (Nonius BV, 1997–2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with two molecules in the asymmetric unit, viz. A and B. Displacement ellipsoids are shown at the 50% probability level. Intramolecular N—H···O hydrogen bonds form a pseudo-C5 type typical of retropeptides, whereas intermolecular hydrogen bonds between A and B form a dimer.
[Figure 2] Fig. 2. An overlap diagram of molecules A and B, illustrating different conformations of the leucyl and azide groups (a least-square fit through the oxalamide bridges was used). Molecule A reveals an approximate twofold axis bisecting the C—C bond of the oxalamide group, whereas molecule B exibits no symmetry at all.
[Figure 3] Fig. 3. The crystal packing of (I). Intermolecular and intramolecular hydrogen bonds between oxalamide groups generate a ladder pattern of α-network with the molecular sequence AB—BA—AB—BA. A twofold axis relates dimers A···A and B···B, whereas the A···B dimer reveals an approximate diagonal symmetry. For clarity, only those H atoms that act as donors are shown.
(I) top
Crystal data top
C14H26N8O2F(000) = 1456
Mr = 338.43Dx = 1.225 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71069 Å
Hall symbol: C 2yCell parameters from 4035 reflections
a = 24.0235 (5) Åθ = 2.9–27.1°
b = 7.9361 (2) ŵ = 0.09 mm1
c = 20.2167 (5) ÅT = 150 K
β = 107.824 (1)°Prism, colorless
V = 3669.37 (15) Å30.25 × 0.25 × 0.12 mm
Z = 8
Data collection top
KappaCCD
diffractometer
Rint = 0
CCD rotation images, thick slices scansθmax = 27.1°, θmin = 3.3°
7645 measured reflectionsh = 3030
7645 independent reflectionsk = 1010
5889 reflections with I > 2σ(I)l = 2525
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.0475P)2 + 3.569P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.129(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.21 e Å3
7645 reflectionsΔρmin = 0.29 e Å3
449 parameters
Crystal data top
C14H26N8O2V = 3669.37 (15) Å3
Mr = 338.43Z = 8
Monoclinic, C2Mo Kα radiation
a = 24.0235 (5) ŵ = 0.09 mm1
b = 7.9361 (2) ÅT = 150 K
c = 20.2167 (5) Å0.25 × 0.25 × 0.12 mm
β = 107.824 (1)°
Data collection top
KappaCCD
diffractometer
5889 reflections with I > 2σ(I)
7645 measured reflectionsRint = 0
7645 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0541 restraint
wR(F2) = 0.129H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
7645 reflectionsΔρmin = 0.29 e Å3
449 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O130.94280 (8)0.4182 (2)0.91922 (9)0.0340 (4)
O10.94218 (7)0.4575 (2)0.66378 (8)0.0289 (4)
O121.03112 (8)0.5700 (2)0.82281 (8)0.0346 (4)
N111.04680 (9)0.6132 (3)0.68753 (10)0.0242 (5)
N10.93215 (9)0.4428 (3)0.54865 (10)0.0241 (4)
O111.04798 (7)0.5308 (2)0.58041 (8)0.0315 (4)
N121.05454 (10)0.5287 (3)0.93906 (11)0.0317 (5)
N130.92591 (9)0.4302 (3)0.80212 (11)0.0281 (5)
C20.87294 (10)0.3753 (3)0.52703 (13)0.0265 (5)
H20.85710.38540.56620.032*
C10.96135 (10)0.4757 (3)0.61449 (12)0.0224 (5)
C130.95800 (11)0.4499 (3)0.86784 (12)0.0265 (5)
N211.20955 (10)0.6180 (3)0.77775 (13)0.0373 (5)
C111.02356 (10)0.5428 (3)0.62557 (12)0.0225 (5)
C40.83261 (11)0.4716 (4)0.46543 (13)0.0295 (6)
H4A0.79340.42640.45560.035*
H4B0.84530.45050.4250.035*
C230.86768 (11)0.3572 (3)0.77892 (13)0.0293 (6)
H230.85520.32980.81950.035*
C121.01901 (11)0.5224 (3)0.87473 (12)0.0275 (6)
N230.91222 (13)0.0748 (4)0.78074 (13)0.0496 (7)
C411.10451 (12)0.8488 (3)0.75174 (13)0.0276 (5)
H41A1.09040.82170.79060.033*
H41B1.14440.88860.77070.033*
C511.06744 (12)0.9915 (3)0.71073 (13)0.0312 (6)
H511.02770.94840.68980.037*
C530.81026 (12)0.6387 (4)0.76647 (14)0.0345 (6)
H530.84730.68810.79480.041*
C211.10508 (11)0.6874 (3)0.71088 (13)0.0274 (6)
H211.1170.71560.670.033*
C311.14696 (11)0.5542 (3)0.75314 (13)0.0321 (6)
H31A1.13490.52280.79310.039*
H31B1.1450.45440.72480.039*
C60.81837 (12)0.7088 (4)0.54283 (14)0.0382 (7)
H6A0.81710.82910.54680.057*
H6B0.84910.66440.58130.057*
H6C0.78160.66180.54310.057*
C330.86818 (12)0.1972 (3)0.73754 (14)0.0346 (6)
H33A0.82960.14620.72390.042*
H33B0.8780.22470.69570.042*
N330.92140 (11)0.0423 (4)0.75094 (15)0.0459 (6)
C430.82392 (11)0.4803 (3)0.73210 (13)0.0316 (6)
H43A0.83890.51420.69460.038*
H43B0.78760.42040.71130.038*
C221.11408 (12)0.5955 (4)0.95643 (13)0.0356 (6)
H221.11880.64810.91460.043*
C50.82999 (11)0.6628 (3)0.47530 (13)0.0319 (6)
H50.8680.71030.47660.038*
N221.15505 (14)0.3468 (4)0.91575 (13)0.0531 (7)
N321.17922 (12)0.2187 (5)0.92676 (14)0.0578 (8)
N20.90824 (14)0.0881 (3)0.57360 (13)0.0473 (7)
C30.87373 (13)0.1891 (4)0.50872 (14)0.0370 (6)
H3A0.89190.17510.47230.044*
H3B0.8340.14690.49170.044*
C711.08958 (15)1.0554 (4)0.65219 (16)0.0480 (8)
H71A1.06471.14480.62790.072*
H71B1.08910.96490.62050.072*
H71C1.12881.09670.67130.072*
C630.77265 (14)0.6005 (5)0.81405 (16)0.0487 (8)
H63A0.76480.70340.83450.073*
H63B0.79330.52420.85010.073*
H63C0.73640.55020.78720.073*
N430.93402 (14)0.1639 (4)0.72698 (19)0.0658 (9)
N311.22629 (11)0.6502 (4)0.83772 (17)0.0518 (7)
C421.12641 (14)0.7288 (4)1.01360 (15)0.0440 (7)
H42A1.13130.67171.05740.053*
H42B1.16340.78221.01640.053*
C611.06429 (15)1.1373 (4)0.75922 (16)0.0461 (8)
H61A1.04071.22620.73260.069*
H61B1.1031.17880.78180.069*
H61C1.04721.0980.79350.069*
C321.15806 (13)0.4541 (4)0.97808 (15)0.0449 (7)
H32A1.19710.50030.99710.054*
H32B1.14950.38621.01370.054*
C730.77896 (14)0.7676 (4)0.71150 (17)0.0453 (8)
H73A0.77050.86680.73390.068*
H73B0.74310.720.68230.068*
H73C0.80360.79690.68370.068*
C521.08105 (17)0.8664 (4)1.00621 (17)0.0548 (9)
H521.04680.81571.0150.066*
N421.20105 (16)0.0862 (5)0.93030 (18)0.0794 (11)
N40.96361 (18)0.1333 (5)0.55828 (19)0.0867 (12)
C70.78316 (13)0.7401 (4)0.41299 (16)0.0475 (8)
H7A0.78150.85970.41940.071*
H7B0.74580.69130.40940.071*
H7C0.79290.71770.37120.071*
C621.06080 (19)0.9483 (5)0.93493 (19)0.0680 (11)
H62A1.03211.0330.93430.102*
H62B1.04390.86430.90050.102*
H62C1.09360.99920.9250.102*
C721.1056 (3)1.0000 (6)1.0624 (2)0.0927 (15)
H72A1.07711.08731.05830.139*
H72B1.14051.04751.05660.139*
H72C1.11450.94871.10740.139*
N30.93357 (14)0.0144 (5)0.56273 (15)0.0600 (8)
N411.24793 (15)0.6881 (5)0.89497 (18)0.0839 (11)
H11N1.0281 (11)0.602 (3)0.7161 (13)0.022 (7)*
H1N0.9496 (12)0.459 (4)0.5192 (14)0.028 (7)*
H13N0.9407 (11)0.456 (3)0.7725 (13)0.019 (6)*
H12N1.0426 (11)0.494 (3)0.9707 (14)0.024 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O130.0394 (11)0.0418 (11)0.0225 (9)0.0107 (9)0.0118 (8)0.0018 (8)
O10.0320 (10)0.0361 (10)0.0200 (8)0.0061 (8)0.0100 (7)0.0021 (8)
O120.0367 (10)0.0467 (11)0.0199 (9)0.0118 (9)0.0079 (7)0.0022 (8)
N110.0258 (11)0.0297 (12)0.0191 (10)0.0048 (9)0.0097 (9)0.0034 (9)
N10.0235 (11)0.0307 (12)0.0187 (10)0.0019 (9)0.0073 (9)0.0004 (9)
O110.0273 (9)0.0453 (11)0.0229 (9)0.0045 (8)0.0092 (7)0.0085 (8)
N120.0342 (13)0.0410 (14)0.0196 (11)0.0125 (10)0.0076 (9)0.0004 (10)
N130.0286 (12)0.0372 (13)0.0190 (11)0.0074 (10)0.0081 (9)0.0017 (9)
C20.0239 (13)0.0321 (14)0.0236 (12)0.0040 (11)0.0073 (10)0.0007 (11)
C10.0265 (13)0.0199 (12)0.0211 (12)0.0004 (10)0.0078 (10)0.0008 (10)
C130.0328 (14)0.0260 (13)0.0216 (12)0.0023 (11)0.0096 (10)0.0002 (10)
N210.0296 (12)0.0419 (14)0.0408 (14)0.0046 (11)0.0114 (11)0.0046 (11)
C110.0245 (12)0.0224 (12)0.0197 (12)0.0029 (10)0.0053 (9)0.0021 (10)
C40.0233 (13)0.0412 (15)0.0229 (12)0.0032 (12)0.0056 (10)0.0024 (11)
C230.0312 (14)0.0351 (15)0.0218 (12)0.0074 (12)0.0081 (11)0.0005 (11)
C120.0364 (15)0.0246 (13)0.0214 (13)0.0038 (11)0.0086 (11)0.0018 (10)
N230.0645 (18)0.0473 (17)0.0329 (14)0.0023 (15)0.0090 (12)0.0051 (13)
C410.0321 (14)0.0267 (13)0.0232 (12)0.0068 (11)0.0074 (10)0.0006 (10)
C510.0323 (14)0.0301 (14)0.0305 (14)0.0008 (12)0.0085 (11)0.0030 (11)
C530.0329 (14)0.0402 (16)0.0329 (14)0.0077 (13)0.0136 (12)0.0089 (12)
C210.0272 (13)0.0305 (14)0.0240 (12)0.0051 (11)0.0070 (10)0.0009 (11)
C310.0318 (14)0.0314 (14)0.0308 (14)0.0010 (12)0.0059 (11)0.0044 (12)
C60.0358 (15)0.0397 (16)0.0386 (16)0.0070 (13)0.0108 (12)0.0021 (13)
C330.0365 (15)0.0323 (15)0.0313 (14)0.0062 (13)0.0049 (12)0.0001 (12)
N330.0388 (15)0.0407 (17)0.0637 (18)0.0060 (13)0.0237 (13)0.0199 (15)
C430.0288 (14)0.0378 (15)0.0264 (13)0.0067 (12)0.0059 (11)0.0032 (12)
C220.0355 (15)0.0447 (17)0.0238 (13)0.0106 (13)0.0046 (11)0.0016 (12)
C50.0263 (14)0.0371 (15)0.0305 (14)0.0024 (12)0.0061 (11)0.0065 (11)
N220.071 (2)0.0502 (17)0.0302 (14)0.0069 (16)0.0035 (13)0.0018 (13)
N320.0382 (16)0.096 (3)0.0390 (16)0.0067 (18)0.0122 (12)0.0010 (17)
N20.078 (2)0.0301 (15)0.0348 (14)0.0128 (15)0.0192 (14)0.0107 (11)
C30.0430 (16)0.0312 (15)0.0330 (15)0.0052 (13)0.0060 (13)0.0034 (12)
C710.059 (2)0.0445 (18)0.0446 (17)0.0056 (16)0.0218 (15)0.0182 (15)
C630.0443 (18)0.061 (2)0.0463 (18)0.0041 (16)0.0214 (14)0.0073 (16)
N430.059 (2)0.0431 (17)0.102 (3)0.0081 (15)0.0354 (19)0.0031 (17)
N310.0378 (15)0.0484 (17)0.060 (2)0.0007 (13)0.0009 (14)0.0048 (14)
C420.0489 (18)0.0517 (19)0.0292 (15)0.0180 (16)0.0086 (13)0.0062 (13)
C610.064 (2)0.0293 (15)0.0443 (17)0.0047 (15)0.0149 (16)0.0013 (13)
C320.0380 (16)0.058 (2)0.0332 (15)0.0017 (16)0.0036 (12)0.0008 (15)
C730.0458 (18)0.0385 (17)0.054 (2)0.0056 (14)0.0181 (15)0.0002 (14)
C520.074 (2)0.048 (2)0.0439 (19)0.0026 (19)0.0201 (17)0.0032 (16)
N420.071 (2)0.101 (3)0.069 (2)0.040 (2)0.0269 (18)0.008 (2)
N40.089 (3)0.068 (2)0.081 (3)0.025 (2)0.008 (2)0.010 (2)
C70.0405 (17)0.058 (2)0.0385 (17)0.0130 (16)0.0034 (13)0.0098 (15)
C620.091 (3)0.047 (2)0.063 (2)0.000 (2)0.018 (2)0.0016 (19)
C720.147 (5)0.066 (3)0.061 (3)0.004 (3)0.025 (3)0.019 (2)
N30.0560 (19)0.057 (2)0.0481 (17)0.0150 (18)0.0115 (14)0.0091 (16)
N410.076 (2)0.098 (3)0.055 (2)0.028 (2)0.0134 (17)0.009 (2)
Geometric parameters (Å, º) top
O13—C131.228 (3)C6—H6C0.96
O1—C11.227 (3)C33—H33A0.97
O12—C121.231 (3)C33—H33B0.97
N11—C111.328 (3)N33—N431.161 (4)
N11—C211.458 (3)C43—H43A0.97
N11—H11N0.84 (3)C43—H43B0.97
N1—C11.327 (3)C22—C321.511 (4)
N1—C21.456 (3)C22—C421.528 (4)
N1—H1N0.84 (3)C22—H220.98
O11—C111.231 (3)C5—C71.537 (4)
N12—C121.320 (3)C5—H50.98
N12—C221.464 (3)N22—N321.158 (4)
N12—H12N0.82 (3)N22—C321.504 (4)
N13—C131.325 (3)N32—N421.168 (5)
N13—C231.453 (3)N2—N31.078 (4)
N13—H13N0.81 (3)N2—C31.544 (4)
C2—C31.525 (4)C3—H3A0.97
C2—C41.528 (3)C3—H3B0.97
C2—H20.98C71—H71A0.96
C1—C111.537 (3)C71—H71B0.96
C13—C121.541 (4)C71—H71C0.96
N21—N311.183 (4)C63—H63A0.96
N21—C311.519 (4)C63—H63B0.96
C4—C51.534 (4)C63—H63C0.96
C4—H4A0.97N31—N411.154 (4)
C4—H4B0.97C42—C521.517 (5)
C23—C331.523 (4)C42—H42A0.97
C23—C431.532 (4)C42—H42B0.97
C23—H230.98C61—H61A0.96
N23—N331.165 (4)C61—H61B0.96
N23—C331.503 (4)C61—H61C0.96
C41—C511.520 (4)C32—H32A0.97
C41—C211.527 (4)C32—H32B0.97
C41—H41A0.97C73—H73A0.96
C41—H41B0.97C73—H73B0.96
C51—C711.525 (4)C73—H73C0.96
C51—C611.533 (4)C52—C621.519 (5)
C51—H510.98C52—C721.533 (5)
C53—C431.520 (4)C52—H520.98
C53—C731.528 (4)N4—N31.208 (5)
C53—C631.538 (4)C7—H7A0.96
C53—H530.98C7—H7B0.96
C21—C311.527 (4)C7—H7C0.96
C21—H210.98C62—H62A0.96
C31—H31A0.97C62—H62B0.96
C31—H31B0.97C62—H62C0.96
C6—C51.519 (4)C72—H72A0.96
C6—H6A0.96C72—H72B0.96
C6—H6B0.96C72—H72C0.96
C11—N11—C21124.0 (2)C53—C43—H43A108.1
C11—N11—H11N116.4 (18)C23—C43—H43A108.1
C21—N11—H11N119.0 (18)C53—C43—H43B108.1
C1—N1—C2122.8 (2)C23—C43—H43B108.1
C1—N1—H1N117.2 (18)H43A—C43—H43B107.3
C2—N1—H1N120.0 (18)N12—C22—C32110.2 (2)
C12—N12—C22122.7 (2)N12—C22—C42112.4 (2)
C12—N12—H12N118.5 (18)C32—C22—C42109.8 (2)
C22—N12—H12N118.8 (18)N12—C22—H22108.1
C13—N13—C23125.3 (2)C32—C22—H22108.1
C13—N13—H13N117.3 (18)C42—C22—H22108.1
C23—N13—H13N117.4 (18)C6—C5—C4112.4 (2)
N1—C2—C3110.2 (2)C6—C5—C7110.5 (2)
N1—C2—C4112.2 (2)C4—C5—C7109.7 (2)
C3—C2—C4109.8 (2)C6—C5—H5108
N1—C2—H2108.2C4—C5—H5108
C3—C2—H2108.2C7—C5—H5108
C4—C2—H2108.2N32—N22—C32116.3 (3)
O1—C1—N1125.2 (2)N22—N32—N42172.7 (4)
O1—C1—C11120.8 (2)N3—N2—C3114.1 (3)
N1—C1—C11113.98 (19)C2—C3—N2109.9 (2)
O13—C13—N13126.3 (2)C2—C3—H3A109.7
O13—C13—C12121.4 (2)N2—C3—H3A109.7
N13—C13—C12112.3 (2)C2—C3—H3B109.7
N31—N21—C31113.6 (2)N2—C3—H3B109.7
O11—C11—N11125.0 (2)H3A—C3—H3B108.2
O11—C11—C1121.9 (2)C51—C71—H71A109.5
N11—C11—C1113.1 (2)C51—C71—H71B109.5
C2—C4—C5115.4 (2)H71A—C71—H71B109.5
C2—C4—H4A108.4C51—C71—H71C109.5
C5—C4—H4A108.4H71A—C71—H71C109.5
C2—C4—H4B108.4H71B—C71—H71C109.5
C5—C4—H4B108.4C53—C63—H63A109.5
H4A—C4—H4B107.5C53—C63—H63B109.5
N13—C23—C33110.0 (2)H63A—C63—H63B109.5
N13—C23—C43110.8 (2)C53—C63—H63C109.5
C33—C23—C43108.2 (2)H63A—C63—H63C109.5
N13—C23—H23109.3H63B—C63—H63C109.5
C33—C23—H23109.3N41—N31—N21172.7 (4)
C43—C23—H23109.3C52—C42—C22117.2 (3)
O12—C12—N12125.3 (2)C52—C42—H42A108
O12—C12—C13120.3 (2)C22—C42—H42A108
N12—C12—C13114.4 (2)C52—C42—H42B108
N33—N23—C33115.2 (3)C22—C42—H42B108
C51—C41—C21115.5 (2)H42A—C42—H42B107.2
C51—C41—H41A108.4C51—C61—H61A109.5
C21—C41—H41A108.4C51—C61—H61B109.5
C51—C41—H41B108.4H61A—C61—H61B109.5
C21—C41—H41B108.4C51—C61—H61C109.5
H41A—C41—H41B107.5H61A—C61—H61C109.5
C41—C51—C71112.7 (2)H61B—C61—H61C109.5
C41—C51—C61110.4 (2)N22—C32—C22109.1 (2)
C71—C51—C61110.0 (2)N22—C32—H32A109.9
C41—C51—H51107.8C22—C32—H32A109.9
C71—C51—H51107.8N22—C32—H32B109.9
C61—C51—H51107.8C22—C32—H32B109.9
C43—C53—C73110.4 (2)H32A—C32—H32B108.3
C43—C53—C63111.9 (2)C53—C73—H73A109.5
C73—C53—C63109.5 (2)C53—C73—H73B109.5
C43—C53—H53108.3H73A—C73—H73B109.5
C73—C53—H53108.3C53—C73—H73C109.5
C63—C53—H53108.3H73A—C73—H73C109.5
N11—C21—C41110.3 (2)H73B—C73—H73C109.5
N11—C21—C31107.7 (2)C62—C52—C42114.4 (3)
C41—C21—C31113.0 (2)C62—C52—C72110.2 (3)
N11—C21—H21108.5C42—C52—C72108.8 (3)
C41—C21—H21108.5C62—C52—H52107.7
C31—C21—H21108.5C42—C52—H52107.7
N21—C31—C21111.7 (2)C72—C52—H52107.7
N21—C31—H31A109.3C5—C7—H7A109.5
C21—C31—H31A109.3C5—C7—H7B109.5
N21—C31—H31B109.3H7A—C7—H7B109.5
C21—C31—H31B109.3C5—C7—H7C109.5
H31A—C31—H31B107.9H7A—C7—H7C109.5
C5—C6—H6A109.5H7B—C7—H7C109.5
C5—C6—H6B109.5C52—C62—H62A109.5
H6A—C6—H6B109.5C52—C62—H62B109.5
C5—C6—H6C109.5H62A—C62—H62B109.5
H6A—C6—H6C109.5C52—C62—H62C109.5
H6B—C6—H6C109.5H62A—C62—H62C109.5
N23—C33—C23110.0 (2)H62B—C62—H62C109.5
N23—C33—H33A109.7C52—C72—H72A109.5
C23—C33—H33A109.7C52—C72—H72B109.5
N23—C33—H33B109.7H72A—C72—H72B109.5
C23—C33—H33B109.7C52—C72—H72C109.5
H33A—C33—H33B108.2H72A—C72—H72C109.5
N43—N33—N23173.7 (4)H72B—C72—H72C109.5
C53—C43—C23116.6 (2)N2—N3—N4172.8 (4)
C1—N1—C2—C4132.2 (2)C12—N12—C22—C42128.4 (3)
C2—N1—C1—O11.7 (4)C2—C4—C5—C650.6 (3)
C23—N13—C13—O134.1 (4)C2—C4—C5—C7173.9 (2)
C21—N11—C11—O110.3 (4)C4—C2—C3—N2173.0 (2)
O1—C1—C11—O11165.2 (2)N3—N2—C3—C2143.6 (3)
N1—C1—C11—O1115.3 (3)C32—C22—C42—C52170.5 (3)
O1—C1—C11—N1115.0 (3)N32—N22—C32—C22167.6 (3)
N1—C1—C11—N11164.5 (2)C42—C22—C32—N22166.3 (2)
C3—C2—C4—C5177.1 (2)C22—C42—C52—C6248.0 (4)
C13—N13—C23—C43123.2 (3)C22—C42—C52—C72171.8 (3)
C22—N12—C12—O120.2 (4)C2—N1—C1—C11178.8 (2)
O13—C13—C12—O12172.2 (2)C1—N1—C2—C3105.1 (3)
N13—C13—C12—O126.9 (3)N1—C2—C3—N262.8 (3)
O13—C13—C12—N127.2 (4)N1—C2—C4—C554.1 (3)
N13—C13—C12—N12173.7 (2)C21—N11—C11—C1179.6 (2)
C21—C41—C51—C7163.6 (3)C11—N11—C21—C3195.9 (3)
C21—C41—C51—C61172.9 (2)N11—C21—C31—N21178.0 (2)
C11—N11—C21—C41140.3 (2)C51—C41—C21—N1164.1 (3)
C51—C41—C21—C31175.2 (2)C23—N13—C13—C12176.9 (2)
N31—N21—C31—C21106.0 (3)C12—N12—C22—C32108.8 (3)
C41—C21—C31—N2159.8 (3)N12—C22—C32—N2269.4 (3)
N33—N23—C33—C23170.5 (3)N12—C22—C42—C5247.4 (4)
C43—C23—C33—N23178.0 (2)C22—N12—C12—C13179.2 (2)
C73—C53—C43—C23165.7 (2)C13—N13—C23—C33117.3 (3)
C63—C53—C43—C2372.0 (3)N13—C23—C33—N2356.8 (3)
C33—C23—C43—C53171.6 (2)N13—C23—C43—C5367.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11N···O120.84 (3)2.15 (3)2.893 (3)147 (2)
N1—H1N···O11i0.84 (3)2.11 (3)2.879 (3)153 (2)
N13—H13N···O10.81 (3)2.21 (3)2.948 (3)152 (2)
N13—H13N···O120.81 (3)2.28 (3)2.673 (3)110 (2)
N12—H12N···O13ii0.82 (3)2.23 (3)2.978 (3)152 (2)
N1—H1N···O110.84 (3)2.38 (3)2.748 (3)108 (2)
N12—H12N···O130.82 (3)2.38 (3)2.734 (4)107 (2)
N11—H11N···O10.84 (3)2.31 (3)2.708 (3)109 (2)
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC14H26N8O2
Mr338.43
Crystal system, space groupMonoclinic, C2
Temperature (K)150
a, b, c (Å)24.0235 (5), 7.9361 (2), 20.2167 (5)
β (°) 107.824 (1)
V3)3669.37 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.25 × 0.12
Data collection
DiffractometerKappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7645, 7645, 5889
Rint0
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.129, 1.03
No. of reflections7645
No. of parameters449
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.29

Computer programs: COLLECT (Nonius BV, 1997–2000), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 1999).

Selected torsion angles (º) top
C2—N1—C1—C11178.8 (2)C23—N13—C13—C12176.9 (2)
C1—N1—C2—C3105.1 (3)C12—N12—C22—C32108.8 (3)
N1—C2—C3—N262.8 (3)N12—C22—C32—N2269.4 (3)
N1—C2—C4—C554.1 (3)N12—C22—C42—C5247.4 (4)
C21—N11—C11—C1179.6 (2)C22—N12—C12—C13179.2 (2)
C11—N11—C21—C3195.9 (3)C13—N13—C23—C33117.3 (3)
N11—C21—C31—N21178.0 (2)N13—C23—C33—N2356.8 (3)
C51—C41—C21—N1164.1 (3)N13—C23—C43—C5367.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11N···O120.84 (3)2.15 (3)2.893 (3)147 (2)
N1—H1N···O11i0.84 (3)2.11 (3)2.879 (3)153 (2)
N13—H13N···O10.81 (3)2.21 (3)2.948 (3)152 (2)
N13—H13N···O120.81 (3)2.28 (3)2.673 (3)110 (2)
N12—H12N···O13ii0.82 (3)2.23 (3)2.978 (3)152 (2)
N1—H1N···O110.84 (3)2.38 (3)2.748 (3)108 (2)
N12—H12N···O130.82 (3)2.38 (3)2.734 (4)107 (2)
N11—H11N···O10.84 (3)2.31 (3)2.708 (3)109 (2)
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y, z+2.
Molecule AMolecule B
C11—C1—N1—C2 (ω)178.8 (2)C12—C13—N13—C23 (ω'')176.9 (2)
C3—C2—N1—C1 (ϕ)-105.1 (3)C32—C22—N12—C12 (ϕ'')-108.8 (3)
N1—C2—C3—N2 (ψ)62.8 (3)N12—C22—C32—N22 (ψ'')69.4 (3)
N1—C2—C4—C5 (χ)-54.1 (3)N12—C22—C42—C52 (χ'')-47.4 (4)
C1—C11—N11—C21 (ω')-179.6 (2)C13—C12—N12—C22 (ω''')-179.2 (2)
C31—C21—N11—C11 (ϕ')-95.9 (3)C33—C23—N13—C13 (ϕ''')-117.3 (3)
N11—C21—C31—N21 (ψ')178.0 (2)N13—C23—C33—N23 (ψ''')56.8 (3)
N11—C21—C41—C51 (χ')-64.1 (3)N13—C23—C43—C53 (χ''')-67.8 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds