Download citation
Download citation
link to html
The title compounds, [Fe(C5H5)(C14H13O2)] and [Fe(C5H5)(C15H15O2)], respectively, contain the ferrocenyl η5(C5H4) and phenyl­ene –C6H4– rings in a nearly coplanar arrangement, with interplanar angles of 6.88 (12) and 10.5 (2)°, respectively. Molecules of the ethyl ester form dimers through η5(C5H5)C—H...O=C hydrogen bonds, with graph set R{_2^2}(20), and, together with Csp3—H...π(C5H5) interactions, generate a one-dimensional column (irregular ladder). Molecules of the iso­propyl ester aggregate through η5(C5H5)C—H...π(C6H4) interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102021819/gd1238sup1.cif
Contains datablocks global, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102021819/gd1238IIsup2.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102021819/gd1238IIIsup3.hkl
Contains datablock III

CCDC references: 204026; 204027

Comment top

The design of new redox-active ligands for application in diverse research areas, such as medicinal chemistry and materials science, has engrossed scientists in recent years. Ferrocene derivatives, which are efficient redox systems, have been studied extensively in charge-transfer chemistry, hydrogen bonding and molecular-recognition science, peptide chemistry, nonlinear optical materials and liquid crystal research (Chesney et al., 1998; Glidewell et al., 1997; Zakaria et al., 2002; Kraatz et al., 1999; Gallagher et al., 1999a,b; Hudson, Asselsbergh et al., 2001; Hudson, Manning et al., 2001; Even et al., 2001; Seo et al., 2001). Our interest in ferrocenylbenzoyl derivatives stems from their use as precursors to ferrocenylbenzoyl amino acid ester and dipeptide derivatives. We have recently reported the crystal structure of methyl 4-ferrocenylbenzoate, (I) (Savage et al., 2002).

An understanding of the interactions present in a given crystal structure can provide valuable information on the hydrogen bonding and aggregation modes, not just in the solid state but also in the liquid-crystalline state. The structures of ethyl 4-ferrocenylbenzoate, (II), and the isopropyl analogue, (III), are reported herein for comparison with the methyl ester, (I), and our on-going research on longer chain alkyl derivatives. \sch

The Fe1—C bond lengths for the η5(C5H4) ring of (II) are in the range 2.0341 (16)–2.0452 (14) Å, similar to the η5(C5H5) ring, with a range of 2.0315 (18)–2.0407 (17) Å. For (III), these values are 2.024 (3)–2.044 (3) Å and 2.023 (4)–2.033 (4) Å, respectively. In (II), the Fe1···Cg1 and Fe1···Cg2 distances are 1.6425 (8) and 1.6463 (9) Å, respectively, and Cg1···Fe1···Cg2 is 179.49 (5)°, where Cg1 and Cg2 are the centroids of the η5(C5H4) and η5(C5H5) rings; in (III), these values are 1.6413 (15) and 1.643 (2) Å, and 178.88 (9)°, respectively. In (II), the cyclopentadienyl C—C bond-length ranges are small, at 1.413 (3)–1.435 (2) and 1.398 (3)–1.420 (3) Å for the η5(C5H4) and η5(C5H5) rings, respectively. In (III), these ranges are 1.407 (5)–1.428 (4) and 1.389 (6)–1.410 (6) Å, respectively. These results are as expected and highlight the similarity in the ferrocenyl bond lengths and angles in the esters (I) (Savage et al., 2002), and (II) and (III), described herein.

The cyclopentadienyl rings deviate slightly from eclipsed geometry in (II), as evidenced by the C1n···Cg1···Cg2···C2n (n = 1–5) torsion angles of −2.87 (14) to −3.61 (14)°. In (III), the angles are in the range 6.1 (3)–7.0 (3)°, similar to the eclipsed geometry in (I), where the range is 0.8 (4)–2.3 (4)°. In contrast, the range of angles is 13.7 (2)–15.4 (3)° in para-ferrocenylbenzoyl-L-alanine methyl ester (Savage et al., 2002).

The essentially linear molecular conformations adopted by (II) and (III) are comparable, with interplanar angles of 6.88 (12)° between the η5(C5H4) and C6H4 rings in (II), 10.5 (2)° in (III) and 9.35 (13)° in (I). The major differences are the terminal O1—C1—C34—C33 torsion angles, which are −0.8 (2)° in (II), −18.2 (5)° in (III) and 171.2 (3)° in (I). However, the disposition of the terminal alkoxy group, which gives a C1—O1—C2—C3 torsion angle of 179.76 (16)° in (II) and 112.0 (5)° in (III), means that the methyl groups of the isopropyl moiety in (III) are oriented almost orthogonal to the ester CO2 plane (Figs. 1 and 3).

Analysis of the hydrogen bonding in (II) shows only two interactions of note, involving the substituted ring and the ester OC as η5(C5H4)C—H···OC interactions (Table 2 and Fig. 2). Molecules of the ethyl ester form dimers through η5(C5H5)C—H···OC hydrogen bonds, graph set R22(20) (Reference?), and, together with Csp3—H···π(C5H5) interactions, these generate a one-dimensional column (irregular ladder). The molecules of the isopropyl ester, (III), aggregate slowly through η5(C5H5)C—H···π(C6H4) interactions (Table 4 and Fig. 4).

Analysis of the April 2002 version of the Cambridge Structural Database using CONQUEST version 1.4 (Allen, 2002), for the mono-substituted para-Fc—C6H4X group, was undertaken for structures which fulfil the three-dimensional coordinates and R < 0.10 criteria (X = any atom). A total of 13 relevant structures were found. The interplanar angle between the C5H4 and C6 rings varies between 2.2 and 29.1° for 17 examples, with a median of 12.8° (11 examples are within the range 7.7–19.3°). Our results above compare favourably with these values.

Tables 2 and 4. Hydrogen bond and short contact parameters, where Cg1 is the centroid of the substituted cyclopentadienyl ring (T2) and where Cg3 is the centroid of the phenylene ring system (T4).

Experimental top

Compounds (II) and (III) were prepared according to standard literature procedures. Analytical data for (II): m.p. 358–359 K (uncorrected); IR (KBr, ν, cm−1): 1678 (CO); UV-VIS, λmax (CH3CN): 360 (880), 445 (290) nm; 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 7.86 (2H, d, J = 8.4 Hz, Ar—H), 7.66 (2H, d, J = 8.4 Hz, Ar—H), 4.89 [2H, t, J = 1.8 Hz, o-η5(C5H4)], 4.44 [2H, t, J = 1.8 Hz, m-η5(C5H4)], 4.32 (2H, q, J = 7 Hz, –OCH2CH3), 4.03 [5H, s, η5(C5H5)], 1.33 (3H, t, –OCH2CH3); 13C NMR (CDCl3, δ, p.p.m.): 166.1, 145.5, 129.6, 127.2, 126.0, 83.0, 70.2, 69.9, 67.2, 60.9, 14.6. Analytical data for (III): m.p. 351–352 K (uncorrected); IR (KBr, ν, cm−1): 1710 (CO); UV-VIS, λmax (CH3CN): 360 (1120), 458 (302) nm; 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 7.87 (2H, d, J = 8.4 Hz, Ar—H), 7.44 (2H, d, J = 8.4 Hz, Ar—H), 5.18 [1H, m, OCH(CH3)2], 4.64 [2H, s, o-η5(C5H4)], 4.32 [2H, s, m-η5(C5H4)], 3.96 [5H, s, η5(C5H5)], 1.30 [6H, t, OCH(CH3)2]; 13C NMR (CDCl3, δ, p.p.m.): 166.6, 145.2, 130.0, 128.5, 126.0, 83.9, 70.2, 70.1, 68.5, 67.3, 22.4.

Refinement top

For compounds (II) and (III), the space groups P21/c and P21/a, respectively, were uniquely assigned from the systematic absences and confirmed by the analysis. H atoms were treated as riding atoms, with C—H distances in the range 0.93–0.98 Å.

Computing details top

For both compounds, data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 1998); software used to prepare material for publication: SHELXL97 and PREP8 (Ferguson, 1998).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (II) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A stereoview of the interactions in the crystal structure of (II).
[Figure 3] Fig. 3. A view of the molecule of (III) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. A stereoview of the interactions in the crystal structure of (III). For the sake of clarity, the unit-cell box has been omitted.
(II) Ethyl 4-ferrocenylbenzoate top
Crystal data top
[Fe(C19H18O2)]F(000) = 696
Mr = 334.18Dx = 1.425 Mg m3
Monoclinic, P21/cMelting point: 358 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.9563 (5) ÅCell parameters from 80 reflections
b = 16.3464 (11) Åθ = 5.5–20.7°
c = 12.0088 (10) ŵ = 0.97 mm1
β = 94.128 (5)°T = 294 K
V = 1557.78 (19) Å3Block, orange
Z = 40.50 × 0.45 × 0.45 mm
Data collection top
Siemens P4
diffractometer
3276 reflections with I > 2σ(I)
Radiation source: X-ray tubeRint = 0.012
Graphite monochromatorθmax = 28.0°, θmin = 2.1°
ω/2θ scansh = 101
Absorption correction: ψ scan
(North et al., 1968)
k = 211
Tmin = 0.629, Tmax = 0.646l = 1515
4875 measured reflections4 standard reflections every 296 reflections
3780 independent reflections intensity decay: +1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.039P)2 + 0.319P]
where P = (Fo2 + 2Fc2)/3
3780 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Fe(C19H18O2)]V = 1557.78 (19) Å3
Mr = 334.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9563 (5) ŵ = 0.97 mm1
b = 16.3464 (11) ÅT = 294 K
c = 12.0088 (10) Å0.50 × 0.45 × 0.45 mm
β = 94.128 (5)°
Data collection top
Siemens P4
diffractometer
3276 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.012
Tmin = 0.629, Tmax = 0.6464 standard reflections every 296 reflections
4875 measured reflections intensity decay: +1%
3780 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.05Δρmax = 0.28 e Å3
3780 reflectionsΔρmin = 0.30 e Å3
200 parameters
Special details top

Geometry. Cyclopentadienyl details ######################## Cg1—Fe1 1.6425 Cg1—Fe1—Cg2 179.49 Cg2—Fe1 1.6463

Mean plane data ex-SHELXL97 for (II) ####################################

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

5.2156(0.0053)x + 11.4996(0.0103)y − 3.8552(0.0096)z = 7.3838(0.0074)

* −0.0034 (0.0010) C11 * 0.0026 (0.0010) C12 * −0.0008 (0.0011) C13 * −0.0013 (0.0011) C14 * 0.0029 (0.0011) C15 1.6423 (0.0008) Fe1 0.1510 (0.0061) C1 0.3664 (0.0078) C2 0.0887 (0.0067) O1 0.3110 (0.0065) O2

Rms deviation of fitted atoms = 0.0024

5.2747(0.0059)x + 11.2893(0.0116)y − 4.0344(0.0108)z = 10.4919(0.0086)

Angle to previous plane (with approximate e.s.d.) = 1.19 (14)

* −0.0016 (0.0012) C21 * 0.0014 (0.0012) C22 * −0.0007 (0.0012) C23 * −0.0003 (0.0012) C24 * 0.0012 (0.0012) C25 − 1.6462 (0.0009) Fe1 − 3.0245 (0.0069) C1 − 2.7924 (0.0088) C2 − 3.0635 (0.0075) O1 − 2.8711 (0.0075) O2

Rms deviation of fitted atoms = 0.0011

5.8977(0.0039)x + 10.2414(0.0092)y − 3.5255(0.0072)z = 6.8368(0.0048)

Angle to previous plane (with approximate e.s.d.) = 6.42 (12)

* 0.0136 (0.0011) C31 * −0.0077 (0.0012) C32 * −0.0048 (0.0011) C33 * 0.0115 (0.0011) C34 * −0.0055 (0.0012) C35 * −0.0071 (0.0012) C36 1.7029 (0.0027) Fe1 0.0566 (0.0025) C1 0.0811 (0.0037) C2 0.0781 (0.0046) C3 0.0992 (0.0030) O1 0.0619 (0.0027) O2

Rms deviation of fitted atoms = 0.0089

5.8317(0.0048)x + 10.5145(0.0146)y − 3.2855(0.0134)z = 6.9880(0.0057)

Angle to previous plane (with approximate e.s.d.) = 1.54 (13)

* −0.0070 (0.0010) C1 * −0.0071 (0.0016) C2 * 0.0032 (0.0012) C3 * 0.0058 (0.0009) O1 * 0.0051 (0.0011) O2 1.7930 (0.0090) Fe1

Rms deviation of fitted atoms = 0.0058

5.2156(0.0053)x + 11.4996(0.0103)y − 3.8552(0.0096)z = 7.3838(0.0074)

Angle to previous plane (with approximate e.s.d.) = 6.40 (14)

* −0.0034 (0.0010) C11 * 0.0026 (0.0010) C12 * −0.0008 (0.0011) C13 * −0.0013 (0.0011) C14 * 0.0029 (0.0011) C15 1.6423 (0.0008) Fe1 0.1510 (0.0061) C1 0.3664 (0.0078) C2 0.0887 (0.0067) O1 0.3110 (0.0065) O2

Rms deviation of fitted atoms = 0.0024

5.8977(0.0039)x + 10.2414(0.0092)y − 3.5255(0.0072)z = 6.8368(0.0048)

Angle to previous plane (with approximate e.s.d.) = 6.88 (12)

* 0.0136 (0.0011) C31 * −0.0077 (0.0012) C32 * −0.0048 (0.0011) C33 * 0.0115 (0.0011) C34 * −0.0055 (0.0012) C35 * −0.0071 (0.0012) C36 1.7029 (0.0027) Fe1 0.0566 (0.0025) C1 0.0811 (0.0037) C2 0.0781 (0.0046) C3 0.0992 (0.0030) O1 0.0619 (0.0027) O2

Rms deviation of fitted atoms = 0.0089

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.42391 (3)0.701199 (12)0.323801 (17)0.04152 (8)
O10.2066 (2)0.47467 (10)0.24288 (12)0.0796 (4)
O20.01774 (14)0.57520 (8)0.25620 (9)0.0533 (3)
C10.1314 (2)0.52853 (10)0.20018 (13)0.0489 (3)
C20.0149 (2)0.55551 (11)0.37353 (13)0.0553 (4)
C30.1447 (3)0.61374 (16)0.42061 (18)0.0815 (6)
C110.25972 (18)0.61258 (9)0.26420 (13)0.0460 (3)
C120.3909 (2)0.57835 (10)0.33805 (13)0.0501 (3)
C130.3854 (2)0.61604 (11)0.44385 (14)0.0569 (4)
C140.2530 (2)0.67385 (13)0.43741 (14)0.0594 (4)
C150.1753 (2)0.67255 (12)0.32731 (14)0.0539 (4)
C210.5276 (3)0.75038 (13)0.18930 (15)0.0647 (5)
C220.6552 (2)0.71840 (12)0.2659 (2)0.0700 (5)
C230.6436 (2)0.76025 (12)0.36839 (18)0.0663 (5)
C240.5119 (3)0.81687 (11)0.35455 (17)0.0637 (5)
C250.4411 (3)0.81077 (11)0.24453 (17)0.0636 (5)
C310.22186 (18)0.59141 (9)0.14605 (12)0.0430 (3)
C320.1031 (2)0.63437 (10)0.07822 (14)0.0505 (3)
C330.0705 (2)0.61497 (10)0.03342 (13)0.0492 (3)
C340.15632 (18)0.55113 (9)0.08000 (12)0.0439 (3)
C350.2713 (2)0.50642 (11)0.01278 (14)0.0532 (4)
C360.3035 (2)0.52601 (10)0.09854 (14)0.0531 (4)
H2A0.05540.49970.38200.066*
H2B0.08750.56080.41210.066*
H3A0.24600.60730.38260.122*
H3B0.16810.60280.49870.122*
H3C0.10380.66870.41090.122*
H120.46690.53820.31960.060*
H130.45660.60470.50680.068*
H140.22220.70710.49540.071*
H150.08520.70500.30060.065*
H210.50540.73410.11550.078*
H220.73200.67760.25150.084*
H230.71170.75160.43350.080*
H240.47730.85240.40890.076*
H250.35150.84170.21350.076*
H320.04430.67710.10860.061*
H330.00890.64480.07720.059*
H350.32740.46270.04290.064*
H360.38090.49510.14250.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.04157 (12)0.04073 (12)0.04198 (12)0.00176 (8)0.00115 (8)0.00168 (8)
O10.0926 (10)0.0868 (10)0.0588 (8)0.0393 (8)0.0003 (7)0.0171 (7)
O20.0558 (6)0.0578 (6)0.0458 (5)0.0068 (5)0.0002 (5)0.0047 (5)
C10.0460 (8)0.0502 (8)0.0507 (8)0.0003 (6)0.0045 (6)0.0028 (6)
C20.0598 (9)0.0621 (10)0.0439 (8)0.0032 (8)0.0024 (7)0.0018 (7)
C30.0853 (15)0.0918 (15)0.0647 (12)0.0230 (12)0.0126 (10)0.0023 (11)
C110.0421 (7)0.0465 (8)0.0494 (8)0.0076 (6)0.0030 (6)0.0017 (6)
C120.0560 (9)0.0427 (7)0.0510 (8)0.0060 (6)0.0001 (7)0.0031 (6)
C130.0645 (10)0.0608 (10)0.0450 (8)0.0104 (8)0.0012 (7)0.0061 (7)
C140.0571 (9)0.0746 (11)0.0478 (8)0.0076 (9)0.0121 (7)0.0074 (8)
C150.0416 (8)0.0664 (10)0.0542 (9)0.0022 (7)0.0071 (6)0.0078 (8)
C210.0750 (12)0.0662 (11)0.0544 (9)0.0142 (10)0.0147 (8)0.0019 (8)
C220.0496 (9)0.0548 (10)0.1087 (17)0.0040 (8)0.0267 (10)0.0061 (10)
C230.0577 (10)0.0619 (11)0.0767 (12)0.0182 (9)0.0132 (9)0.0094 (9)
C240.0772 (12)0.0431 (8)0.0698 (11)0.0109 (8)0.0002 (9)0.0057 (8)
C250.0727 (12)0.0519 (9)0.0655 (11)0.0018 (8)0.0007 (9)0.0132 (8)
C310.0388 (7)0.0417 (7)0.0483 (7)0.0062 (6)0.0022 (5)0.0035 (6)
C320.0513 (8)0.0456 (8)0.0543 (8)0.0071 (6)0.0010 (7)0.0089 (7)
C330.0466 (8)0.0476 (8)0.0525 (8)0.0060 (6)0.0025 (6)0.0008 (6)
C340.0400 (7)0.0439 (7)0.0476 (7)0.0046 (6)0.0024 (6)0.0034 (6)
C350.0506 (8)0.0518 (8)0.0567 (9)0.0108 (7)0.0002 (7)0.0095 (7)
C360.0509 (8)0.0527 (9)0.0543 (9)0.0095 (7)0.0058 (7)0.0033 (7)
Geometric parameters (Å, º) top
Fe1—C112.0452 (14)C24—C251.402 (3)
Fe1—C122.0341 (16)C31—C321.392 (2)
Fe1—C132.0430 (16)C31—C361.394 (2)
Fe1—C142.0436 (17)C32—C331.384 (2)
Fe1—C152.0358 (16)C33—C341.387 (2)
Fe1—C212.0315 (18)C34—C351.384 (2)
Fe1—C222.0328 (18)C35—C361.381 (2)
Fe1—C232.0343 (17)C2—H2A0.9700
Fe1—C242.0407 (17)C2—H2B0.9700
Fe1—C252.0375 (18)C3—H3A0.9600
O1—C11.200 (2)C3—H3B0.9600
O2—C11.3282 (19)C3—H3C0.9600
O2—C21.4503 (19)C12—H120.9300
C1—C341.489 (2)C13—H130.9300
C2—C31.486 (3)C14—H140.9300
C11—C121.434 (2)C15—H150.9300
C11—C151.435 (2)C21—H210.9300
C11—C311.470 (2)C22—H220.9300
C12—C131.416 (2)C23—H230.9300
C13—C141.413 (3)C24—H240.9300
C14—C151.419 (2)C25—H250.9300
C21—C221.420 (3)C32—H320.9300
C21—C251.398 (3)C33—H330.9300
C22—C231.417 (3)C35—H350.9300
C23—C241.399 (3)C36—H360.9300
C1—O2—C2115.63 (13)C33—C34—C35119.07 (14)
O1—C1—O2123.17 (16)C1—C34—C33122.85 (14)
O1—C1—C34124.07 (15)C1—C34—C35118.07 (14)
O2—C1—C34112.76 (13)C36—C35—C34120.74 (15)
O2—C2—C3107.37 (15)C35—C36—C31120.96 (15)
C12—C11—C15106.70 (14)C13—C12—H12125.8
C12—C11—C31126.47 (14)C11—C12—H12125.8
C15—C11—C31126.81 (14)C14—C13—H13125.9
C12—C11—Fe169.01 (8)C12—C13—H13125.9
C15—C11—Fe169.06 (9)C13—C14—H14125.8
C31—C11—Fe1125.85 (10)C15—C14—H14125.8
C13—C12—C11108.47 (15)C14—C15—H15125.9
C13—C12—Fe170.02 (10)C11—C15—H15125.9
C11—C12—Fe169.84 (9)C25—C21—H21126.1
C14—C13—C12108.26 (15)C22—C21—H21126.1
C14—C13—Fe169.80 (10)C23—C22—H22126.4
C12—C13—Fe169.34 (9)C21—C22—H22126.4
C13—C14—C15108.30 (16)C24—C23—H23125.9
C13—C14—Fe169.75 (10)C22—C23—H23125.9
C15—C14—Fe169.35 (9)C23—C24—H24125.9
C14—C15—C11108.26 (16)C25—C24—H24125.9
C14—C15—Fe169.94 (10)C21—C25—H25125.7
C11—C15—Fe169.76 (9)C24—C25—H25125.7
C25—C21—C22107.83 (18)C33—C32—H32119.2
C25—C21—Fe170.14 (11)C31—C32—H32119.2
C22—C21—Fe169.60 (11)C32—C33—H33120.0
C23—C22—C21107.26 (18)C34—C33—H33120.0
C23—C22—Fe169.67 (11)C36—C35—H35119.6
C21—C22—Fe169.51 (11)C34—C35—H35119.6
C24—C23—C22108.13 (17)C35—C36—H36119.5
C24—C23—Fe170.17 (10)C31—C36—H36119.5
C22—C23—Fe169.55 (10)O2—C2—H2A110.2
C23—C24—C25108.15 (18)C3—C2—H2A110.2
C23—C24—Fe169.68 (10)O2—C2—H2B110.2
C25—C24—Fe169.77 (10)C3—C2—H2B110.2
C21—C25—C24108.62 (17)H2A—C2—H2B108.5
C21—C25—Fe169.68 (11)C2—C3—H3A109.5
C24—C25—Fe170.01 (10)C2—C3—H3B109.5
C11—C31—C32121.94 (14)H3A—C3—H3B109.5
C11—C31—C36120.41 (14)C2—C3—H3C109.5
C32—C31—C36117.64 (14)H3A—C3—H3C109.5
C31—C32—C33121.53 (14)H3B—C3—H3C109.5
C32—C33—C34120.00 (14)
C2—O2—C1—O11.8 (2)O1—C1—C34—C351.2 (3)
C2—O2—C1—C34178.95 (13)O2—C1—C34—C35179.65 (14)
C1—O2—C2—C3179.76 (16)O1—C1—C34—C33178.40 (17)
C12—C11—C31—C367.9 (2)O2—C1—C34—C330.8 (2)
C15—C11—C31—C36173.57 (16)C33—C34—C35—C361.5 (3)
C36—C31—C32—C332.1 (2)C1—C34—C35—C36178.07 (16)
C11—C31—C32—C33178.79 (15)C34—C35—C36—C310.3 (3)
C31—C32—C33—C340.4 (3)C32—C31—C36—C352.0 (2)
C32—C33—C34—C351.4 (2)C11—C31—C36—C35178.85 (15)
C32—C33—C34—C1178.12 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O1i0.932.543.360 (3)147
C2—H2A···Cg1ii0.972.873.770 (2)155
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
(III) Isopropyl 4-ferrocenylbenzoate top
Crystal data top
[Fe(C20H20O2)]F(000) = 728
Mr = 348.21Dx = 1.360 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 72 reflections
a = 9.3406 (9) Åθ = 6.1–15.3°
b = 10.1663 (6) ŵ = 0.89 mm1
c = 17.9072 (10) ÅT = 294 K
β = 90.136 (6)°Block, red
V = 1700.5 (2) Å30.39 × 0.26 × 0.15 mm
Z = 4
Data collection top
Siemens P4
diffractometer
2439 reflections with I > 2σ(I)
Radiation source: X-ray tubeRint = 0.006
Graphite monochromatorθmax = 26.0°, θmin = 2.3°
ω/2θ scansh = 111
Absorption correction: ψ scan
(North et al., 1968)
k = 112
Tmin = 0.769, Tmax = 0.875l = 2222
4440 measured reflections4 standard reflections every 296 reflections
3355 independent reflections intensity decay: +1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.7638P]
where P = (Fo2 + 2Fc2)/3
3355 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Fe(C20H20O2)]V = 1700.5 (2) Å3
Mr = 348.21Z = 4
Monoclinic, P21/aMo Kα radiation
a = 9.3406 (9) ŵ = 0.89 mm1
b = 10.1663 (6) ÅT = 294 K
c = 17.9072 (10) Å0.39 × 0.26 × 0.15 mm
β = 90.136 (6)°
Data collection top
Siemens P4
diffractometer
2439 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.006
Tmin = 0.769, Tmax = 0.8754 standard reflections every 296 reflections
4440 measured reflections intensity decay: +1%
3355 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
3355 reflectionsΔρmin = 0.30 e Å3
210 parameters
Special details top

Geometry. Cyclopentadienyl details ######################## Cg1—Fe1 1.6413 Cg1—Fe1—Cg2 178.88 Cg2—Fe1 1.6431

Mean plane data ex-SHELXL97 for (III) #####################################

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

5.6844(0.0123)x + 7.3778(0.0119)y + 5.7211(0.0272)z = 5.0122(0.0098)

* 0.0022 (0.0018) C11 * −0.0010 (0.0020) C12 * −0.0006 (0.0021) C13 * 0.0020 (0.0022) C14 * −0.0026 (0.0020) C15 − 1.6414 (0.0014) Fe1 0.4305 (0.0113) C1 0.2461 (0.0150) C2 0.6707 (0.0125) O1 0.2609 (0.0123) O2

Rms deviation of fitted atoms = 0.0018

5.5561(0.0150)x + 7.5719(0.0136)y + 5.3895(0.0322)z = 1.5807(0.0116)

Angle to previous plane (with approximate e.s.d.) = 1.72 (3)

* −0.0012 (0.0023) C21 * −0.0016 (0.0024) C22 * 0.0037 (0.0025) C23 * −0.0045 (0.0025) C24 * 0.0035 (0.0024) C25 1.6431 (0.0016) Fe1 3.7432 (0.0136) C1 3.6038 (0.0179) C2 3.9561 (0.0149) O1 3.6110 (0.0147) O2

Rms deviation of fitted atoms = 0.0032

5.9426(0.0086)x + 6.2591(0.0105)y + 8.2988(0.0188)z = 5.7785(0.0046)

Angle to previous plane (with approximate e.s.d.) = 12.2 (2)

* 0.0042 (0.0020) C31 * −0.0099 (0.0021) C32 * 0.0077 (0.0021) C33 * 0.0002 (0.0021) C34 * −0.0058 (0.0022) C35 * 0.0036 (0.0021) C36 0.1005 (0.0043) C11 − 1.4089 (0.0049) Fe1 0.0441 (0.0047) C1 − 0.5081 (0.0076) C2 − 1.9113 (0.0088) C3 0.3926 (0.0054) O1 − 0.3617 (0.0052) O2

Rms deviation of fitted atoms = 0.0061

6.2019(0.0409)x + 7.5402(0.0414)y − 1.7302(0.0387)z = 5.3444(0.0287)

Angle to previous plane (with approximate e.s.d.) = 33.4 (4)

* −0.2297 (0.0029) C1 * 0.5831 (0.0040) C2 * −0.4156 (0.0027) C3 * 0.0118 (0.0039) O1 * 0.0504 (0.0043) O2 − 4.6458 (0.0307) Fe1 − 0.8964 (0.0094) C34

Rms deviation of fitted atoms = 0.3371

5.6844(0.0123)x + 7.3778(0.0119)y + 5.7211(0.0272)z = 5.0122(0.0098)

Angle to previous plane (with approximate e.s.d.) = 24.2 (4)

* 0.0022 (0.0018) C11 * −0.0010 (0.0020) C12 * −0.0006 (0.0021) C13 * 0.0020 (0.0022) C14 * −0.0026 (0.0020) C15 − 1.6414 (0.0014) Fe1 0.0336 (0.0050) C31 0.2714 (0.0090) C34 0.4305 (0.0113) C1 0.2461 (0.0150) C2 0.6707 (0.0125) O1 0.2609 (0.0123) O2

Rms deviation of fitted atoms = 0.0018

5.9426(0.0086)x + 6.2591(0.0105)y + 8.2988(0.0188)z = 5.7785(0.0046)

Angle to previous plane (with approximate e.s.d.) = 10.5 (2)

* 0.0042 (0.0020) C31 * −0.0099 (0.0021) C32 * 0.0077 (0.0021) C33 * 0.0002 (0.0021) C34 * −0.0058 (0.0022) C35 * 0.0036 (0.0021) C36 0.1005 (0.0043) C11 − 1.4089 (0.0049) Fe1 0.0441 (0.0047) C1 − 0.5081 (0.0076) C2 − 1.9113 (0.0088) C3 0.3926 (0.0054) O1 − 0.3617 (0.0052) O2

Rms deviation of fitted atoms = 0.0061

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.20114 (4)0.01277 (4)0.37286 (2)0.04743 (15)
O10.8813 (3)0.0096 (3)0.10527 (14)0.0915 (9)
O20.7283 (3)0.1249 (3)0.03698 (12)0.0753 (7)
C10.7712 (3)0.0667 (3)0.09904 (17)0.0547 (7)
C20.8170 (4)0.1071 (4)0.0307 (2)0.0804 (12)
C30.7362 (8)0.0291 (7)0.0831 (3)0.172 (3)
C40.8581 (7)0.2359 (6)0.0577 (3)0.151 (3)
C110.3825 (3)0.1156 (3)0.34726 (15)0.0463 (6)
C120.2640 (3)0.2020 (3)0.35306 (18)0.0574 (8)
C130.2060 (4)0.1903 (3)0.42588 (19)0.0691 (9)
C140.2879 (4)0.0970 (4)0.46527 (18)0.0684 (9)
C150.3963 (3)0.0500 (3)0.41743 (16)0.0553 (7)
C210.1776 (5)0.1321 (4)0.2955 (2)0.0777 (10)
C220.0633 (4)0.0451 (4)0.2911 (2)0.0812 (11)
C230.0054 (4)0.0437 (5)0.3611 (3)0.0921 (13)
C240.0682 (5)0.1323 (5)0.4080 (2)0.0927 (13)
C250.1811 (5)0.1852 (4)0.3673 (2)0.0851 (12)
C310.4757 (3)0.0993 (3)0.28128 (15)0.0433 (6)
C320.5794 (3)0.0017 (3)0.27895 (17)0.0540 (7)
C330.6737 (3)0.0072 (3)0.22028 (17)0.0550 (7)
C340.6649 (3)0.0798 (3)0.16006 (16)0.0484 (7)
C350.5602 (3)0.1759 (3)0.16179 (16)0.0553 (7)
C360.4682 (3)0.1859 (3)0.22122 (16)0.0537 (7)
H20.90380.05860.01690.096*
H3A0.65520.07870.10050.258*
H3B0.70360.04970.05900.258*
H3C0.79590.00640.12470.258*
H4A0.91620.22640.10150.226*
H4B0.91160.28100.01970.226*
H4C0.77380.28560.06980.226*
H120.23000.25710.31550.069*
H130.12760.23630.44440.083*
H140.27310.07080.51440.082*
H150.46490.01290.42950.066*
H210.24110.15170.25720.093*
H220.03680.00370.24930.097*
H230.08490.00640.37390.110*
H240.04540.15190.45730.111*
H250.24770.24570.38500.102*
H320.58530.05890.31780.065*
H330.74410.07190.22070.066*
H350.55200.23450.12220.066*
H360.39940.25210.22130.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0414 (2)0.0550 (3)0.0459 (2)0.00137 (19)0.00241 (16)0.0079 (2)
O10.0622 (15)0.142 (3)0.0707 (15)0.0412 (16)0.0177 (12)0.0218 (16)
O20.0735 (15)0.0969 (18)0.0556 (13)0.0313 (13)0.0205 (11)0.0155 (13)
C10.0513 (17)0.0596 (17)0.0533 (17)0.0003 (15)0.0056 (14)0.0005 (15)
C20.079 (2)0.107 (3)0.055 (2)0.033 (2)0.0274 (18)0.020 (2)
C30.222 (8)0.192 (7)0.102 (4)0.091 (6)0.083 (5)0.056 (4)
C40.198 (6)0.128 (4)0.125 (4)0.057 (4)0.094 (4)0.015 (4)
C110.0427 (14)0.0467 (15)0.0495 (15)0.0013 (12)0.0005 (12)0.0028 (12)
C120.0532 (17)0.0487 (16)0.070 (2)0.0030 (14)0.0139 (15)0.0011 (15)
C130.070 (2)0.066 (2)0.072 (2)0.0072 (17)0.0204 (18)0.0129 (18)
C140.071 (2)0.087 (3)0.0464 (17)0.0031 (19)0.0027 (16)0.0098 (17)
C150.0457 (16)0.075 (2)0.0453 (16)0.0036 (15)0.0038 (12)0.0052 (14)
C210.093 (3)0.066 (2)0.073 (2)0.022 (2)0.002 (2)0.0058 (19)
C220.078 (2)0.094 (3)0.071 (2)0.027 (2)0.022 (2)0.015 (2)
C230.0449 (19)0.119 (3)0.112 (3)0.019 (2)0.002 (2)0.005 (3)
C240.086 (3)0.109 (3)0.084 (3)0.043 (3)0.005 (2)0.032 (3)
C250.098 (3)0.057 (2)0.100 (3)0.020 (2)0.015 (3)0.020 (2)
C310.0369 (13)0.0453 (15)0.0476 (15)0.0048 (11)0.0010 (11)0.0010 (12)
C320.0574 (16)0.0500 (16)0.0545 (16)0.0072 (14)0.0068 (13)0.0109 (14)
C330.0505 (16)0.0540 (17)0.0606 (17)0.0123 (14)0.0043 (13)0.0026 (15)
C340.0404 (14)0.0513 (16)0.0535 (16)0.0013 (12)0.0016 (12)0.0011 (14)
C350.0566 (17)0.0588 (18)0.0506 (16)0.0092 (14)0.0056 (14)0.0110 (14)
C360.0471 (16)0.0561 (17)0.0579 (18)0.0110 (13)0.0028 (13)0.0091 (14)
Geometric parameters (Å, º) top
Fe1—C112.044 (3)C31—C321.387 (4)
Fe1—C122.043 (3)C31—C361.392 (4)
Fe1—C132.040 (3)C32—C331.375 (4)
Fe1—C142.030 (3)C33—C341.397 (4)
Fe1—C152.024 (3)C34—C351.383 (4)
Fe1—C212.033 (4)C35—C361.373 (4)
Fe1—C222.035 (4)C2—H20.9800
Fe1—C232.024 (3)C3—H3A0.9600
Fe1—C242.029 (4)C3—H3B0.9600
Fe1—C252.023 (4)C3—H3C0.9600
O1—C11.186 (4)C4—H4A0.9600
O2—C11.321 (4)C4—H4B0.9600
O2—C21.481 (4)C4—H4C0.9600
C1—C341.485 (4)C12—H120.9300
C2—C31.440 (7)C13—H130.9300
C2—C41.448 (6)C14—H140.9300
C11—C121.417 (4)C15—H150.9300
C11—C151.428 (4)C21—H210.9300
C11—C311.479 (4)C22—H220.9300
C12—C131.418 (4)C23—H230.9300
C13—C141.407 (5)C24—H240.9300
C14—C151.412 (4)C25—H250.9300
C21—C221.389 (6)C32—H320.9300
C21—C251.395 (5)C33—H330.9300
C22—C231.410 (6)C35—H350.9300
C23—C241.410 (6)C36—H360.9300
C24—C251.391 (6)
C1—O2—C2117.7 (2)C14—C15—Fe169.86 (18)
O1—C1—O2124.1 (3)C11—C15—Fe170.20 (16)
O1—C1—C34123.8 (3)C22—C21—C25108.4 (4)
O2—C1—C34112.1 (3)C22—C21—Fe170.1 (2)
O2—C2—C3107.9 (4)C25—C21—Fe169.5 (2)
O2—C2—C4108.2 (3)C21—C22—C23107.8 (4)
C3—C2—C4114.8 (4)C21—C22—Fe170.0 (2)
C25—Fe1—C11125.06 (16)C23—C22—Fe169.3 (2)
C23—Fe1—C11155.83 (16)C22—C23—C24107.5 (4)
C15—Fe1—C1141.11 (11)C22—C23—Fe170.1 (2)
C24—Fe1—C11161.73 (16)C24—C23—Fe169.8 (2)
C14—Fe1—C1168.75 (12)C25—C24—C23107.7 (4)
C21—Fe1—C11107.83 (14)C25—C24—Fe169.7 (2)
C22—Fe1—C11120.65 (14)C23—C24—Fe169.4 (2)
C13—Fe1—C1168.54 (12)C24—C25—C21108.5 (4)
C12—Fe1—C1140.58 (11)C24—C25—Fe170.1 (2)
C25—Fe1—C12162.70 (15)C21—C25—Fe170.3 (2)
C23—Fe1—C12121.57 (17)C11—C31—C32121.1 (2)
C15—Fe1—C1268.50 (13)C32—C31—C36117.6 (3)
C24—Fe1—C12156.18 (17)C11—C31—C36121.2 (2)
C14—Fe1—C1268.28 (14)C31—C32—C33121.2 (3)
C21—Fe1—C12126.49 (14)C32—C33—C34120.8 (3)
C22—Fe1—C12109.20 (15)C33—C34—C35118.1 (3)
C13—Fe1—C1240.65 (12)C1—C34—C33118.2 (3)
C25—Fe1—C13154.78 (16)C1—C34—C35123.7 (3)
C23—Fe1—C13108.66 (17)C34—C35—C36120.9 (3)
C15—Fe1—C1368.43 (14)C31—C36—C35121.4 (3)
C24—Fe1—C13120.78 (17)C3—C2—H2108.6
C14—Fe1—C1340.45 (14)C4—C2—H2108.6
C21—Fe1—C13163.79 (15)O2—C2—H2108.6
C22—Fe1—C13127.16 (17)C2—C3—H3A109.5
C25—Fe1—C14119.73 (16)C2—C3—H3B109.5
C23—Fe1—C14125.70 (17)H3A—C3—H3B109.5
C15—Fe1—C1440.75 (12)C2—C3—H3C109.5
C24—Fe1—C14107.28 (16)H3A—C3—H3C109.5
C25—Fe1—C15106.74 (16)H3B—C3—H3C109.5
C23—Fe1—C15162.15 (16)C2—C4—H4A109.5
C25—Fe1—C2140.22 (15)C2—C4—H4B109.5
C23—Fe1—C2167.77 (18)H4A—C4—H4B109.5
C15—Fe1—C21119.97 (15)C2—C4—H4C109.5
C24—Fe1—C2167.63 (17)H4A—C4—H4C109.5
C14—Fe1—C21154.55 (16)H4B—C4—H4C109.5
C25—Fe1—C2267.62 (17)C11—C12—H12125.8
C23—Fe1—C2240.64 (17)C13—C12—H12125.8
C15—Fe1—C22154.92 (15)C14—C13—H13126.0
C24—Fe1—C2268.08 (16)C12—C13—H13126.0
C14—Fe1—C22163.59 (17)C13—C14—H14125.8
C21—Fe1—C2239.94 (16)C15—C14—H14125.8
C25—Fe1—C2367.96 (19)C14—C15—H15125.9
C25—Fe1—C2440.15 (17)C11—C15—H15125.9
C23—Fe1—C2440.73 (17)C22—C21—H21125.8
C15—Fe1—C24124.38 (16)C25—C21—H21125.8
C12—C11—C15107.1 (3)C21—C22—H22126.1
C12—C11—C31126.1 (3)C23—C22—H22126.1
C15—C11—C31126.7 (2)C22—C23—H23126.2
C12—C11—Fe169.66 (16)C24—C23—H23126.2
C15—C11—Fe168.69 (16)C25—C24—H24126.2
C31—C11—Fe1127.69 (19)C23—C24—H24126.2
C11—C12—C13108.4 (3)C24—C25—H25125.8
C11—C12—Fe169.75 (16)C21—C25—H25125.8
C13—C12—Fe169.56 (18)C33—C32—H32119.4
C14—C13—C12108.0 (3)C31—C32—H32119.4
C14—C13—Fe169.40 (19)C32—C33—H33119.6
C12—C13—Fe169.79 (18)C34—C33—H33119.6
C13—C14—C15108.3 (3)C36—C35—H35119.5
C13—C14—Fe170.14 (19)C34—C35—H35119.5
C15—C14—Fe169.39 (17)C35—C36—H36119.3
C11—C15—C14108.2 (3)C31—C36—H36119.3
C2—O2—C1—O15.9 (5)O1—C1—C34—C35159.7 (4)
C2—O2—C1—C34173.5 (3)O2—C1—C34—C3520.9 (4)
C1—O2—C2—C3112.0 (5)O1—C1—C34—C3318.2 (5)
C1—O2—C2—C4123.2 (4)O2—C1—C34—C33161.2 (3)
C36—C31—C32—C331.5 (4)C33—C34—C35—C360.4 (5)
C11—C31—C32—C33174.8 (3)C1—C34—C35—C36177.5 (3)
C31—C32—C33—C341.9 (5)C34—C35—C36—C310.7 (5)
C32—C33—C34—C350.9 (4)C32—C31—C36—C350.2 (4)
C32—C33—C34—C1178.9 (3)C11—C31—C36—C35176.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.982.252.696 (4)106
C12—H12···Cg3i0.932.753.658 (3)167
Symmetry code: (i) x3/2, y1/2, z.

Experimental details

(II)(III)
Crystal data
Chemical formula[Fe(C19H18O2)][Fe(C20H20O2)]
Mr334.18348.21
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/a
Temperature (K)294294
a, b, c (Å)7.9563 (5), 16.3464 (11), 12.0088 (10)9.3406 (9), 10.1663 (6), 17.9072 (10)
α, β, γ (°)90, 94.128 (5), 9090, 90.136 (6), 90
V3)1557.78 (19)1700.5 (2)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.970.89
Crystal size (mm)0.50 × 0.45 × 0.450.39 × 0.26 × 0.15
Data collection
DiffractometerSiemens P4
diffractometer
Siemens P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.629, 0.6460.769, 0.875
No. of measured, independent and
observed [I > 2σ(I)] reflections
4875, 3780, 3276 4440, 3355, 2439
Rint0.0120.006
(sin θ/λ)max1)0.6610.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.079, 1.05 0.043, 0.109, 1.04
No. of reflections37803355
No. of parameters200210
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.300.33, 0.30

Computer programs: XSCANS (Siemens, 1994), XSCANS, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 1998), SHELXL97 and PREP8 (Ferguson, 1998).

Selected geometric parameters (Å, º) for (II) top
O1—C11.200 (2)C1—C341.489 (2)
O2—C11.3282 (19)C2—C31.486 (3)
O2—C21.4503 (19)C11—C311.470 (2)
C1—O2—C2115.63 (13)O2—C2—C3107.37 (15)
O1—C1—O2123.17 (16)C1—C34—C33122.85 (14)
O1—C1—C34124.07 (15)C1—C34—C35118.07 (14)
O2—C1—C34112.76 (13)
C2—O2—C1—C34178.95 (13)C12—C11—C31—C367.9 (2)
C1—O2—C2—C3179.76 (16)O1—C1—C34—C33178.40 (17)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O1i0.932.543.360 (3)147
C2—H2A···Cg1ii0.972.873.770 (2)155
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
Selected geometric parameters (Å, º) for (III) top
O1—C11.186 (4)C1—C341.485 (4)
O2—C11.321 (4)C2—C31.440 (7)
O2—C21.481 (4)C2—C41.448 (6)
C1—O2—C2117.7 (2)O2—C2—C4108.2 (3)
O1—C1—O2124.1 (3)C3—C2—C4114.8 (4)
O1—C1—C34123.8 (3)C1—C34—C33118.2 (3)
O2—C1—C34112.1 (3)C1—C34—C35123.7 (3)
O2—C2—C3107.9 (4)
C2—O2—C1—O15.9 (5)C1—O2—C2—C3112.0 (5)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.982.252.696 (4)106
C12—H12···Cg3i0.932.753.658 (3)167
Symmetry code: (i) x3/2, y1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds