Download citation
Download citation
link to html
The title compounds, {5-(di­methyl­amino)-2-[N-(4-methoxy­phenyl)­imino­methyl]­phenyl}[N-(4-methoxy­phenyl)-4-nitro­salicyl­aldiminato]­palladium(II), [Pd(C14H11N2O4)(C16H17N2O)], (I), and [4-(diethyl­amino)-N-(4-methoxy­phenyl)­sali­cyl­aldiminato]{2-[N-(4-methoxy­phenyl)­imino­methyl]-5-nitrophenyl}palladium(II) di­chloro­methane hemisolvate, [Pd(C14H11N2O3)(C18H21N2O2)]·0.5CH2Cl2, (II), both contain push-pull chromophores coordinated to Pd in a square-planar arrangement. In both compounds, the five-membered orthopalladated ring is essentially planar, while the coordinated six-membered ring is not. Deviations from a coplanar arrangement of the phenyl­ene rings of the coordinated Schiff bases are observed in both (I) and (II) as a result of intramolecular steric interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101014147/gd1166sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101014147/gd1166Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101014147/gd1166IIsup3.hkl
Contains datablock II

CCDC references: 180134; 180135

Comment top

Organometallic complexes containing metallic centres bonded to organic π-electron conjugated systems are materials under investigation for applications in second-order non-linear optics (NLO). In comparison with all organic compounds, they show additional chemical variables (the nature of the metal, its oxidation state, coordination geometry etc.) that may lead, in principle, to enhanced NLO properties. Some interesting results have been reported for organometallic fragments attached at the end of organic conjugated systems and acting as electron donor or acceptor groups (Whittall et al., 1998).

A less investigated possibility is the use of metallic centres acting as conjugation bridges along push–pull systems (Buey et al., 1998). In this case, conjugation should involve π interactions between the metal and the organic ligands. This obviously poses some limitations on the nature of the metal, since its coordination geometry should allow, in the optimal case, a coplanar arrangement of the metal coordination sphere and of the organic conjugated ligands. Cyclometallated compounds (e.g. cyclometallated Schiff bases) seem a suitable choice since, in these compounds, a coplanar arrangement of metallated and ortho-aromatic rings must occur (Dehand & Pfeffer, 1976; Churchill et al., 1980); furthermore, aromatic imines may be easily functionalized with electron donor or acceptor groups, resulting in fairly highly NLO active compounds (Morley, 1995).

We have recently started a systematic investigation on the synthesis and structure of orthopalladated aromatic imines as precursors of fragments to be incorporated in polymers, and in the two complexes reported here, (I) and (II), a Pd atom is coordinated to two aromatic Schiff bases.

In both title compounds, the imines are functionalized with strong electron donor–acceptor groups. In particular, one imine is of the push–pull type and contains methoxy donor and nitro acceptor groups, while the second coordinated imine is of the electron-rich type as it contains only electron-donor groups (i.e. methoxy and dialkylamino). The two complexes substantially differ in the nature of the cyclometallated imine which is the push–pull group in the case of (I) and the electron-rich group in the case of (II). Furthermore, in both (I) and (II), the strongest electron-donor group (i.e. dialkylamino) and the nitro acceptor group are placed in opposite directions with respect to the Pd atom, so as to favour a charge transfer possibly involving the metal.

Both compounds show a strong absorption band in the UV-vis region which should correspond to the HOMO–LUMO transition (HOMO is highest occupied molecular orbital and LUMO is lowest unoccupied molecular orbital). A positive solvatochromic effect is observed for this band (see Experimental), as generally found in second-order NLO active compounds. The effect, though rather small, is comparable with values reported in the literature for other organometallic compounds (Di Bella et al., 1994). The NLO activity of the compounds has been tested by EFISH measurements in chloroform solution at λ = 1907 nm (Levine & Bethea, 1975). The values obtained, i.e. µβ = 120 × 10 -48 e.s.u. for (I) and µβ = 75 × 10 -48 e.s.u. for (II), indicate a moderate activity (Dalton et al., 1999) (esu = ?).

The coordination around the Pd atom is substantially square planar in both complexes, showing standard values for the distances from metal to coordinated atoms (O'Keefe & Steel, 2000). Of the two rings to which the metal atom belongs, the cyclopalladated (five-membered) ring is substantially planar, while the salicylaldiminate (six-membered) ring is not, mainly as a result of metal atom being out of the mean plane defined by the remaining five atoms. A planar-trigonal geometry is observed around the N atom of the amino group [N1 in (I) and N3 in (II)]. The sp2 hybridization of this atom should favour electron donation to the adjacent phenyl ring. This is consistent with the observed shortening of N1—C3 for (I) and N3—C19 for (II) (Allen et al., 1987) and with some distortions of bond lenghts observed in the phenyl ring attached to the dialkylamino group.

Deviations from coplanarity of the phenyl rings are observed in coordinated imines of both compounds through torsions around the bonds not constrained by coordination [i.e. N2—C10 and N3—C21 in (I), and N4—C26 and N1—C5 in (II)]. These deviations seem to be due to internal steric repulsions [C9···C11 2.95 (1) Å and C22···C24 2.916 (9) Å for (I); C4···C8 2.871 (9) Å and C25···C27 2.902 (9) Å for (II)], but also to short contacts involving atoms of different ligands [C8···C20 3.44 (1) Å, C8···C21 3.237 (9) Å and O3···C15 2.929 (9) Å for (I); C13···C26 3.12 (1) Å and C13···C31 3.44 (1) Å for (II)]. These contacts, in particular those involving atoms of different ligands, probably also play a role in determining the non-planar conformation of the six-membered ring containing the Pd atom.

In the case of (II), solvent molecules (dichloromethane) in special positions (binary axis) are also present in the crystals. Although the C and Cl atoms of the solvent molecule have high anisotropic displacement parameters, no evidence of static disorder was found.

Experimental top

Compound (I) was prepared by reaction of di-µ-acetato-bis({5-(dimethylamino)- 2-[N-(4-methoxyphenyl)iminomethyl]phenyl}palladium(II)) with N-(4-methoxyphenyl)-4-nitrosalicylaldimine and compound (II) was prepared by reaction of di-µ-acetato-bis({2-[N-(4-methoxyphenyliminomethyl)-5-nitrophenyl}- palladium(II)) with N-(4-methoxyphenyl)-4-(diethylamino)salicylaldimine. In both cases, a molar ratio of 2:1 of imine and dinuclear complex was used. Reactions were performed at room temperature for 1 h in CH2Cl2/ethanol solvent. Melting points: 568 K (decomposition) for (I) and 584 K (decomposition) for (II). Analysis for (I): Pd 16.9% calculated, 16.6% found; for (II): Pd 16.1% calculated, 15.9% found. UV-vis λmax/nm: 421 in ethyl acetate (µ = 1.78 D) and 425 in dimethylformamide (DMF) (µ = 3.82 D) for (I); 358 in ethyl acetate and 362 in DMF for (II). Crystals suitable for single-crystal X-ray diffraction analysis were obtained by slow evaporation from chloroform for (I) and from dichloromethane–hexane for (II).

Refinement top

All H atoms were stereochemically positioned. For all H atoms were refined as riding, with Uiso equal to Ueq of the carrier atom, and C—H distances in the range 0.93–0.97 Å. For (I), symmetry-equivalent reflections were not merged. The total of 8378 reflections includes 3634 Friedel pairs. The Flack (1983) parameter was refined with TWIN and BASF instructions (and MERG 0) according to the SHELX97 manual. For (II), systematically absent reflections corresponding to lattice centering were not collected.

Computing details top

For both compounds, data collection: MACH3 Software (Nonius, 1996); cell refinement: CELLDIM (Nonius, 1996); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of (I) with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The molecule of (II) with displacement ellipsoids at the 50% probability level. The solvent molecule is not shown.
(I) {5-(dimethylamino)-2-[N-(4-methoxyphenyl)iminomethyl]phenyl}[N-(4- methoxyphenyl)-4-nitrosalicylaldiminato]palladium(II) top
Crystal data top
C30H28N4O5PdDx = 1.554 Mg m3
Mr = 630.96Mo Kα radiation, λ = 0.71069 Å
Orthorhombic, Pca21Cell parameters from 24 reflections
a = 24.41 (2) Åθ = 8.2–9.5°
b = 14.479 (6) ŵ = 0.74 mm1
c = 7.630 (4) ÅT = 293 K
V = 2697 (3) Å3Prism, orange
Z = 40.5 × 0.1 × 0.04 mm
F(000) = 1288
Data collection top
Enraf Nonius MACH 3
diffractometer
4033 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590Rint = 0.054
Graphite monochromatorθmax = 30.0°, θmin = 2.2°
ω/θ scansh = 3434
Absorption correction: ψ scan
(North et al., 1968)
k = 2020
Tmin = 0.939, Tmax = 1.000l = 1010
8378 measured reflections2 standard reflections every 120 min
7823 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0375P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.002
7823 reflectionsΔρmax = 0.51 e Å3
361 parametersΔρmin = 0.51 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (5)
Crystal data top
C30H28N4O5PdV = 2697 (3) Å3
Mr = 630.96Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 24.41 (2) ŵ = 0.74 mm1
b = 14.479 (6) ÅT = 293 K
c = 7.630 (4) Å0.5 × 0.1 × 0.04 mm
Data collection top
Enraf Nonius MACH 3
diffractometer
4033 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.054
Tmin = 0.939, Tmax = 1.0002 standard reflections every 120 min
8378 measured reflections intensity decay: 2%
7823 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.124Δρmax = 0.51 e Å3
S = 0.96Δρmin = 0.51 e Å3
7823 reflectionsAbsolute structure: Flack (1983)
361 parametersAbsolute structure parameter: 0.11 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. A refinement against 4189 reflections obtained after merging symmetry equivalent as well as Friedel pairs gave R1=0.044 and wR2=0.1026.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.616634 (15)0.11843 (3)0.96592 (8)0.03391 (10)
N10.5971 (2)0.2610 (4)0.9101 (7)0.0427 (15)
N20.5503 (2)0.1601 (4)0.8246 (7)0.0372 (13)
N30.6830 (2)0.0804 (3)1.1150 (7)0.0352 (13)
N40.7755 (3)0.4763 (4)0.8129 (10)0.0589 (18)
O10.4959 (2)0.5209 (4)0.6418 (8)0.0567 (15)
O20.6597 (2)0.2247 (4)1.5478 (7)0.0699 (17)
O30.64339 (17)0.2523 (3)0.9993 (8)0.0435 (15)
O40.7377 (3)0.5254 (4)0.7743 (12)0.098 (3)
O50.8229 (3)0.4973 (4)0.8010 (11)0.092 (2)
C10.6467 (3)0.2767 (5)1.0032 (13)0.063 (3)
H1A0.65380.34191.00890.063*
H1B0.64350.25241.11980.063*
H1C0.67640.24650.94370.063*
C20.5711 (3)0.3411 (5)0.8309 (11)0.059 (2)
H2A0.59060.39590.86420.059*
H2B0.57170.33490.70570.059*
H2C0.53390.34530.87060.059*
C30.5768 (3)0.1744 (4)0.8809 (9)0.0359 (15)
C40.5275 (3)0.1625 (5)0.7908 (10)0.0465 (18)
H40.50790.21400.75390.046*
C50.5080 (3)0.0773 (5)0.7566 (10)0.0421 (17)
H50.47530.07110.69520.042*
C60.5357 (2)0.0017 (5)0.8114 (9)0.0369 (15)
C70.5855 (2)0.0066 (4)0.9073 (8)0.0349 (15)
C80.6045 (2)0.0956 (4)0.9397 (11)0.0353 (18)
H80.63680.10301.00280.035*
C90.5194 (3)0.0930 (5)0.7731 (10)0.0459 (19)
H90.48720.10450.71200.046*
C100.5350 (3)0.2520 (5)0.7830 (9)0.0402 (16)
C110.4829 (3)0.2853 (5)0.8182 (9)0.0399 (16)
H110.45760.24680.87270.040*
C120.4674 (3)0.3744 (5)0.7747 (9)0.0423 (16)
H120.43220.39530.79830.042*
C130.5060 (3)0.4326 (5)0.6940 (10)0.0430 (17)
C140.5587 (3)0.4010 (5)0.6648 (9)0.0454 (18)
H140.58460.43980.61400.045*
C150.5728 (3)0.3127 (5)0.7107 (10)0.0478 (18)
H150.60870.29280.69290.048*
C160.4435 (3)0.5578 (5)0.6581 (12)0.060 (2)
H16A0.44330.61990.61430.060*
H16B0.43290.55780.77930.060*
H16C0.41810.52100.59200.060*
C170.6924 (3)0.3035 (5)1.5296 (12)0.071 (3)
H17A0.68030.35001.61060.071*
H17B0.72980.28791.55360.071*
H17C0.68930.32661.41210.071*
C180.6700 (3)0.1506 (5)1.4428 (11)0.0394 (17)
C190.6321 (2)0.0802 (4)1.4508 (16)0.0448 (16)
H190.60300.08371.52930.045*
C200.6373 (3)0.0054 (5)1.3437 (9)0.0393 (15)
H200.61080.04071.34650.039*
C210.6812 (2)0.0028 (4)1.2311 (8)0.0334 (14)
C220.7210 (3)0.0645 (4)1.2281 (9)0.0389 (16)
H220.75140.05841.15550.039*
C230.7150 (3)0.1425 (5)1.3362 (9)0.0426 (17)
H230.74150.18851.33560.043*
C240.7292 (3)0.1255 (4)1.1039 (8)0.0350 (14)
H240.75930.09931.15990.035*
C250.7386 (2)0.2120 (4)1.0135 (8)0.0350 (16)
C260.6947 (2)0.2730 (4)0.9774 (15)0.0367 (13)
C270.7097 (3)0.3618 (4)0.9140 (8)0.0422 (18)
H270.68270.40550.89250.042*
C280.7624 (3)0.3833 (5)0.8848 (9)0.0456 (16)
C290.8052 (3)0.3229 (5)0.9187 (8)0.048 (2)
H290.84140.33930.89620.048*
C300.7925 (2)0.2395 (4)0.9852 (14)0.0441 (18)
H300.82070.19891.01330.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02889 (16)0.03758 (19)0.03525 (19)0.0010 (2)0.0037 (4)0.0009 (5)
N10.054 (3)0.040 (3)0.035 (4)0.011 (3)0.009 (3)0.003 (2)
N20.034 (3)0.043 (3)0.035 (3)0.004 (3)0.007 (2)0.005 (3)
N30.034 (3)0.030 (3)0.042 (3)0.000 (2)0.000 (3)0.002 (2)
N40.072 (5)0.038 (4)0.067 (5)0.012 (3)0.003 (4)0.001 (4)
O10.056 (3)0.042 (3)0.072 (4)0.002 (3)0.010 (3)0.006 (3)
O20.095 (4)0.052 (3)0.063 (4)0.011 (3)0.019 (3)0.020 (3)
O30.038 (2)0.037 (2)0.055 (5)0.0030 (18)0.005 (3)0.008 (3)
O40.089 (6)0.050 (3)0.155 (8)0.003 (4)0.026 (5)0.036 (5)
O50.083 (4)0.054 (3)0.139 (7)0.020 (3)0.032 (5)0.010 (4)
C10.059 (5)0.050 (4)0.079 (9)0.005 (4)0.006 (5)0.003 (5)
C20.085 (6)0.043 (4)0.049 (5)0.017 (4)0.002 (4)0.006 (4)
C30.036 (3)0.039 (4)0.032 (3)0.006 (3)0.008 (3)0.004 (3)
C40.049 (4)0.050 (4)0.040 (4)0.008 (4)0.010 (4)0.010 (4)
C50.033 (3)0.059 (5)0.034 (4)0.004 (3)0.004 (3)0.007 (4)
C60.033 (3)0.051 (4)0.026 (3)0.002 (3)0.000 (3)0.004 (3)
C70.029 (3)0.041 (4)0.034 (4)0.001 (3)0.000 (2)0.001 (3)
C80.035 (3)0.047 (3)0.023 (5)0.009 (2)0.005 (3)0.006 (3)
C90.033 (4)0.067 (5)0.038 (4)0.002 (3)0.010 (3)0.001 (4)
C100.036 (4)0.047 (4)0.038 (4)0.004 (3)0.008 (3)0.004 (3)
C110.034 (3)0.048 (4)0.038 (4)0.004 (3)0.002 (3)0.007 (3)
C120.032 (3)0.050 (4)0.045 (4)0.002 (3)0.001 (3)0.001 (4)
C130.048 (4)0.044 (4)0.038 (4)0.001 (4)0.007 (3)0.004 (4)
C140.040 (4)0.056 (5)0.040 (4)0.012 (3)0.006 (3)0.014 (4)
C150.032 (3)0.066 (5)0.046 (4)0.004 (3)0.001 (3)0.009 (4)
C160.078 (6)0.047 (5)0.056 (5)0.013 (4)0.007 (5)0.006 (4)
C170.101 (7)0.054 (5)0.058 (6)0.003 (5)0.003 (5)0.013 (4)
C180.049 (3)0.048 (3)0.020 (5)0.001 (3)0.001 (3)0.007 (3)
C190.046 (3)0.058 (3)0.030 (4)0.002 (3)0.007 (4)0.000 (5)
C200.038 (3)0.040 (4)0.039 (4)0.004 (3)0.002 (3)0.001 (4)
C210.030 (3)0.037 (3)0.034 (4)0.005 (3)0.007 (3)0.006 (3)
C220.039 (4)0.049 (4)0.029 (4)0.004 (3)0.003 (3)0.001 (3)
C230.041 (4)0.045 (4)0.041 (4)0.006 (3)0.006 (3)0.003 (3)
C240.040 (3)0.031 (3)0.034 (3)0.007 (3)0.005 (3)0.008 (3)
C250.035 (3)0.040 (3)0.030 (4)0.003 (3)0.007 (2)0.004 (3)
C260.037 (3)0.037 (3)0.036 (4)0.007 (2)0.002 (5)0.004 (5)
C270.055 (4)0.033 (4)0.039 (4)0.001 (3)0.013 (3)0.003 (3)
C280.058 (4)0.038 (3)0.041 (4)0.016 (4)0.006 (3)0.002 (4)
C290.037 (3)0.062 (5)0.045 (5)0.010 (3)0.006 (3)0.007 (4)
C300.035 (3)0.050 (3)0.048 (5)0.000 (3)0.003 (4)0.009 (5)
Geometric parameters (Å, º) top
Pd1—C72.014 (6)C10—C151.389 (9)
Pd1—N22.037 (5)C11—C121.384 (9)
Pd1—N32.055 (5)C11—H110.9300
Pd1—O32.062 (4)C12—C131.407 (10)
N1—C31.366 (8)C12—H120.9300
N1—C11.423 (8)C13—C141.383 (10)
N1—C21.453 (8)C14—C151.371 (9)
N2—C91.291 (8)C14—H140.9300
N2—C101.417 (8)C15—H150.9300
N3—C241.306 (8)C16—H16A0.9600
N3—C211.431 (8)C16—H16B0.9600
N4—O51.200 (8)C16—H16C0.9600
N4—O41.202 (9)C17—H17A0.9600
N4—C281.489 (9)C17—H17B0.9600
O1—C131.362 (8)C17—H17C0.9600
O1—C161.393 (9)C18—C231.372 (9)
O2—C181.362 (8)C18—C191.377 (8)
O2—C171.399 (9)C19—C201.362 (10)
O3—C261.298 (6)C19—H190.9300
C1—H1A0.9600C20—C211.379 (8)
C1—H1B0.9600C20—H200.9300
C1—H1C0.9600C21—C221.376 (8)
C2—H2A0.9600C22—C231.407 (9)
C2—H2B0.9600C22—H220.9300
C2—H2C0.9600C23—H230.9300
C3—C41.396 (9)C24—C251.447 (8)
C3—C81.400 (8)C24—H240.9300
C4—C51.348 (9)C25—C301.392 (8)
C4—H40.9300C25—C261.416 (8)
C5—C61.393 (9)C26—C271.421 (9)
C5—H50.9300C27—C281.342 (9)
C6—C91.411 (9)C27—H270.9300
C6—C71.424 (8)C28—C291.388 (9)
C7—C81.392 (8)C29—C301.346 (9)
C8—H80.9300C29—H290.9300
C9—H90.9300C30—H300.9300
C10—C111.386 (9)
C7—Pd1—N281.3 (2)C13—C12—H12120.6
C7—Pd1—N3100.3 (2)O1—C13—C14115.6 (6)
N2—Pd1—N3177.8 (2)O1—C13—C12124.7 (7)
C7—Pd1—O3173.0 (2)C14—C13—C12119.7 (7)
N2—Pd1—O392.2 (2)C15—C14—C13120.1 (6)
N3—Pd1—O386.2 (2)C15—C14—H14120.0
C3—N1—C1122.4 (6)C13—C14—H14120.0
C3—N1—C2120.4 (6)C14—C15—C10121.6 (6)
C1—N1—C2116.8 (6)C14—C15—H15119.2
C9—N2—C10119.0 (6)C10—C15—H15119.2
C9—N2—Pd1113.7 (5)O1—C16—H16A109.5
C10—N2—Pd1127.3 (4)O1—C16—H16B109.5
C24—N3—C21117.4 (5)H16A—C16—H16B109.5
C24—N3—Pd1120.7 (4)O1—C16—H16C109.5
C21—N3—Pd1121.9 (4)H16A—C16—H16C109.5
O5—N4—O4124.9 (7)H16B—C16—H16C109.5
O5—N4—C28117.7 (7)O2—C17—H17A109.5
O4—N4—C28117.4 (7)O2—C17—H17B109.5
C13—O1—C16120.0 (6)H17A—C17—H17B109.5
C18—O2—C17118.6 (6)O2—C17—H17C109.5
C26—O3—Pd1120.5 (4)H17A—C17—H17C109.5
N1—C1—H1A109.5H17B—C17—H17C109.5
N1—C1—H1B109.5O2—C18—C23124.3 (6)
H1A—C1—H1B109.5O2—C18—C19115.6 (7)
N1—C1—H1C109.5C23—C18—C19120.0 (7)
H1A—C1—H1C109.5C20—C19—C18120.0 (8)
H1B—C1—H1C109.5C20—C19—H19120.0
N1—C2—H2A109.5C18—C19—H19120.0
N1—C2—H2B109.5C19—C20—C21121.0 (6)
H2A—C2—H2B109.5C19—C20—H20119.5
N1—C2—H2C109.5C21—C20—H20119.5
H2A—C2—H2C109.5C22—C21—C20119.9 (6)
H2B—C2—H2C109.5C22—C21—N3121.5 (6)
N1—C3—C4120.4 (6)C20—C21—N3118.5 (6)
N1—C3—C8121.4 (6)C21—C22—C23119.0 (6)
C4—C3—C8118.2 (6)C21—C22—H22120.5
C5—C4—C3121.0 (6)C23—C22—H22120.5
C5—C4—H4119.5C18—C23—C22120.0 (6)
C3—C4—H4119.5C18—C23—H23120.0
C4—C5—C6121.3 (6)C22—C23—H23120.0
C4—C5—H5119.3N3—C24—C25126.8 (6)
C6—C5—H5119.3N3—C24—H24116.6
C5—C6—C9124.7 (6)C25—C24—H24116.6
C5—C6—C7120.0 (6)C30—C25—C26120.4 (6)
C9—C6—C7115.2 (6)C30—C25—C24118.1 (6)
C8—C7—C6117.0 (6)C26—C25—C24120.9 (6)
C8—C7—Pd1131.8 (4)O3—C26—C25124.1 (6)
C6—C7—Pd1111.1 (5)O3—C26—C27120.1 (6)
C7—C8—C3122.4 (6)C25—C26—C27115.8 (5)
C7—C8—H8118.8C28—C27—C26121.0 (6)
C3—C8—H8118.8C28—C27—H27119.5
N2—C9—C6118.6 (6)C26—C27—H27119.5
N2—C9—H9120.7C27—C28—C29123.0 (6)
C6—C9—H9120.7C27—C28—N4118.6 (7)
C11—C10—C15117.8 (7)C29—C28—N4118.4 (6)
C11—C10—N2121.7 (6)C30—C29—C28117.4 (6)
C15—C10—N2120.5 (6)C30—C29—H29121.3
C12—C11—C10121.9 (6)C28—C29—H29121.3
C12—C11—H11119.0C29—C30—C25122.3 (6)
C10—C11—H11119.0C29—C30—H30118.8
C11—C12—C13118.7 (6)C25—C30—H30118.8
C11—C12—H12120.6
C20—C21—N3—C24133.4 (6)C24—C25—C26—O39.6 (13)
C21—N3—C24—C25171.5 (6)C25—C26—O3—Pd131.7 (13)
N3—C24—C25—C30166.9 (7)C26—O3—Pd1—N2135.2 (7)
C5—C6—C9—N2176.7 (7)O3—Pd1—N2—C9179.8 (5)
C6—C9—N2—C10178.5 (6)Pd1—N2—C9—C62.8 (8)
C9—N2—C10—C15131.3 (7)N2—C9—C6—C70.7 (9)
N3—C24—C25—C2622.1 (10)C1—N1—C3—C4179.2 (7)
(II) [4-(diethylamino)-N-(4-methoxyphenyl)salicylaldiminato]- {5-methoxy-2-[N-(4-methoxyphenyl)iminomethyl]phenyl}palladium(II), dichloromethane hemisolvate top
Crystal data top
[Pd(C14H11N2O3)(C18H21N2O2)]·0.5CH2Cl2F(000) = 2872
Mr = 701.48Dx = 1.516 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
a = 31.582 (10) ÅCell parameters from 24 reflections
b = 7.5847 (10) Åθ = 8.5–11.8°
c = 26.557 (6) ŵ = 0.74 mm1
β = 104.96 (3)°T = 293 K
V = 6146 (3) Å3Prism, dark orange
Z = 80.5 × 0.1 × 0.06 mm
Data collection top
Enraf-Nonius MACH3
diffractometer
3705 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590Rint = 0.060
Graphite monochromatorθmax = 28.0°, θmin = 1.3°
ω/θ scansh = 4140
Absorption correction: ψ scan
(North et al., 1968)
k = 010
Tmin = 0.952, Tmax = 1.000l = 034
7552 measured reflections1 standard reflections every 120 min
7388 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0525P)2]
where P = (Fo2 + 2Fc2)/3
7388 reflections(Δ/σ)max < 0.001
393 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
[Pd(C14H11N2O3)(C18H21N2O2)]·0.5CH2Cl2V = 6146 (3) Å3
Mr = 701.48Z = 8
Monoclinic, C2/cMo Kα radiation
a = 31.582 (10) ŵ = 0.74 mm1
b = 7.5847 (10) ÅT = 293 K
c = 26.557 (6) Å0.5 × 0.1 × 0.06 mm
β = 104.96 (3)°
Data collection top
Enraf-Nonius MACH3
diffractometer
3705 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.060
Tmin = 0.952, Tmax = 1.0001 standard reflections every 120 min
7552 measured reflections intensity decay: 1%
7388 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 0.98Δρmax = 0.66 e Å3
7388 reflectionsΔρmin = 0.75 e Å3
393 parameters
Special details top

Experimental. Pd content in (1) and (2) was determined by thermogravimetric analysis (Mettler TG 50, scanning rate 20 C/min, air atmosphere). NMR analysis of (1) and (2), as well as of synthetic precursors, was performed on a Varian Gemini XL 200 Mhz spectrometer. UV-VIS spectra were recorded at ambient temperature with a Perkin Elmer Lambda 7 spectrometer. Transition temperatures were determined by DSC analysis (Perkin Elmer DSC-7 apparatus).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. All H atoms were stereochemically positioned. For all H atoms refinement was by the riding model, with Uiso equal to Ueq of the carrier atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.192569 (16)0.58907 (6)0.151034 (17)0.03280 (13)
N10.22485 (17)0.6935 (7)0.22168 (19)0.0367 (12)
N20.02152 (19)0.6326 (10)0.1624 (3)0.0604 (19)
N30.32671 (18)0.0010 (7)0.0894 (2)0.0490 (15)
N40.15873 (16)0.5164 (7)0.07874 (18)0.0356 (12)
O10.40472 (16)0.7259 (7)0.3076 (2)0.0608 (14)
O20.00407 (18)0.6699 (12)0.1875 (2)0.112 (3)
O30.01069 (17)0.5570 (9)0.1214 (2)0.0786 (18)
O40.24843 (13)0.4736 (5)0.13842 (16)0.0385 (10)
O50.01872 (17)0.8930 (8)0.0465 (2)0.0714 (15)
C10.4236 (3)0.6686 (12)0.3592 (3)0.074 (3)
H1A0.45490.68150.36710.074*
H1B0.41640.54690.36250.074*
H1C0.41240.73830.38300.074*
C20.3606 (2)0.7153 (9)0.2899 (3)0.0432 (16)
C30.3325 (2)0.6591 (9)0.3186 (3)0.0448 (17)
H30.34330.62630.35330.045*
C40.2880 (2)0.6521 (9)0.2952 (3)0.0424 (16)
H40.26900.61490.31460.042*
C50.2713 (2)0.6983 (8)0.2443 (2)0.0356 (14)
C60.2993 (2)0.7528 (9)0.2151 (3)0.0452 (16)
H60.28820.78150.18010.045*
C70.3437 (2)0.7645 (9)0.2380 (3)0.0484 (17)
H70.36240.80530.21870.048*
C80.2001 (2)0.7662 (8)0.2476 (2)0.0382 (15)
H80.21140.82480.27890.038*
C90.1536 (2)0.7503 (7)0.2244 (2)0.0332 (14)
C100.1230 (2)0.8063 (9)0.2512 (2)0.0430 (16)
H100.13220.86630.28270.043*
C110.0791 (2)0.7715 (10)0.2303 (3)0.0487 (18)
H110.05810.80750.24700.049*
C120.0678 (2)0.6819 (9)0.1841 (3)0.0420 (16)
C130.0973 (2)0.6329 (8)0.1556 (2)0.0404 (16)
H130.08740.57800.12340.040*
C140.1414 (2)0.6669 (8)0.1757 (2)0.0335 (14)
C150.3214 (3)0.3229 (10)0.0817 (3)0.085 (3)
H15A0.32430.41880.05930.085*
H15B0.29200.31990.08550.085*
H15C0.34150.33890.11530.085*
C160.3313 (2)0.1527 (9)0.0584 (3)0.0518 (19)
H16A0.36100.15690.05470.052*
H16B0.31170.14010.02390.052*
C170.3663 (2)0.0518 (9)0.1276 (3)0.0513 (19)
H17A0.38530.05020.13620.051*
H17B0.35870.08910.15910.051*
C180.3911 (2)0.1990 (12)0.1094 (3)0.071 (2)
H18A0.41690.22660.13630.071*
H18B0.37270.30160.10160.071*
H18C0.39930.16220.07860.071*
C190.2887 (2)0.0929 (9)0.0832 (2)0.0386 (13)
C200.2864 (2)0.2413 (8)0.1132 (2)0.0362 (15)
H200.31160.27820.13760.036*
C210.2475 (2)0.3378 (8)0.1083 (2)0.0348 (14)
C220.2098 (2)0.2863 (8)0.0695 (2)0.0374 (14)
C230.2131 (2)0.1352 (8)0.0391 (3)0.0456 (17)
H230.18860.10070.01330.046*
C240.2501 (2)0.0394 (9)0.0459 (3)0.0490 (18)
H240.25040.06150.02610.049*
C250.1713 (2)0.3859 (9)0.0544 (2)0.0386 (15)
H250.15210.35440.02280.039*
C260.1217 (2)0.6140 (9)0.0489 (2)0.0379 (15)
C270.0839 (2)0.5348 (10)0.0198 (2)0.0470 (17)
H270.08130.41290.02130.047*
C280.0504 (2)0.6286 (10)0.0108 (3)0.0522 (19)
H280.02520.57160.02940.052*
C290.0541 (2)0.8095 (11)0.0141 (3)0.0541 (19)
C300.0907 (2)0.8925 (10)0.0160 (3)0.0498 (17)
H300.09271.01480.01530.050*
C310.1246 (2)0.7958 (9)0.0474 (2)0.0432 (16)
H310.14920.85300.06740.043*
C320.0226 (3)1.0715 (13)0.0566 (4)0.096 (3)
H32A0.00411.11290.07960.096*
H32B0.04641.08840.07250.096*
H32C0.02841.13630.02450.096*
Cl10.0312 (3)0.1473 (10)0.3017 (3)0.273 (3)
C330.00000.269 (3)0.25000.260 (19)
H33B0.01960.34450.23690.260*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0413 (2)0.0292 (2)0.0299 (2)0.0002 (3)0.01264 (16)0.0033 (3)
N10.045 (3)0.027 (3)0.040 (3)0.002 (2)0.015 (2)0.001 (2)
N20.044 (4)0.086 (6)0.054 (4)0.007 (3)0.018 (3)0.011 (4)
N30.049 (4)0.034 (3)0.066 (4)0.002 (3)0.019 (3)0.023 (3)
N40.042 (3)0.036 (3)0.030 (3)0.005 (2)0.013 (2)0.001 (2)
O10.045 (3)0.064 (4)0.068 (4)0.001 (3)0.005 (3)0.007 (3)
O20.048 (3)0.214 (9)0.079 (4)0.000 (5)0.021 (3)0.029 (5)
O30.058 (3)0.103 (5)0.073 (4)0.005 (3)0.014 (3)0.016 (4)
O40.042 (2)0.034 (2)0.041 (2)0.001 (2)0.014 (2)0.012 (2)
O50.064 (3)0.068 (4)0.074 (4)0.010 (3)0.002 (3)0.022 (3)
C10.060 (5)0.063 (6)0.087 (6)0.008 (5)0.003 (5)0.011 (5)
C20.045 (4)0.035 (4)0.048 (4)0.001 (3)0.010 (3)0.009 (3)
C30.060 (5)0.038 (4)0.037 (4)0.012 (3)0.013 (3)0.005 (3)
C40.054 (4)0.037 (4)0.044 (4)0.001 (3)0.025 (3)0.002 (3)
C50.046 (4)0.027 (3)0.036 (3)0.001 (3)0.014 (3)0.006 (3)
C60.058 (4)0.041 (4)0.037 (3)0.000 (3)0.015 (3)0.000 (3)
C70.055 (4)0.042 (4)0.051 (4)0.008 (4)0.019 (3)0.001 (3)
C80.055 (4)0.028 (3)0.030 (3)0.004 (3)0.009 (3)0.005 (3)
C90.050 (4)0.020 (3)0.033 (3)0.002 (3)0.016 (3)0.002 (2)
C100.053 (4)0.044 (4)0.033 (3)0.011 (3)0.012 (3)0.001 (3)
C110.058 (5)0.050 (4)0.045 (4)0.023 (4)0.028 (3)0.011 (3)
C120.044 (4)0.040 (4)0.042 (4)0.006 (3)0.012 (3)0.013 (3)
C130.048 (4)0.035 (4)0.042 (3)0.002 (3)0.019 (3)0.002 (3)
C140.040 (4)0.025 (3)0.038 (3)0.004 (3)0.016 (3)0.004 (3)
C150.163 (10)0.035 (5)0.068 (6)0.010 (6)0.050 (6)0.012 (4)
C160.067 (5)0.045 (4)0.054 (4)0.001 (4)0.036 (4)0.007 (3)
C170.051 (4)0.045 (5)0.060 (4)0.021 (3)0.018 (3)0.006 (3)
C180.048 (5)0.081 (6)0.081 (6)0.004 (5)0.011 (4)0.008 (5)
C190.046 (3)0.027 (3)0.048 (3)0.002 (3)0.023 (3)0.000 (3)
C200.041 (4)0.028 (3)0.044 (4)0.006 (3)0.018 (3)0.010 (3)
C210.043 (4)0.032 (3)0.036 (3)0.007 (3)0.021 (3)0.002 (3)
C220.043 (4)0.028 (3)0.044 (4)0.002 (3)0.017 (3)0.006 (3)
C230.046 (4)0.038 (4)0.050 (4)0.004 (3)0.007 (3)0.020 (3)
C240.058 (4)0.032 (4)0.058 (4)0.003 (3)0.018 (4)0.018 (3)
C250.044 (3)0.044 (4)0.027 (3)0.005 (3)0.008 (3)0.001 (3)
C260.044 (4)0.041 (4)0.032 (3)0.008 (3)0.018 (3)0.001 (3)
C270.046 (4)0.047 (4)0.045 (4)0.001 (3)0.007 (3)0.002 (3)
C280.044 (4)0.059 (5)0.050 (4)0.004 (4)0.005 (3)0.003 (4)
C290.044 (4)0.061 (5)0.052 (4)0.002 (4)0.004 (3)0.001 (4)
C300.062 (4)0.033 (4)0.055 (4)0.004 (4)0.017 (3)0.007 (4)
C310.041 (4)0.042 (4)0.045 (4)0.000 (3)0.009 (3)0.002 (3)
C320.069 (6)0.089 (8)0.122 (8)0.001 (6)0.011 (5)0.040 (7)
Cl10.363 (9)0.213 (6)0.314 (8)0.011 (6)0.214 (7)0.000 (6)
C330.58 (6)0.074 (15)0.16 (2)0.0000.16 (3)0.000
Geometric parameters (Å, º) top
Pd1—C141.984 (6)C13—C141.382 (8)
Pd1—N42.018 (5)C13—H130.9300
Pd1—N12.049 (5)C15—C161.499 (10)
Pd1—O42.073 (4)C15—H15A0.9600
N1—C81.291 (7)C15—H15B0.9600
N1—C51.434 (8)C15—H15C0.9600
N2—O31.201 (8)C16—H16A0.9700
N2—O21.205 (8)C16—H16B0.9700
N2—C121.474 (9)C17—C181.513 (10)
N3—C191.362 (8)C17—H17A0.9700
N3—C171.443 (8)C17—H17B0.9700
N3—C161.456 (8)C18—H18A0.9600
N4—C251.298 (7)C18—H18B0.9600
N4—C261.436 (8)C18—H18C0.9600
O1—C21.352 (8)C19—C201.392 (8)
O1—C11.414 (9)C19—C241.416 (9)
O4—C211.300 (7)C20—C211.407 (8)
O5—C291.377 (8)C20—H200.9300
O5—C321.392 (10)C21—C221.414 (8)
C1—H1A0.9600C22—C251.399 (8)
C1—H1B0.9600C22—C231.421 (8)
C1—H1C0.9600C23—C241.349 (9)
C2—C31.380 (9)C23—H230.9300
C2—C71.395 (9)C24—H240.9300
C3—C41.383 (9)C25—H250.9300
C3—H30.9300C26—C271.381 (9)
C4—C51.362 (8)C26—C311.383 (9)
C4—H40.9300C27—C281.357 (9)
C5—C61.382 (8)C27—H270.9300
C6—C71.380 (9)C28—C291.381 (11)
C6—H60.9300C28—H280.9300
C7—H70.9300C29—C301.375 (10)
C8—C91.441 (8)C30—C311.385 (9)
C8—H80.9300C30—H300.9300
C9—C141.401 (8)C31—H310.9300
C9—C101.406 (8)C32—H32A0.9600
C10—C111.378 (9)C32—H32B0.9600
C10—H100.9300C32—H32C0.9600
C11—C121.368 (9)Cl1—C331.736 (13)
C11—H110.9300C33—Cl1i1.736 (12)
C12—C131.395 (9)C33—H33B0.9701
C14—Pd1—N496.9 (2)C16—C15—H15C109.5
C14—Pd1—N180.6 (2)H15A—C15—H15C109.5
N4—Pd1—N1173.1 (2)H15B—C15—H15C109.5
C14—Pd1—O4168.2 (2)N3—C16—C15113.2 (6)
N4—Pd1—O489.70 (18)N3—C16—H16A108.9
N1—Pd1—O493.91 (18)C15—C16—H16A108.9
C8—N1—C5117.4 (5)N3—C16—H16B108.9
C8—N1—Pd1115.2 (4)C15—C16—H16B108.9
C5—N1—Pd1127.4 (4)H16A—C16—H16B107.8
O3—N2—O2122.6 (7)N3—C17—C18113.5 (6)
O3—N2—C12119.8 (6)N3—C17—H17A108.9
O2—N2—C12117.6 (7)C18—C17—H17A108.9
C19—N3—C17121.7 (5)N3—C17—H17B108.9
C19—N3—C16123.7 (6)C18—C17—H17B108.9
C17—N3—C16114.6 (6)H17A—C17—H17B107.7
C25—N4—C26115.3 (5)C17—C18—H18A109.5
C25—N4—Pd1121.8 (4)C17—C18—H18B109.5
C26—N4—Pd1122.7 (4)H18A—C18—H18B109.5
C2—O1—C1117.2 (6)C17—C18—H18C109.5
C21—O4—Pd1123.3 (4)H18A—C18—H18C109.5
C29—O5—C32118.0 (7)H18B—C18—H18C109.5
O1—C1—H1A109.5N3—C19—C20121.3 (6)
O1—C1—H1B109.5N3—C19—C24120.7 (6)
H1A—C1—H1B109.5C20—C19—C24118.0 (6)
O1—C1—H1C109.5C19—C20—C21122.8 (6)
H1A—C1—H1C109.5C19—C20—H20118.6
H1B—C1—H1C109.5C21—C20—H20118.6
O1—C2—C3125.4 (6)O4—C21—C20118.3 (6)
O1—C2—C7115.2 (6)O4—C21—C22123.3 (6)
C3—C2—C7119.4 (6)C20—C21—C22118.3 (6)
C2—C3—C4119.3 (6)C25—C22—C21124.4 (6)
C2—C3—H3120.4C25—C22—C23117.3 (6)
C4—C3—H3120.4C21—C22—C23117.7 (6)
C5—C4—C3121.6 (6)C24—C23—C22123.2 (6)
C5—C4—H4119.2C24—C23—H23118.4
C3—C4—H4119.2C22—C23—H23118.4
C4—C5—C6119.6 (6)C23—C24—C19119.9 (6)
C4—C5—N1120.1 (6)C23—C24—H24120.1
C6—C5—N1120.3 (6)C19—C24—H24120.1
C7—C6—C5119.8 (6)N4—C25—C22128.6 (6)
C7—C6—H6120.1N4—C25—H25115.7
C5—C6—H6120.1C22—C25—H25115.7
C6—C7—C2120.3 (6)C27—C26—C31118.1 (6)
C6—C7—H7119.8C27—C26—N4123.2 (6)
C2—C7—H7119.8C31—C26—N4118.7 (6)
N1—C8—C9115.3 (5)C28—C27—C26122.3 (7)
N1—C8—H8122.4C28—C27—H27118.9
C9—C8—H8122.4C26—C27—H27118.9
C14—C9—C10122.8 (6)C27—C28—C29119.5 (7)
C14—C9—C8116.0 (5)C27—C28—H28120.2
C10—C9—C8121.1 (5)C29—C28—H28120.2
C11—C10—C9119.4 (6)C30—C29—O5125.2 (7)
C11—C10—H10120.3C30—C29—C28119.4 (7)
C9—C10—H10120.3O5—C29—C28115.4 (7)
C12—C11—C10117.3 (6)C29—C30—C31120.6 (7)
C12—C11—H11121.4C29—C30—H30119.7
C10—C11—H11121.4C31—C30—H30119.7
C11—C12—C13124.3 (6)C26—C31—C30120.0 (7)
C11—C12—N2118.6 (6)C26—C31—H31120.0
C13—C12—N2117.1 (6)C30—C31—H31120.0
C14—C13—C12119.2 (6)O5—C32—H32A109.5
C14—C13—H13120.4O5—C32—H32B109.5
C12—C13—H13120.4H32A—C32—H32B109.5
C13—C14—C9116.9 (5)O5—C32—H32C109.5
C13—C14—Pd1129.9 (5)H32A—C32—H32C109.5
C9—C14—Pd1112.7 (4)H32B—C32—H32C109.5
C16—C15—H15A109.5Cl1—C33—Cl1i115.6 (14)
C16—C15—H15B109.5Cl1—C33—H33B108.3
H15A—C15—H15B109.5Cl1i—C33—H33B108.3
C16—N3—C19—C20178.6 (6)N1—C8—C9—C10172.9 (6)
C23—C22—C25—N4172.1 (6)O4—C21—C22—C258.5 (9)
C22—C25—N4—C26168.5 (6)C21—C22—C25—N416.6 (10)
C25—N4—C26—C31130.0 (6)C22—C25—N4—Pd16.2 (9)
C6—C5—N1—C8131.0 (6)N1—C8—C9—C143.3 (8)
C5—N1—C8—C9177.0 (5)C8—C9—C14—Pd10.4 (7)
Symmetry code: (i) x, y, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC30H28N4O5Pd[Pd(C14H11N2O3)(C18H21N2O2)]·0.5CH2Cl2
Mr630.96701.48
Crystal system, space groupOrthorhombic, Pca21Monoclinic, C2/c
Temperature (K)293293
a, b, c (Å)24.41 (2), 14.479 (6), 7.630 (4)31.582 (10), 7.5847 (10), 26.557 (6)
α, β, γ (°)90, 90, 9090, 104.96 (3), 90
V3)2697 (3)6146 (3)
Z48
Radiation typeMo KαMo Kα
µ (mm1)0.740.74
Crystal size (mm)0.5 × 0.1 × 0.040.5 × 0.1 × 0.06
Data collection
DiffractometerEnraf Nonius MACH 3
diffractometer
Enraf-Nonius MACH3
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.939, 1.0000.952, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8378, 7823, 4033 7552, 7388, 3705
Rint0.0540.060
(sin θ/λ)max1)0.7030.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.124, 0.96 0.061, 0.151, 0.98
No. of reflections78237388
No. of parameters361393
No. of restraints10
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.510.66, 0.75
Absolute structureFlack (1983)?
Absolute structure parameter0.11 (5)?

Computer programs: MACH3 Software (Nonius, 1996), CELLDIM (Nonius, 1996), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1999).

Selected geometric parameters (Å, º) for (I) top
Pd1—C72.014 (6)C3—C81.400 (8)
Pd1—N22.037 (5)C4—C51.348 (9)
Pd1—N32.055 (5)C5—C61.393 (9)
Pd1—O32.062 (4)C6—C71.424 (8)
N1—C31.366 (8)C7—C81.392 (8)
C3—C41.396 (9)
C7—Pd1—N281.3 (2)C10—N2—Pd1127.3 (4)
C7—Pd1—N3100.3 (2)C21—N3—Pd1121.9 (4)
N2—Pd1—N3177.8 (2)C26—O3—Pd1120.5 (4)
C7—Pd1—O3173.0 (2)C8—C7—C6117.0 (6)
N2—Pd1—O392.2 (2)C8—C7—Pd1131.8 (4)
N3—Pd1—O386.2 (2)C6—C7—Pd1111.1 (5)
C20—C21—N3—C24133.4 (6)C24—C25—C26—O39.6 (13)
C21—N3—C24—C25171.5 (6)C25—C26—O3—Pd131.7 (13)
N3—C24—C25—C30166.9 (7)C26—O3—Pd1—N2135.2 (7)
C5—C6—C9—N2176.7 (7)O3—Pd1—N2—C9179.8 (5)
C6—C9—N2—C10178.5 (6)Pd1—N2—C9—C62.8 (8)
C9—N2—C10—C15131.3 (7)N2—C9—C6—C70.7 (9)
N3—C24—C25—C2622.1 (10)
Selected geometric parameters (Å, º) for (II) top
Pd1—C141.984 (6)C19—C241.416 (9)
Pd1—N42.018 (5)C20—C211.407 (8)
Pd1—N12.049 (5)C21—C221.414 (8)
Pd1—O42.073 (4)C22—C231.421 (8)
N3—C191.362 (8)C23—C241.349 (9)
C19—C201.392 (8)
C14—Pd1—N496.9 (2)C5—N1—Pd1127.4 (4)
C14—Pd1—N180.6 (2)C26—N4—Pd1122.7 (4)
N4—Pd1—N1173.1 (2)C21—O4—Pd1123.3 (4)
C14—Pd1—O4168.2 (2)C13—C14—Pd1129.9 (5)
N4—Pd1—O489.70 (18)C9—C14—Pd1112.7 (4)
N1—Pd1—O493.91 (18)
C23—C22—C25—N4172.1 (6)O4—C21—C22—C258.5 (9)
C22—C25—N4—C26168.5 (6)C21—C22—C25—N416.6 (10)
C25—N4—C26—C31130.0 (6)C22—C25—N4—Pd16.2 (9)
C6—C5—N1—C8131.0 (6)N1—C8—C9—C143.3 (8)
C5—N1—C8—C9177.0 (5)C8—C9—C14—Pd10.4 (7)
N1—C8—C9—C10172.9 (6)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds