Download citation
Download citation
link to html
The reaction of nickel(II) nitrate with terephthalic acid and 2,2'-bi­pyridine in di­methyl­form­amide solution gives the title complex, [Ni(C10H8N2)(H2O)4](C8H4O4). The NiII ion is octahedrally coordinated to one 2,2'-bi­pyridine and four water mol­ecules and does not coordinate to the terephthalate anion. Hydro­gen bonds between the terephthalate anions and the [Ni(2,2'-bipy)(H2O)4]2+ cations produce a two-dimensional hydrogen-bonding architecture with double sheets.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103002087/gd1242sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103002087/gd1242Isup2.hkl
Contains datablock I

CCDC reference: 207993

Comment top

In recent years, significant research effort has been focused on coordination polymers, due to their potential applications in catalysis, ion exchange and gas adsorption (Eddaoudi et al., 2002; Moulton & Zaworotko, 2001) and popular bridging ligands in this field are terephthalic acid (H2ta), 4,4'-bipyridine and their derivatives (Eddaoudi et al., 2001). Numerous complexes with the ta2− ligand have been extensively studied, while new complexes are continuously being synthesized. Although the ta2− ligand has many coordination modes, reports of complexes with terephthalate used as a synthon to generate supramolecular networks are still relatively rare (Allen et al., 1999; Burrows et al.,1996, 1997). We report here an example of ta2− as a hydrogen-bonding linker in the presence of N-donor ligands. The title compound, (I), consists of an [Ni(H2O)4(2,2'-bipy)]2+ cation and a terephthalate anion. The geometry around the NiII ion is best described as distorted octahedral, and it associates with four water O atoms and two N atoms from one 2,2'-bipyridine ligand (Fig. 1). It should be pointed out that ta2− is a free ligand and does not coordinate to the Ni atom, although IR indicates that the ta2− ligand has a bridging coordination mode (Rogan et al., 2000).

The cations and anions of (I) form a two-dimensional hydrogen-bonding network (Fig. 2). Each cation, simplified as [Ni(H2O)4]2+, is linked to six terephthalate anions through hydrogen bonds (Fig. 3a), in which four of the six terephthate anions are from one sheet of the two-dimensional network and the remaining two are from another sheet. Each terephthate anion is in turn linked to six [Ni(H2O)4]2+ cations through hydrogen bonds (Fig. 3 b), four of which are from one sheet of the two-dimensional network and the remaining two are from another sheet. Each terephthalate carboxylate group is linked to three [Ni(H2O)4]2+ cations. There are two hydrogen bonds between terephthalate atom O2 and two [Ni(H2O)4]2+ cations from the same sheet. The second carboxylate O atom, O1, forms hydrogen bonds with two [Ni(H2O)4]2+ cations from different sheets. Therefore, each terephthalate anion forms eight hydrogen bonds with [Ni(H2O)4]2+ cations, which results in a two-dimensional hydrogen-bonding network with double sheets.

Experimental top

A solution (10 ml) of dimethylformamide containing Ni(NO3)2·6H2O (0.5 mmol) and H2ta (0.5 mmol, 0.083 g) was added slowly to a solution (10 ml) of dimethylformamide containing 2,2'-bipyridine (0.5 mmol). The starting mixture was stirred for a few minutes and left to stand at room temperature for about one month. Green block-shaped crystals of (I) were obtained. Analysis calculated for C18H20N2NiO8: C 47.93, H 4.47, N 6.21%; found: C 47.58, H 4.84, N 6.63%.

Refinement top

H atoms bonded to C atoms were treated as riding atoms, with a C—H distance of 0.93 Å.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXP97 (Sheldrick, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. View of the title compound, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Stereoview of the two-dimensional hydrogen-bonding network in (I).
[Figure 3] Fig. 3. The hydrogen bonds formed (a) by the cations [symmetry codes: (A) 1 + x, y, −1 + z; (B) x, 1.5 − y, −0.5 + z; (C) 1 + x, y, z; (D) 1 + x, 1.5 − y, −0.5 + z; (E) x, y, −1 + z] and (b) by the anion [symmetry codes: (A) x, 1.5 − y, 0.5 + z; (B) −1 + x, y, z; (C) −1 + x, y, 1 + z; (D) x, y, 1 + z; (E) 1 + x, 1.5 − y, 0.5 + z]. The 2,2-bipyridine ligand has been omitted for clarity.
(I) top
Crystal data top
[Ni(C10H8N2)(H2O)4](C8H4O4)F(000) = 936
Mr = 451.07Dx = 1.555 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from all data reflections
a = 7.5503 (2) Åθ = same as data collection–same as data collection°
b = 23.5347 (9) ŵ = 1.06 mm1
c = 11.1050 (4) ÅT = 293 K
β = 102.427 (2)°Block, green
V = 1927.06 (11) Å30.40 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5600 independent reflections
Radiation source: fine-focus sealed tube3567 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 30.0°, θmin = 2.1°
Absorption correction: empirical (using intensity measurements)
multi-scan
h = 1010
Tmin = 0.611, Tmax = 0.810k = 3313
15571 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.068P)2]
where P = (Fo2 + 2Fc2)/3
5600 reflections(Δ/σ)max = 0.001
294 parametersΔρmax = 1.62 e Å3
8 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Ni(C10H8N2)(H2O)4](C8H4O4)V = 1927.06 (11) Å3
Mr = 451.07Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5503 (2) ŵ = 1.06 mm1
b = 23.5347 (9) ÅT = 293 K
c = 11.1050 (4) Å0.40 × 0.20 × 0.20 mm
β = 102.427 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5600 independent reflections
Absorption correction: empirical (using intensity measurements)
multi-scan
3567 reflections with I > 2σ(I)
Tmin = 0.611, Tmax = 0.810Rint = 0.045
15571 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0488 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 1.62 e Å3
5600 reflectionsΔρmin = 0.72 e Å3
294 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.71544 (4)0.862855 (13)0.77665 (3)0.02045 (10)
O1W0.6789 (3)0.80687 (9)0.63470 (18)0.0312 (4)
O2W0.9928 (3)0.85901 (10)0.78807 (18)0.0351 (5)
O3W0.7289 (3)0.79944 (9)0.90265 (19)0.0363 (5)
O4W0.4351 (3)0.86702 (9)0.76326 (17)0.0326 (4)
O10.5513 (2)0.80045 (8)1.08351 (16)0.0320 (4)
O20.2999 (3)0.83491 (10)0.96353 (16)0.0391 (5)
O30.1284 (3)0.83785 (10)1.58399 (16)0.0384 (5)
O40.1263 (3)0.80519 (9)1.46444 (17)0.0351 (5)
N10.7146 (3)0.93410 (9)0.66487 (19)0.0281 (5)
N20.7437 (3)0.92773 (9)0.90622 (19)0.0264 (5)
C10.7091 (4)0.93400 (13)0.5437 (3)0.0406 (7)
H10.69010.89980.50090.080*
C20.7308 (5)0.98348 (16)0.4795 (3)0.0539 (9)
H20.72460.98210.39510.080*
C30.7610 (6)1.03392 (15)0.5409 (3)0.0569 (10)
H30.77741.06720.49950.080*
C40.7668 (5)1.03435 (13)0.6671 (3)0.0480 (8)
H40.78641.06810.71140.080*
C50.7431 (4)0.98376 (12)0.7260 (2)0.0310 (6)
C60.7487 (4)0.98055 (11)0.8611 (2)0.0302 (6)
C70.7591 (5)1.02833 (13)0.9363 (3)0.0470 (8)
H70.76391.06450.90360.080*
C80.7622 (6)1.02105 (15)1.0610 (3)0.0568 (10)
H80.76591.05231.11270.080*
C90.7598 (5)0.96710 (16)1.1063 (3)0.0527 (9)
H90.76510.96121.18980.080*
C100.7494 (4)0.92127 (13)1.0269 (2)0.0370 (7)
H100.74620.88481.05840.080*
C110.2962 (3)0.81502 (11)1.1723 (2)0.0230 (5)
C120.1081 (3)0.81469 (12)1.1544 (2)0.0292 (6)
H120.03730.81481.07470.080*
C130.0250 (3)0.81427 (12)1.2544 (2)0.0287 (6)
H130.10070.81261.24130.080*
C140.1295 (3)0.81638 (10)1.3744 (2)0.0218 (5)
C150.3173 (3)0.81679 (12)1.3928 (2)0.0278 (6)
H150.38760.81841.47260.080*
C160.4011 (3)0.81489 (12)1.2933 (2)0.0290 (6)
H160.52700.81351.30670.080*
C170.3878 (3)0.81636 (11)1.0647 (2)0.0238 (5)
C180.0381 (3)0.81971 (11)1.4831 (2)0.0247 (5)
H1WA0.651 (5)0.7725 (9)0.640 (3)0.061 (12)*
H1WB0.755 (4)0.8087 (16)0.587 (3)0.064 (12)*
H2WA1.029 (5)0.8474 (15)0.723 (2)0.058 (11)*
H2WB1.060 (4)0.8476 (15)0.849 (2)0.054 (11)*
H3WA0.666 (4)0.7980 (14)0.962 (2)0.044 (9)*
H3WB0.763 (6)0.7655 (9)0.906 (4)0.082 (15)*
H4WA0.363 (5)0.8552 (16)0.698 (3)0.073 (13)*
H4WB0.394 (4)0.8535 (13)0.823 (2)0.040 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02102 (16)0.02244 (16)0.01970 (15)0.00099 (14)0.00841 (11)0.00107 (13)
O1W0.0370 (11)0.0310 (11)0.0311 (10)0.0119 (9)0.0195 (9)0.0105 (8)
O2W0.0212 (9)0.0616 (14)0.0239 (9)0.0041 (9)0.0078 (8)0.0004 (10)
O3W0.0470 (12)0.0334 (11)0.0370 (11)0.0126 (10)0.0276 (10)0.0114 (9)
O4W0.0228 (9)0.0520 (13)0.0242 (9)0.0029 (9)0.0075 (8)0.0014 (9)
O10.0306 (10)0.0393 (11)0.0311 (10)0.0115 (9)0.0175 (8)0.0082 (8)
O20.0324 (10)0.0652 (14)0.0216 (9)0.0095 (10)0.0102 (8)0.0078 (9)
O30.0355 (11)0.0605 (14)0.0217 (9)0.0127 (10)0.0116 (8)0.0086 (9)
O40.0318 (10)0.0463 (12)0.0327 (10)0.0157 (9)0.0192 (8)0.0122 (9)
N10.0312 (11)0.0265 (11)0.0282 (11)0.0007 (9)0.0099 (9)0.0025 (9)
N20.0275 (11)0.0290 (11)0.0245 (10)0.0026 (9)0.0095 (9)0.0039 (9)
C10.0556 (19)0.0391 (17)0.0302 (14)0.0034 (15)0.0158 (14)0.0060 (13)
C20.078 (3)0.051 (2)0.0381 (17)0.0023 (19)0.0253 (18)0.0129 (15)
C30.076 (3)0.0415 (19)0.056 (2)0.0048 (18)0.0224 (19)0.0191 (17)
C40.064 (2)0.0289 (16)0.0519 (19)0.0057 (15)0.0141 (17)0.0055 (14)
C50.0329 (14)0.0260 (13)0.0348 (14)0.0011 (11)0.0087 (12)0.0022 (11)
C60.0295 (13)0.0263 (14)0.0359 (14)0.0007 (11)0.0093 (11)0.0034 (11)
C70.059 (2)0.0293 (15)0.0537 (19)0.0018 (15)0.0144 (17)0.0115 (14)
C80.076 (3)0.043 (2)0.053 (2)0.0017 (18)0.0176 (19)0.0247 (17)
C90.072 (2)0.057 (2)0.0319 (16)0.0058 (19)0.0172 (16)0.0149 (15)
C100.0443 (17)0.0428 (17)0.0252 (13)0.0038 (14)0.0106 (12)0.0048 (12)
C110.0242 (12)0.0268 (13)0.0203 (11)0.0026 (10)0.0095 (10)0.0015 (10)
C120.0256 (13)0.0450 (17)0.0175 (11)0.0030 (12)0.0056 (10)0.0025 (11)
C130.0208 (12)0.0413 (16)0.0260 (12)0.0046 (11)0.0094 (10)0.0030 (11)
C140.0238 (12)0.0235 (12)0.0212 (11)0.0026 (10)0.0116 (9)0.0005 (9)
C150.0244 (12)0.0387 (15)0.0203 (11)0.0022 (11)0.0047 (10)0.0019 (10)
C160.0223 (12)0.0428 (16)0.0233 (12)0.0053 (11)0.0079 (10)0.0037 (11)
C170.0285 (13)0.0252 (13)0.0211 (11)0.0024 (10)0.0126 (10)0.0001 (10)
C180.0283 (13)0.0257 (13)0.0234 (12)0.0034 (10)0.0128 (10)0.0007 (10)
Geometric parameters (Å, º) top
Ni1—O1W2.0273 (19)C3—C41.392 (5)
Ni1—O3W2.033 (2)C3—H30.9300
Ni1—O2W2.0725 (19)C4—C51.389 (4)
Ni1—N22.077 (2)C4—H40.9300
Ni1—N12.085 (2)C5—C61.494 (4)
Ni1—O4W2.0918 (19)C6—C71.392 (4)
O1W—H1WA0.842 (18)C7—C81.391 (5)
O1W—H1WB0.863 (18)C7—H70.9300
O2W—H2WA0.870 (18)C8—C91.367 (5)
O2W—H2WB0.800 (18)C8—H80.9300
O3W—H3WA0.893 (18)C9—C101.384 (4)
O3W—H3WB0.837 (18)C9—H90.9300
O4W—H4WA0.853 (18)C10—H100.9300
O4W—H4WB0.853 (18)C11—C121.392 (3)
O1—C171.263 (3)C11—C161.406 (3)
O2—C171.254 (3)C11—C171.504 (3)
O3—C181.254 (3)C12—C131.387 (4)
O4—C181.261 (3)C12—H120.9300
N1—C11.337 (3)C13—C141.396 (3)
N1—C51.345 (3)C13—H130.9300
N2—C101.341 (3)C14—C151.389 (3)
N2—C61.343 (3)C14—C181.516 (3)
C1—C21.393 (4)C15—C161.387 (4)
C1—H10.9300C15—H150.9300
C2—C31.363 (5)C16—H160.9300
C2—H20.9300
O1W—Ni1—O3W92.08 (9)C3—C4—H4120.4
O1W—Ni1—O2W89.20 (8)N1—C5—C4122.0 (3)
O3W—Ni1—O2W91.47 (9)N1—C5—C6115.5 (2)
O1W—Ni1—N2173.13 (9)C4—C5—C6122.6 (3)
O3W—Ni1—N294.61 (9)N2—C6—C7121.8 (3)
O2W—Ni1—N292.17 (8)N2—C6—C5115.1 (2)
O1W—Ni1—N194.43 (9)C7—C6—C5123.1 (3)
O3W—Ni1—N1173.25 (9)C8—C7—C6119.0 (3)
O2W—Ni1—N186.85 (9)C8—C7—H7120.5
N2—Ni1—N178.93 (9)C6—C7—H7120.5
O1W—Ni1—O4W90.50 (8)C9—C8—C7118.8 (3)
O3W—Ni1—O4W89.03 (8)C9—C8—H8120.6
O2W—Ni1—O4W179.42 (8)C7—C8—H8120.6
N2—Ni1—O4W88.07 (8)C8—C9—C10119.5 (3)
N1—Ni1—O4W92.68 (8)C8—C9—H9120.2
Ni1—O1W—H1WA124 (3)C10—C9—H9120.2
Ni1—O1W—H1WB117 (3)N2—C10—C9122.2 (3)
H1WA—O1W—H1WB108 (4)N2—C10—H10118.9
Ni1—O2W—H2WA117 (2)C9—C10—H10118.9
Ni1—O2W—H2WB121 (3)C12—C11—C16119.0 (2)
H2WA—O2W—H2WB110 (3)C12—C11—C17121.1 (2)
Ni1—O3W—H3WA125 (2)C16—C11—C17119.9 (2)
Ni1—O3W—H3WB135 (3)C13—C12—C11120.6 (2)
H3WA—O3W—H3WB98 (4)C13—C12—H12119.7
Ni1—O4W—H4WA120 (3)C11—C12—H12119.7
Ni1—O4W—H4WB118 (2)C12—C13—C14120.3 (2)
H4WA—O4W—H4WB105 (4)C12—C13—H13119.9
C1—N1—C5118.4 (2)C14—C13—H13119.9
C1—N1—Ni1126.4 (2)C15—C14—C13119.3 (2)
C5—N1—Ni1114.73 (17)C15—C14—C18120.5 (2)
C10—N2—C6118.7 (2)C13—C14—C18120.2 (2)
C10—N2—Ni1125.84 (19)C16—C15—C14120.6 (2)
C6—N2—Ni1115.40 (17)C16—C15—H15119.7
N1—C1—C2122.1 (3)C14—C15—H15119.7
N1—C1—H1118.9C15—C16—C11120.1 (2)
C2—C1—H1118.9C15—C16—H16119.9
C3—C2—C1119.8 (3)C11—C16—H16119.9
C3—C2—H2120.1O2—C17—O1124.1 (2)
C1—C2—H2120.1O2—C17—C11118.3 (2)
C2—C3—C4118.4 (3)O1—C17—C11117.5 (2)
C2—C3—H3120.8O3—C18—O4124.5 (2)
C4—C3—H3120.8O3—C18—C14118.4 (2)
C5—C4—C3119.3 (3)O4—C18—C14117.1 (2)
C5—C4—H4120.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1i0.84 (2)1.92 (2)2.719 (3)157 (3)
O1W—H1WB···O4ii0.86 (2)1.78 (2)2.634 (3)167 (4)
O2W—H2WA···O3ii0.87 (2)1.87 (2)2.726 (3)168 (4)
O2W—H2WB···O2iii0.80 (2)2.00 (2)2.748 (3)156 (4)
O3W—H3WA···O10.89 (2)1.75 (2)2.644 (3)175 (3)
O3W—H3WB···O4iv0.84 (2)1.91 (2)2.722 (3)163 (4)
O4W—H4WA···O3v0.85 (2)1.98 (2)2.795 (3)158 (4)
O4W—H4WB···O20.85 (2)1.90 (2)2.745 (3)171 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y, z1; (iii) x+1, y, z; (iv) x+1, y+3/2, z1/2; (v) x, y, z1.

Experimental details

Crystal data
Chemical formula[Ni(C10H8N2)(H2O)4](C8H4O4)
Mr451.07
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.5503 (2), 23.5347 (9), 11.1050 (4)
β (°) 102.427 (2)
V3)1927.06 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
multi-scan
Tmin, Tmax0.611, 0.810
No. of measured, independent and
observed [I > 2σ(I)] reflections
15571, 5600, 3567
Rint0.045
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.126, 0.95
No. of reflections5600
No. of parameters294
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.62, 0.72

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXP97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1i0.842 (18)1.92 (2)2.719 (3)157 (3)
O1W—H1WB···O4ii0.863 (18)1.78 (2)2.634 (3)167 (4)
O2W—H2WA···O3ii0.870 (18)1.87 (2)2.726 (3)168 (4)
O2W—H2WB···O2iii0.800 (18)2.00 (2)2.748 (3)156 (4)
O3W—H3WA···O10.893 (18)1.753 (18)2.644 (3)175 (3)
O3W—H3WB···O4iv0.837 (18)1.91 (2)2.722 (3)163 (4)
O4W—H4WA···O3v0.853 (18)1.98 (2)2.795 (3)158 (4)
O4W—H4WB···O20.853 (18)1.899 (19)2.745 (3)171 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y, z1; (iii) x+1, y, z; (iv) x+1, y+3/2, z1/2; (v) x, y, z1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds