Download citation
Download citation
link to html
Two of the title compounds, 1,6-an­hydro-2,3-O-(S)-benzyl­idene-β-D-manno­pyran­ose, C13H14O5, (I), and 1,6-an­hydro-4-O-benzyl-β-D-manno­pyran­ose, C13H16O5, (II), are derived from β-D-manno­pyran­ose, while the third, 1,6-an­hydro-3,4-O-(S)-benzyl­idene-β-D-galacto­pyran­ose, C13H14O5, (III), is derived from β-D-galacto­pyran­ose. In the crystal packing, each hydroxyl group is involved in O—H...O hydrogen bonds, where the acceptor group is the other hydroxyl group in (II), or the endocyclic O atoms of the dioxolane [in (I)], an­hydro [in (II)] or pyran­ose [in (III)] rings. Differences in the crystal packing arise from the contrasting O—H...O hydrogen-bonding environments.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100019065/gd1120sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100019065/gd1120Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100019065/gd1120IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100019065/gd1120IIIsup4.hkl
Contains datablock III

CCDC references: 162573; 162574; 162575

Comment top

The crystal structure determinations of the three title 1,6-anhydro-β-D-glycopyranose derivatives, (I), (II) and (III), were carried out within a project on hydrogen-bonding and cooperativity effects on the assembly of carbohydrates (Lopez de la Paz et al., 1998). Carbohydrates are biomolecules that contain enough hydroxyl groups to form chains and cycles of cooperative O—H···O—H hydrogen bonds, and evidence of this cooperativity in the solid state has been reported previously (Jeffrey & Saenger, 1991; Noltemeyer & Saenger, 1980). The main aim of this report is to explore the ability of the OH group to form intramolecular hydrogen bonds depending on the relative configuration of the OH group and its position on the pyranose ring. Compounds (I) to (III) were selected to study the influence of a second hydroxyl group, as present in (II), in the crystal packing. \sch

A comparison of the geometrical parameters of the three compounds (Tables 1, 3 and 5) reveals that the substitution at positions O3 and/or O2/O4 introduces significant changes in the molecular dimensions, such as in O—C bond distances and in the angles around C2, C3 and C4. These differences can be explained by the dissimilar participation of the O atoms in the hydrogen bonding and by the conformation of the O4R group in (I) and (II), trans to C3 versus gauche, respectively [H41/C7—O4—C4—C3 = 167 (3) in (I) and 87.1 (3)° in (II)]. Furthermore, the greatest differences between (I) and the previously reported analogue 4-O-acetyl-1,6-anhydro-2,3-O-(S)-benzylidene-β-D-mannopyranose [Cano et al., 1986; Cambridge Structural Database (CSD; Allen & Kennard, 1993) reference FOJMEW] are for the bond distances and angles around O4, where the hydroxyl group is protected with an acetyl one. Similar features are found between (III) and 2-O-acetyl-1,6-anhydro-3,4-O-(S)-benzylidene-β-D-galactopyranose (Cano et al., 1986; CSD reference FOJLUL).

In compounds (I) to (III), the pyranose ring is in a 1C4 conformation distorted towards an E6 envelope, less puckering at C3 (Boeyens, 1978). The anhydro and dioxolane rings are in an envelope conformation, with flaps at O5 and O3, respectively (Tables 1, 3 and 5).

In the crystal packing of 1–6-anhydro-β-D-mannopyranose and 1–6-anhydro-β-D-galactopyranose, the endocyclic O atoms compete with the hydroxyl groups in the formation of hydrogen bonds, and this is also seen in the title compounds (Tables 2, 4 and 6) and those reported above. The hydrogen-bond networks have been analysed by means of the graph-set approach (Bernstein et al., 1995), as implemented in the RPLUTO program (June 2000 version; Motherwell et al., 1999, 2000).

In (I), the packing can be described as pairs of chains related by a 21 axis (Table 2 and Fig. 2a). The O4—H···O2 bond is responsible for the formation of each chain [graph set C(6)], while C—H···O interactions between atoms O1 and O5 are reinforced by C—H···π contacts.

The hydrogen bonding in (II) differs from that in (I), since molecules of (II) form dimers through three-centre O2—H···O1/O3 hydrogen bonds. Such dimers (Table 4 and Fig. 2 b) are in turn connected into sheets by O3—H···O2 hydrogen bonds, graph set C22(8) C(5)[R22(10)]. The inter- and intramolecular geometry is similar to that reported for 1,6-anhydro-β-D-mannopyranose (Maluszynska et al., 1982; CSD reference BIFTUF). According to the results of a search of the CSD, structure (II) represents an unusual case in pyranoses in which two contiguous hydroxyl groups allow hydrogen bonds, leading to the formation of cyclic dimers. Only one similar cyclic dimer without intermolecular O—H···O hydrogen bonds between them [graph set R22(10), ignoring the D and S patterns] has been previously observed, in 6,7-anhydro-2,3-di-O-benzyl-8-deoxy-α-D-threo-D-galacto-octopyranoside (Engelhardt et al., 1990; CSD reference KIDDEG).

In (III), an O2—H2···O5 hydrogen bond links the molecules into chains (Table 6 and Fig. 2c) in a way similar [graph set C(5)] to that reported for the analogue 1,6-anhydro-3,4-O-isopropylidene-β-D-galactopyranose (Cano et al., 1984; CSD reference COHJIS). However, when the only hydroxyl group in the molecule is attached at C4, as in 2,3-di-O-acetyl-1,6-anhydro-β-D-galactopyranose (Foces-Foces et al., 1976; CSD reference ACHGAL), the hydroxyl group acts as a hydrogen-bond donor to the anhydro O1 atom (O4—H···O1), giving rise to a C(6) motif. Moreover, in 1,6-anhydro-β-D-galactopyranose (Ceccarelli et al., 1980; CSD reference AHGALP), the O5 atoms in the three independent molecules accept hydrogen bonds, whereas only one O1 atom is involved in a hydrogen bond, either in discrete (D) or chain [C(6)] first-level motifs.

Despite the scarcity of 1,6-anhydro-galactopyranose structures reported in the literature, it seems that when only one hydroxyl group is present in the structure at C2 or C4, the O5 or O1 atom is the acceptor of the corresponding O—H···O hydrogen bond. However, both can be acceptors at the same time when there is more than one hydroxyl group in the molecular structure, as mentioned above and as observed in BIFTUF, where the O5 of one of the two independent molecules and the O1 of the other are involved in discrete (D) first-level motifs.

The volumes per non-H atom of 16.10, 17.00 and 15.93 Å3 for (I), (II) and (III), respectively, also reflect the differences in the crystal packing. Compound (II) shows the least efficient packing in spite of depicting the shortest O···O distances.

It can be concluded that although these molecules (I) and (III) present similar secondary structure as a whole, the greater number of acceptor groups than donors in the molecular structure allows different linkages of the molecules within it. Several weak interactions (C—H···O and C—H···π), other than van der Waals ones, hold the chains together (in Tables 2, 4 and 6, Cg represents the centroid of the phenyl ring).

Related literature top

For related literature, see: Allen & Kennard (1993); Bernstein et al. (1995); Boeyens (1978); Cano et al. (1984, 1985, 1986); Ceccarelli et al. (1980); Engelhardt et al. (1990); Flack (1983); Florent & Monneret (1980); Foces-Foces, Cano & Garcia-Blanco (1976); Jeffrey & Saenger (1991); Maluszynska et al. (1982); Martínez-Ripoll & Cano (1975); Motherwell et al. (1999, 2000); Noltemeyer & Saenger (1980); Reeves (1949); Subero et al. (1980); Zachariasen (1967).

Experimental top

Compounds (I), (II) and (III) were prepared according to the methods of Florent & Monneret (1980), Reeves (1949) and Subero et al. (1980), respectively. Crystals of (I), (II) and (III) were obtained by recrystallization from CDCl3.

Refinement top

In all three compounds, the Friedel pairs were merged as no significant information could be extracted (Flack, 1983). The enantiomers considered in this study (Fig. 1) correspond to those known from the syntheses [Florent & Monneret (1980), Reeves (1949) and Subero et al. (1980), respectively] and were checked by means of the configurational angles using the torsion angles (Cano et al., 1985). All H atoms were located on the corresponding difference Fourier map. Nevertheless, all H atoms, except hydroxyl-H, were generated in idealized positions and were kept fixed during refinement (C—H = ?). Attempts to refine the secondary extinction parameters resulted in insignificant values (Zachariasen, 1967). The weighting scheme was established in an empirical way so as to give no trends in <wΔ2F> versus <Fo> or <sinθ/λ>: w = K/{[(a+b)Fo]2}[(c+d)sinθ/λ]. The parameters a, b, c and d were adjusted to flatten the initial trends (PESOS; Martínez-Ripoll & Cano, 1975).

Computing details top

For all compounds, data collection: Philips PW1100 software (Hornstra & Vossers, 1973); cell refinement: LSUCRE (Appleman, 1984); data reduction: Xtal3.6 (Hall et al., 1999); program(s) used to solve structure: SIR97 (Altomare et al., 1997); program(s) used to refine structure: CRYLSQ in Xtal3.6; molecular graphics: Xtal3.6; software used to prepare material for publication: BONDLA and CIFIO in Xtal3.6.

Figures top
[Figure 1] Fig. 1. The molecular structures of (a) (I), (b) (II) and (c) (III), displaying the numbering scheme and the conformations of the molecules. The displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of (a) (I), (b) (II) and (c) (III), showing the secondary structure in the chains. Dotted lines represent hydrogen-bonding interactions; symmetry codes are as in Tables 2, 4 and 6.
(I) 1,6-anhydro-2,3-O-(S)-benzylidene-β-D-mannopyranose top
Crystal data top
C13H14O5F(000) = 264
Mr = 250.25Dx = 1.433 Mg m3
Monoclinic, P21Melting point = 470–471 K
Hall symbol: P 2y1Cu Kα radiation, λ = 1.54178 Å
a = 13.0265 (7) ÅCell parameters from 71 reflections
b = 7.0672 (3) Åθ = 2–45°
c = 6.3376 (2) ŵ = 0.93 mm1
β = 96.432 (4)°T = 293 K
V = 579.77 (4) Å3Rectangular prism, colourless
Z = 20.43 × 0.33 × 0.17 mm
Data collection top
Philips PW1100 four-circle
diffractometer
1148 reflections with I > 0
Radiation source: X-ray tubeRint = 0.016
Graphite monochromatorθmax = 67.5°, θmin = 3.4°
ω/2θ scansh = 1515
Absorption correction: ψ-scan
(North et al., 1968)
k = 88
Tmin = 0.776, Tmax = 0.854l = 77
2488 measured reflections2 standard reflections every 90 min
1148 independent reflections intensity decay: none
Refinement top
Refinement on F0 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.032 w = k/[(a + b Fo)2(c + d(sinθ)/λ)]
S = 1.00(Δ/σ)max = 0.001
1148 reflectionsΔρmax = 0.18 e Å3
167 parametersΔρmin = 0.13 e Å3
Crystal data top
C13H14O5V = 579.77 (4) Å3
Mr = 250.25Z = 2
Monoclinic, P21Cu Kα radiation
a = 13.0265 (7) ŵ = 0.93 mm1
b = 7.0672 (3) ÅT = 293 K
c = 6.3376 (2) Å0.43 × 0.33 × 0.17 mm
β = 96.432 (4)°
Data collection top
Philips PW1100 four-circle
diffractometer
1148 reflections with I > 0
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.016
Tmin = 0.776, Tmax = 0.8542 standard reflections every 90 min
2488 measured reflections intensity decay: none
1148 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.032H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.18 e Å3
1148 reflectionsΔρmin = 0.13 e Å3
167 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28160 (11)0.450000.4108 (2)0.0333 (7)
O20.35528 (11)0.6537 (3)0.7763 (2)0.0290 (6)
O30.25646 (10)0.4150 (3)0.8805 (2)0.0293 (6)
O40.42676 (13)0.0255 (3)0.8411 (3)0.0414 (8)
O50.42114 (11)0.2565 (3)0.4544 (2)0.0347 (7)
C10.38799 (15)0.4435 (4)0.4896 (3)0.0287 (9)
C20.40562 (14)0.4809 (4)0.7277 (3)0.0257 (8)
C30.35514 (15)0.3316 (4)0.8569 (3)0.0271 (8)
C40.34065 (15)0.1360 (4)0.7550 (3)0.0301 (9)
C50.33566 (16)0.1467 (4)0.5134 (3)0.0344 (9)
C60.24399 (17)0.2594 (5)0.4120 (4)0.0398 (11)
C70.27979 (15)0.6075 (4)0.9176 (3)0.0272 (9)
C80.18594 (15)0.7290 (4)0.8734 (3)0.0283 (9)
C90.15024 (18)0.8340 (4)1.0342 (3)0.0376 (10)
C100.0633 (2)0.9475 (5)0.9919 (4)0.0491 (13)
C110.0124 (2)0.9556 (5)0.7894 (4)0.0498 (13)
C120.0479 (2)0.8523 (5)0.6276 (4)0.0466 (12)
C130.13419 (17)0.7393 (5)0.6687 (3)0.0380 (10)
H410.409 (3)0.102 (7)0.802 (6)0.044 (10)*
H10.430310.539230.409580.04300*
H20.484780.481220.774570.03100*
H30.400650.316171.001380.02900*
H40.272540.076960.795510.03200*
H50.339330.010830.452190.03700*
H6a0.221630.211990.258680.04200*
H6b0.182090.248900.501750.04200*
H70.310070.628701.074590.03000*
H90.188700.828881.186780.04100*
H100.036321.026351.112530.05300*
H110.052591.040320.758330.05200*
H120.009450.859210.474720.04900*
H130.160920.661270.547250.04100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0325 (7)0.0404 (8)0.0255 (6)0.0027 (6)0.0035 (5)0.0015 (6)
O20.0302 (7)0.0245 (7)0.0329 (7)0.0022 (6)0.0068 (5)0.0001 (6)
O30.0324 (7)0.0263 (7)0.0307 (6)0.0012 (6)0.0104 (5)0.0027 (6)
O40.0419 (8)0.0281 (8)0.0506 (9)0.0050 (7)0.0107 (7)0.0021 (7)
O50.0326 (7)0.0377 (8)0.0349 (7)0.0034 (7)0.0093 (5)0.0048 (6)
C10.0289 (9)0.0318 (10)0.0258 (8)0.0001 (9)0.0052 (7)0.0013 (8)
C20.0226 (8)0.0243 (9)0.0295 (9)0.0008 (7)0.0006 (6)0.0008 (8)
C30.0294 (9)0.0272 (10)0.0243 (8)0.0005 (8)0.0014 (7)0.0021 (8)
C40.0281 (9)0.0264 (10)0.0352 (10)0.0009 (8)0.0010 (8)0.0019 (9)
C50.0325 (9)0.0344 (11)0.0353 (10)0.0021 (9)0.0008 (8)0.0073 (10)
C60.0371 (11)0.0441 (13)0.0354 (11)0.0045 (10)0.0086 (8)0.0040 (10)
C70.0353 (10)0.0263 (10)0.0207 (8)0.0020 (8)0.0055 (7)0.0007 (7)
C80.0309 (9)0.0279 (10)0.0271 (9)0.0018 (8)0.0073 (7)0.0009 (8)
C90.0447 (11)0.0383 (12)0.0313 (9)0.0016 (10)0.0103 (8)0.0048 (9)
C100.0516 (13)0.0473 (14)0.0512 (13)0.0104 (12)0.0182 (10)0.0099 (12)
C110.0434 (12)0.0480 (14)0.0584 (14)0.0132 (12)0.0070 (10)0.0007 (13)
C120.0420 (11)0.0564 (16)0.0406 (11)0.0105 (12)0.0015 (9)0.0006 (12)
C130.0376 (10)0.0465 (13)0.0300 (9)0.0056 (11)0.0037 (8)0.0029 (10)
Geometric parameters (Å, º) top
O1—C11.420 (2)C5—H51.039
O1—C61.433 (3)C5—C61.517 (3)
O2—C21.436 (3)C6—H6a1.038
O2—C71.440 (3)C6—H6b1.040
O3—C71.408 (3)C7—H71.039
O3—C31.437 (3)C7—C81.495 (3)
O4—H410.96 (5)C8—C91.383 (3)
O4—C41.424 (3)C8—C131.395 (3)
O5—C11.416 (4)C9—H91.039
O5—C51.441 (3)C9—C101.389 (4)
C1—H11.040C10—H101.039
C1—C21.524 (3)C10—C111.379 (4)
C2—H21.041C11—H111.038
C2—C31.528 (3)C11—C121.379 (4)
C3—H31.039C12—H121.041
C3—C41.529 (4)C12—C131.380 (4)
C4—H41.038C13—H131.038
C4—C51.527 (3)
H6a···H6b1.698C9···H4i2.883
O2···H41i1.86 (5)O5···H3iii2.884
C4···H411.91 (5)O3···H132.907
O3···H72.022H41···H2v2.94 (4)
O5···H12.023O4···O52.939 (3)
O4···H42.030H6b···H132.945
O5···H52.037O2···C132.947 (3)
O1···H12.038H41···H7xi2.96 (5)
O1···H6b2.049C1···H6a2.967
O1···H6a2.050C2···H41i2.98 (5)
O2···H72.050O1···C33.001 (2)
O3···H32.069C1···H7iii3.011
C8···H72.069H1···H3iii3.017
O2···H22.082O3···C133.019 (3)
C2···H32.096C1···H6b3.023
C4···H32.097H6b···H11vii3.030
C11···H102.097H1···H5x3.037
C10···H112.098O1···O33.041 (2)
C12···H112.099C13···H4i3.043
C1···H22.100C7···H23.048
C12···H132.102O5···H41x3.06 (4)
C13···H122.103C3···H6b3.058
C11···H122.104H2···H3xii3.061
C8···H92.104C3···C63.065 (3)
C3···H22.107H12···H13ii3.071
C10···H92.108C4···H23.073
C5···H42.108H3···H6avi3.081
C3···H42.111C12···H10viii3.103
C8···H132.111C12···H6bii3.103
C4···H52.111H41···H2xi3.12 (5)
C9···H102.112C9···H6axiii3.119
C2···H12.117O1···H11vii3.121
C5···H6a2.119C5···H1iv3.127
C5···H6b2.120C1···H53.127
C6···H52.150H9···H12vi3.128
H41···H42.18 (4)C13···H11vii3.129
C1···C52.216 (4)C6···H13.132
H2···H32.232C13···H10viii3.132
C3···C72.236 (4)C10···H6axiii3.134
O2···O32.265 (3)C5···H13.135
O1···O52.267 (2)O1···C43.146 (3)
C1···C62.291 (3)C2···C63.153 (3)
H7···H92.293O3···C63.153 (3)
O5···C62.293 (3)O3···H23.157
O3···C22.313 (2)O5···H6b3.162
C2···C72.319 (3)O3···C13.172 (2)
O1···C52.326 (3)C3···H413.17 (5)
O2···C32.333 (4)C11···H10viii3.175
O4···H32.333O2···H4i3.186
H5···H6a2.336C6···H133.190
O4···C32.363 (4)H6a···H11vii3.192
O5···C22.374 (3)O1···H53.197
H1···H22.378O1···H9iii3.204
C11···C132.389 (4)C8···H41i3.22 (4)
C10···C122.391 (4)H41···H33.22 (5)
C9···C112.397 (3)H4···H6avi3.225
C9···C132.397 (3)C8···H10viii3.241
O1···H132.400C1···H3iii3.245
O3···C82.401 (3)O2···H5i3.246
C8···C102.402 (4)C10···H4i3.252
C8···C122.407 (3)O3···C53.257 (3)
H10···H112.410C11···H13ii3.268
O2···C82.415 (3)C6···H11vii3.274
H4···H6b2.416C13···H9iii3.274
H11···H122.418C10···H12vi3.275
H12···H132.420C10···H10viii3.284
H11···H13ii2.421O5···C2iv3.287 (3)
O2···C12.421 (3)H2···H73.294
H9···H102.429C10···H11viii3.294
O4···C52.429 (3)C12···H11vii3.299
O5···C42.430 (3)O4···C23.302 (4)
O3···C42.433 (3)C11···H6bii3.303
H41···H52.44 (4)C11···H12ii3.303
O1···C22.442 (2)O1···H3iii3.307
O3···H42.463O5···H43.312
H4···H52.477C9···H10viii3.315
C7···C92.497 (4)O1···C7iii3.315 (2)
C7···C132.507 (3)O4···C2v3.317 (2)
C9···H72.527O1···H23.317
C3···C52.527 (3)O5···C1iv3.317 (3)
C1···C32.540 (3)H4···H9xi3.320
O1···H7iii2.540C13···H113.328
C4···C62.542 (3)C12···H103.329
O5···H1iv2.544C11···H133.330
H3···H72.571C10···H123.333
H1···H7iii2.572H6b···H10ix3.334
O4···H1iv2.581C11···H93.335
C2···C42.593 (4)C5···H2iv3.336
O4···H2v2.594C5···H33.336
C4···H6b2.596C9···H113.336
O4···H52.599C9···H133.336
C7···H32.610C8···H11viii3.340
C3···H72.615C4···H1iv3.340
H3···H42.619C13···H73.340
H9···H13vi2.634C13···H93.341
H6b···H12vii2.634C13···H12vii3.341
O5···H22.636C8···H103.343
H10···H12vi2.639O4···H23.345
C5···H412.64 (4)C8···H123.349
C7···H92.687C3···H6avi3.349
C7···H132.690O1···O3iii3.349 (2)
H5···H6b2.696C1···H33.352
H41···H3v2.71 (4)O1···C133.353 (3)
C6···H42.740C5···H23.374
O2···H12.742O5···H413.38 (5)
O3···H6b2.749C1···H133.390
H9···H11viii2.750C4···H6a3.390
H5···H9ix2.756C2···H43.392
C10···C132.763 (4)C12···H4i3.394
C9···C122.768 (3)C1···C73.398 (3)
O5···H6a2.769O1···C73.402 (2)
H6a···H9ix2.771C6···H9ix3.403
C8···H4i2.772C7···H4i3.406
C8···C112.773 (4)C1···H41x3.41 (4)
O2···H132.774C3···H53.412
O4···H3v2.782H6a···H7iii3.415
H11···H12ii2.786O2···C4i3.415 (4)
O5···H2iv2.791O4···C1iv3.418 (3)
H41···H1iv2.80 (4)C3···H13.431
C7···H41i2.80 (5)C12···H6bi3.444
O2···O4i2.803 (3)O4···O5iv3.446 (3)
O1···O22.804 (2)O3···C93.455 (4)
O2···H32.808C9···H13vi3.462
H6a···H10ix2.811C12···H10iii3.476
C2···C52.824 (4)O2···O5x3.479 (2)
O5···C32.832 (3)C5···H9ix3.480
C9···H11viii2.834C11···H6aii3.485
C2···H72.844O4···H7v3.487
H2···H5x2.845H5···H13xi3.490
C1···C42.858 (4)C11···H4i3.491
O3···H6avi2.873
C1—O1—C6106.78 (16)O5—C5—C4109.87 (17)
C2—O2—C7107.5 (2)C6—C5—C4113.2 (2)
C7—O3—C3103.57 (17)H6a—C6—H6b109.6
H41—O4—C4105 (2)H6a—C6—O1111.0
C1—O5—C5101.75 (17)H6a—C6—C5110.6
H1—C1—O5110.0H6b—C6—O1110.9
H1—C1—O1110.9H6b—C6—C5110.6
H1—C1—C2110.0O1—C6—C5104.02 (18)
O5—C1—O1106.10 (17)H7—C7—O3110.5
O5—C1—C2107.65 (18)H7—C7—O2110.5
O1—C1—C2112.07 (16)H7—C7—C8108.2
H2—C2—O2113.5O3—C7—O2105.35 (17)
H2—C2—C1108.5O3—C7—C8111.54 (17)
H2—C2—C3108.7O2—C7—C8110.74 (18)
O2—C2—C1109.74 (17)C9—C8—C13119.3 (2)
O2—C2—C3103.8 (2)C9—C8—C7120.37 (17)
C1—C2—C3112.63 (19)C13—C8—C7120.3 (2)
H3—C3—O3112.3H9—C9—C8120.0
H3—C3—C2107.9H9—C9—C10119.8
H3—C3—C4107.9C8—C9—C10120.1 (2)
O3—C3—C2102.5 (2)H10—C10—C11119.7
O3—C3—C4110.2 (2)H10—C10—C9120.3
C2—C3—C4115.98 (17)C11—C10—C9120.0 (3)
H4—C4—O4110.1H11—C11—C10119.8
H4—C4—C5109.0H11—C11—C12119.9
H4—C4—C3109.1C10—C11—C12120.3 (3)
O4—C4—C5110.8 (2)H12—C12—C11120.1
O4—C4—C3106.2 (2)H12—C12—C13120.0
C5—C4—C3111.6 (2)C11—C12—C13120.0 (2)
H5—C5—O5109.4H13—C13—C12120.1
H5—C5—C6113.2H13—C13—C8119.6
H5—C5—C4109.3C12—C13—C8120.3 (2)
O5—C5—C6101.6 (2)
C6—O1—C1—O523.2 (2)H3—C3—C4—O424.9
C6—O1—C1—C294.1 (2)H3—C3—C4—C5145.8
C6—O1—C1—H1142.6H3—C3—C4—H493.7
C1—O1—C6—C54.1 (2)O4—C4—C5—O568.4 (3)
C1—O1—C6—H6a114.9O4—C4—C5—C6178.8 (2)
C1—O1—C6—H6b123.1O4—C4—C5—H551.6
C7—O2—C2—C1119.18 (17)C3—C4—C5—O549.8 (2)
C7—O2—C2—C31.4 (2)C3—C4—C5—C663.1 (3)
C7—O2—C2—H2119.2C3—C4—C5—H5169.8
C2—O2—C7—O323.7 (2)H4—C4—C5—O5170.3
C2—O2—C7—C8144.45 (17)H4—C4—C5—C657.5
C2—O2—C7—H795.7H4—C4—C5—H569.7
C7—O3—C3—C240.1 (2)O5—C5—C6—O129.0 (2)
C7—O3—C3—C4164.14 (16)O5—C5—C6—H6a90.2
C7—O3—C3—H375.4O5—C5—C6—H6b148.1
C3—O3—C7—O240.3 (2)C4—C5—C6—O188.7 (2)
C3—O3—C7—C8160.49 (15)C4—C5—C6—H6a152.0
C3—O3—C7—H779.1C4—C5—C6—H6b30.4
H41—O4—C4—C3167 (3)H5—C5—C6—O1146.2
H41—O4—C4—C572 (3)H5—C5—C6—H6a26.9
H41—O4—C4—H449 (3)H5—C5—C6—H6b94.7 (
C5—O5—C1—O141.93 (18)O2—C7—C8—C9125.4 (2)
C5—O5—C1—C278.22 (18)O2—C7—C8—C1353.9 (3)
C5—O5—C1—H1162.0O3—C7—C8—C9117.6 (2)
C1—O5—C5—C477.4 (2)O3—C7—C8—C1363.1 (3)
C1—O5—C5—C642.8 (2)H7—C7—C8—C94.2
C1—O5—C5—H5162.7H7—C7—C8—C13175.1
O1—C1—C2—O252.6 (2)C7—C8—C9—C10179.7 (3)
O1—C1—C2—C362.5 (3)C7—C8—C9—H90.1
O1—C1—C2—H2177.1C13—C8—C9—C100.4 (4)
O5—C1—C2—O2168.89 (16)C13—C8—C9—H9179.2
O5—C1—C2—C353.8 (2)C7—C8—C13—C12179.7 (3)
O5—C1—C2—H266.6C7—C8—C13—H130.4
H1—C1—C2—O271.3C9—C8—C13—C120.4 (4)
H1—C1—C2—C3173.7C9—C8—C13—H13179.7
H1—C1—C2—H253.3C8—C9—C10—C110.0 (4)
O2—C2—C3—O325.2 (2)C8—C9—C10—H10179.9
O2—C2—C3—C4145.31 (16)H9—C9—C10—C11179.6 (3)
O2—C2—C3—H393.5H9—C9—C10—H100.4
C1—C2—C3—O393.4 (2)C9—C10—C11—C120.4 (5)
C1—C2—C3—C426.7 (2)C9—C10—C11—H11179.9
C1—C2—C3—H3147.9H10—C10—C11—C12179.6
H2—C2—C3—O3146.3H10—C10—C11—H110.0
H2—C2—C3—C493.6C10—C11—C12—C130.4 (5)
H2—C2—C3—H327.6C10—C11—C12—H12179.7
O3—C3—C4—O4147.96 (17)H11—C11—C12—C13179.9
O3—C3—C4—C591.2 (2)H11—C11—C12—H120.1
O3—C3—C4—H429.3C11—C12—C13—C80.0 (5)
C2—C3—C4—O496.2 (2)C11—C12—C13—H13179.9
C2—C3—C4—C524.6 (2)H12—C12—C13—C8179.9
C2—C3—C4—H4145.2H12—C12—C13—H130.1
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1; (iii) x, y, z1; (iv) x+1, y1/2, z+1; (v) x+1, y1/2, z+2; (vi) x, y, z+1; (vii) x, y1/2, z+1; (viii) x, y1/2, z+2; (ix) x, y1, z1; (x) x+1, y+1/2, z+1; (xi) x, y1, z; (xii) x+1, y+1/2, z+2; (xiii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O2xi0.96 (5)1.86 (5)2.803 (3)167 (4)
C2—H2···O4xii1.042.593.317 (2)126
C7—H7···O1vi1.042.543.316 (2)131
C13—H13···O11.042.403.353 (3)152
C1—H1···O5x1.042.543.317 (3)131
C4—H4···Cgxi1.042.833.843 (3)165
C10—H10···Cgxiv1.042.903.752 (4)140
Symmetry codes: (vi) x, y, z+1; (x) x+1, y+1/2, z+1; (xi) x, y1, z; (xii) x+1, y+1/2, z+2; (xiv) x, y+1/2, z+2.
(II) 1,6-anhydro-4-O-benzyl-β-D-mannopyranose top
Crystal data top
C13H16O5F(000) = 536
Mr = 252.27Dx = 1.369 Mg m3
Monoclinic, C2Melting point = 395–396 K
Hall symbol: C 2yCu Kα radiation, λ = 1.54178 Å
a = 11.9752 (5) ÅCell parameters from 48 reflections
b = 5.7487 (2) Åθ = 2–45°
c = 18.0759 (14) ŵ = 0.88 mm1
β = 100.295 (6)°T = 293 K
V = 1224.34 (12) Å3Rectangular plate, colourless
Z = 40.43 × 0.33 × 0.05 mm
Data collection top
Philips PW1100 four-circle
diffractometer
1208 reflections with I > 0
Radiation source: X-ray tubeRint = 0.033
Graphite monochromatorθmax = 67.4°, θmin = 2.5°
ω/2θ scansh = 1414
Absorption correction: ψ-scan
(North et al., 1968)
k = 66
Tmin = 0.794, Tmax = 0.957l = 2121
2496 measured reflections2 standard reflections every 90 min
1208 independent reflections intensity decay: none
Refinement top
Refinement on F0 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.040 w = k/[(a + b Fo)2(c + d(sinθ)/λ)]
S = 1.08(Δ/σ)max < 0.001
1208 reflectionsΔρmax = 0.13 e Å3
171 parametersΔρmin = 0.13 e Å3
Crystal data top
C13H16O5V = 1224.34 (12) Å3
Mr = 252.27Z = 4
Monoclinic, C2Cu Kα radiation
a = 11.9752 (5) ŵ = 0.88 mm1
b = 5.7487 (2) ÅT = 293 K
c = 18.0759 (14) Å0.43 × 0.33 × 0.05 mm
β = 100.295 (6)°
Data collection top
Philips PW1100 four-circle
diffractometer
1208 reflections with I > 0
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.033
Tmin = 0.794, Tmax = 0.9572 standard reflections every 90 min
2496 measured reflections intensity decay: none
1208 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.040H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.13 e Å3
1208 reflectionsΔρmin = 0.13 e Å3
171 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05617 (13)0.450000.40193 (9)0.05042
O20.17482 (14)0.5584 (5)0.48498 (9)0.05069
O30.14253 (16)0.1487 (5)0.40399 (11)0.05179
O40.15252 (13)0.4803 (5)0.23568 (9)0.04512
O50.01289 (14)0.6683 (5)0.30754 (9)0.04462
C10.0149 (2)0.6359 (6)0.38552 (13)0.04332
C20.14017 (19)0.5739 (6)0.40580 (12)0.03751
C30.16910 (17)0.3513 (6)0.36660 (12)0.03725
C40.10141 (18)0.3392 (6)0.28520 (11)0.03846
C50.01856 (18)0.4330 (6)0.28036 (12)0.04094
C60.08476 (19)0.3149 (7)0.33444 (13)0.04869
C70.2379 (2)0.3640 (7)0.20513 (15)0.05073
C80.28658 (18)0.5257 (6)0.15410 (12)0.04184
C90.3955 (2)0.4879 (7)0.13973 (14)0.05165
C100.4411 (2)0.6339 (8)0.09248 (15)0.05999
C110.3808 (3)0.8221 (7)0.05976 (15)0.06002
C120.2728 (3)0.8619 (8)0.07337 (16)0.06217
C130.2266 (2)0.7155 (7)0.12012 (15)0.05387
H210.124 (3)0.458 (7)0.5031 (17)0.05200*
H310.191 (3)0.124 (8)0.449 (2)0.04327*
H10.001040.788350.412790.04500*
H20.188070.710740.390330.03900*
H30.255530.350770.364820.03900*
H40.097270.167470.267470.04000*
H50.060300.429150.224830.04200*
H6a0.059890.143500.343680.05000*
H6b0.171620.322620.313790.05000*
H7a0.203150.220270.174850.05400*
H7b0.301890.311110.248590.05400*
H90.442440.347970.164710.05400*
H100.522440.602830.081670.06300*
H110.415840.933770.024870.06400*
H120.226631.003630.048640.06500*
H130.145140.748020.130210.05700*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.044940.066620.049330.005740.016090.00191
O20.053150.062560.040050.019650.003210.00167
O30.057270.036550.059700.005860.010760.01239
O40.049140.044730.051100.006840.019620.00275
O50.047280.043190.048540.009370.006150.00690
C10.047070.042860.045520.003440.011900.00154
C20.041300.036470.039460.006670.006490.00096
C30.034290.035690.046180.000050.002880.00207
C40.042250.039100.040320.000280.006980.00161
C50.038870.047380.039460.000580.002820.00103
C60.038100.061190.051370.007480.006830.00270
C70.047700.050250.063270.009380.023380.00118
C80.042620.047260.041960.002790.008500.00635
C90.044690.063050.053440.007810.012020.00117
C100.050220.081750.056900.003880.019800.00495
C110.070150.068750.052140.001270.022420.00404
C120.074490.061690.059940.013740.020030.00901
C130.052170.058750.059010.013830.018480.00355
O10.0440 (8)0.0626 (11)0.0473 (8)0.0053 (9)0.0153 (6)0.0014 (9)
O20.0524 (9)0.0603 (11)0.0371 (8)0.0193 (9)0.0019 (6)0.0019 (8)
O30.0552 (10)0.0336 (9)0.0583 (10)0.0057 (8)0.0122 (8)0.0126 (8)
O40.0486 (8)0.0414 (9)0.0491 (8)0.0066 (8)0.0189 (7)0.0027 (8)
O50.0459 (8)0.0410 (9)0.0457 (9)0.0098 (8)0.0047 (6)0.0068 (8)
C10.0466 (11)0.0405 (12)0.0441 (11)0.0037 (11)0.0116 (9)0.0017 (11)
C20.0403 (11)0.0349 (12)0.0368 (11)0.0076 (10)0.0053 (9)0.0008 (9)
C30.0329 (9)0.0331 (10)0.0439 (11)0.0007 (9)0.0020 (8)0.0021 (10)
C40.0399 (10)0.0366 (11)0.0385 (10)0.0009 (10)0.0061 (8)0.0014 (10)
C50.0382 (10)0.0448 (13)0.0380 (11)0.0012 (10)0.0018 (8)0.0012 (10)
C60.0374 (10)0.0591 (17)0.0490 (12)0.0070 (12)0.0061 (9)0.0021 (12)
C70.0477 (12)0.0494 (15)0.0599 (13)0.0100 (12)0.0223 (10)0.0013 (13)
C80.0416 (11)0.0434 (13)0.0405 (10)0.0033 (11)0.0072 (9)0.0061 (10)
C90.0433 (11)0.0614 (17)0.0513 (12)0.0076 (13)0.0113 (9)0.0014 (13)
C100.0501 (13)0.079 (2)0.0542 (14)0.0043 (15)0.0183 (11)0.0043 (16)
C110.0695 (16)0.064 (2)0.0502 (13)0.0022 (16)0.0216 (12)0.0041 (14)
C120.0731 (17)0.0591 (17)0.0572 (14)0.0133 (16)0.0192 (13)0.0094 (15)
C130.0514 (13)0.0562 (17)0.0570 (14)0.0143 (13)0.0177 (11)0.0036 (13)
Geometric parameters (Å, º) top
O1—C11.430 (3)C5—H51.039
O1—C61.435 (3)C5—C61.524 (4)
O2—H210.94 (4)C6—H6a1.034
O2—C21.420 (3)C6—H6b1.041
O3—H310.93 (3)C7—H7a1.036
O3—C31.412 (4)C7—H7b1.040
O4—C71.414 (4)C7—C81.499 (4)
O4—C41.425 (3)C8—C131.388 (4)
O5—C11.402 (3)C8—C91.391 (3)
O5—C51.437 (4)C9—H91.038
C1—H11.040C9—C101.378 (5)
C1—C21.522 (3)C10—H101.042
C2—H21.041C10—C111.374 (5)
C2—C31.532 (4)C11—H111.039
C3—H31.041C11—C121.379 (5)
C3—C41.549 (3)C12—H121.040
C4—H41.037C12—C131.376 (5)
C4—C51.522 (3)C13—H131.041
H6a···H6b1.698O4···C132.764 (4)
H7a···H7b1.698O5···H6b2.766
O2···H31i1.85 (3)O4···O52.775 (3)
C2···H211.92 (3)C8···C112.788 (4)
O2···H21.953O2···H32.798
C3···H311.97 (4)C2···C52.805 (3)
O5···H12.005C6···H42.807
O3···H32.006C1···C42.818 (4)
O4···H7a2.012C11···H12x2.819
O4···H7b2.013H5···H7biv2.825
O1···H21ii2.03 (3)C7···H32.857
O4···H42.034H3···H6avi2.858
O5···H52.036H7a···H13ix2.882
O1···H6a2.049H6a···H7bviii2.886
O1···H6b2.049O5···H6av2.887
O1···H12.052C3···H7b2.889
C8···H7a2.087O5···C32.895 (3)
C8···H7b2.088H10···H11iii2.895
C12···H132.093H10···H10iii2.905
C11···H102.093H1···H3iv2.911
C10···H92.097C4···H22.923
C11···H122.099C9···H7a2.932
C12···H112.100C10···H5vi2.936
C13···H122.101O1···C32.936 (3)
C9···H102.103O1···O32.938 (3)
C5···H42.103O3···C62.946 (3)
C10···H112.104C3···H6a2.952
C8···H132.104H21···H21ii2.95 (4)
C1···H22.105C9···H5vi2.965
C8···H92.106O1···O22.968 (2)
C4···H52.110C12···H7av2.975
C2···H32.114C1···H6b2.979
C3···H22.114H21···H1ii2.98 (4)
C2···H12.115H31···H1ix2.99 (4)
C3···H42.125H7a···H92.995
C5···H6b2.127C3···C62.999 (3)
C5···H6a2.128C11···H5vi3.004
C4···H32.129H4···H9viii3.005
C6···H52.156C1···H21ii3.01 (3)
C1···C52.205 (4)C12···H12x3.018
H31···H32.24 (4)C2···H31i3.02 (3)
O1···O52.252 (3)C1···H6a3.024
H3···H7b2.278C5···H7biv3.039
O5···C62.292 (4)O4···H6bvi3.039
H4···H7a2.294H6b···H7biv3.040
H2···H32.298H31···H2xi3.04 (3)
C1···C62.300 (5)H21···H2xi3.04 (3)
O1···C52.323 (3)H3···H6bvi3.043
H5···H6b2.346C13···H7a3.044
O4···C52.348 (3)C10···H12x3.045
H11···H11iii2.349O4···H23.054
H21···H312.36 (6)C8···H5vi3.088
C4···C72.373 (4)C13···H7av3.095
O5···C22.376 (3)C1···H6av3.106
C10···C122.378 (5)C12···H5vi3.112
O4···C82.380 (3)C1···H53.118
C9···C132.381 (4)C6···H2viii3.124
O3···C42.382 (3)C5···H13.125
C11···C132.387 (4)O1···C43.137 (3)
C9···C112.392 (5)O3···C53.138 (3)
C8···C102.406 (4)C13···H5vi3.143
H12···H132.408C2···C63.146 (4)
C8···C122.409 (5)C6···H13.148
O5···C42.411 (4)H1···H1ii3.148
H1···H22.413O4···C23.151 (3)
H11···H122.414C5···H9iv3.151
H9···H102.415O5···H6a3.159
H10···H112.416H11···H12x3.159
H21···H31i2.42 (5)H6b···H7bviii3.163
O2···C12.422 (3)C11···H11iii3.164
O5···H7biv2.426C6···H21ii3.17 (3)
H4···H52.429C3···C73.172 (4)
H1···H6av2.431O2···H3i3.175
O3···H42.433O3···C13.180 (4)
O2···C32.439 (3)H7a···H133.184
O4···H132.439O3···H21xi3.19 (3)
O3···C22.445 (4)O1···H53.195
O1···C22.446 (3)C9···H4vi3.201
H2···H6bvi2.446O1···H3iv3.210
O4···C32.454 (3)C4···H313.22 (4)
C7···H42.462O2···H2xi3.232
H7b···H92.468H21···H33.24 (3)
O3···H6a2.474C11···H10iii3.244
C7···C92.502 (4)C10···H10iii3.259
C1···H212.51 (3)C10···H7avi3.262
H4···H6a2.527H31···H6a3.26 (3)
C7···C132.528 (5)H5···H7aiv3.275
C2···C42.535 (3)C10···H13vii3.280
C1···C32.535 (4)C13···H11x3.287
O4···H52.538H31···H43.29 (3)
C3···C52.539 (3)C13···H10iv3.288
C4···C62.548 (3)C2···H31v3.29 (4)
O4···H32.549O5···H4v3.293
O3···H212.56 (4)O3···H23.294
O1···H212.57 (3)C13···H7b3.296
H3···H42.570C5···H23.296
H10···H13vii2.575O2···H1ii3.297
H7a···H10viii2.583H2···H6avi3.298
O2···H312.60 (4)O5···H3iv3.300
O3···H2ix2.597O5···H43.301
H31···H2ix2.60 (4)C1···H3iv3.301
C4···H7b2.607O3···C2ix3.305 (4)
C4···H7a2.608H11···H13xii3.305
O5···H22.608O2···H21i3.31 (4)
C4···H6a2.616O3···C1ix3.310 (4)
O2···H12.627C8···H6bvi3.313
C9···H7b2.636C10···H123.319
H5···H9iv2.644C12···H103.320
H7a···H12ix2.658C13···H93.324
H4···H7b2.665C11···H133.325
H9···H13vii2.674C9···H13vii3.325
C7···H92.680O1···H23.326
H10···H12vii2.680C9···H133.327
C3···H212.69 (3)C13···H113.327
H5···H6a2.703O2···H31v3.33 (4)
O3···H1ix2.715C11···H93.327
C7···H132.721O1···H2viii3.330
H21···H22.72 (4)C12···H10iv3.330
C2···H312.74 (4)H3···H6bvii3.334
O2···O3i2.741 (2)C9···H113.335
O5···H9iv2.743H4···H10viii3.338
C10···C132.744 (4)C8···H123.348
C9···C122.755 (5)C8···H103.348
O1···O2ii2.761 (3)H21···H6bii3.35 (3)
H21···H12.76 (3)C7···H6bvi3.350
O2···O32.764 (4)
C1—O1—C6106.8 (2)O5—C5—C6101.4 (2)
H21—O2—C2107 (2)C4—C5—C6113.5 (2)
H31—O3—C3113 (3)H6a—C6—H6b109.8
C7—O4—C4113.5 (3)H6a—C6—O1111.1
C1—O5—C5101.9 (2)H6a—C6—C5111.1
H1—C1—O5109.5H6b—C6—O1110.7
H1—C1—O1111.4H6b—C6—C5110.6
H1—C1—C2109.9O1—C6—C5103.4 (2)
O5—C1—O1105.4 (2)H7a—C7—H7b109.7
O5—C1—C2108.7 (2)H7a—C7—O4109.5
O1—C1—C2111.9 (2)H7a—C7—C8109.5
H2—C2—O2104.0H7b—C7—O4109.3
H2—C2—C1109.0H7b—C7—C8109.3
H2—C2—C3109.0O4—C7—C8109.6 (3)
O2—C2—C1110.8 (2)C13—C8—C9117.9 (3)
O2—C2—C3111.4 (2)C13—C8—C7122.2 (2)
C1—C2—C3112.3 (2)C9—C8—C7119.9 (3)
H3—C3—O3108.8H9—C9—C10119.8
H3—C3—C2109.0H9—C9—C8119.6
H3—C3—C4109.0C10—C9—C8120.6 (3)
O3—C3—C2112.3 (2)H10—C10—C11119.4
O3—C3—C4107.1 (2)H10—C10—C9120.0
C2—C3—C4110.7 (2)C11—C10—C9120.7 (3)
H4—C4—O4110.5H11—C11—C10120.6
H4—C4—C5109.1H11—C11—C12119.9
H4—C4—C3108.9C10—C11—C12119.4 (3)
O4—C4—C5105.6 (2)H12—C12—C13120.2
O4—C4—C3111.1 (2)H12—C12—C11119.8
C5—C4—C3111.5 (2)C13—C12—C11120.1 (3)
H5—C5—O5109.6H13—C13—C12119.3
H5—C5—C4109.5H13—C13—C8119.4
H5—C5—C6113.3C12—C13—C8121.3 (3)
O5—C5—C4109.1 (2)
C6—O1—C1—O525.0 (3)H3—C3—C4—H482.0
C6—O1—C1—C292.9 (2)O4—C4—C5—O563.3 (2)
C6—O1—C1—H1143.6O4—C4—C5—C6175.6 (2)
C1—O1—C6—C53.0 (2)O4—C4—C5—H556.7
C1—O1—C6—H6a122.2C3—C4—C5—O557.5 (3)
C1—O1—C6—H6b115.5C3—C4—C5—C654.8 (3)
H21—O2—C2—C152 (2)C3—C4—C5—H5177.5
H21—O2—C2—C374 (2)H4—C4—C5—O5177.9
H21—O2—C2—H2169 (2)H4—C4—C5—C665.6
H31—O3—C3—C272 (3)H4—C4—C5—H562.1
H31—O3—C3—C4167 (3)O5—C5—C6—O128.8 (2)
H31—O3—C3—H349 (3)O5—C5—C6—H6a148.0
C7—O4—C4—C387.1 (3)O5—C5—C6—H6b89.7
C7—O4—C4—C5151.8 (2)C4—C5—C6—O188.1 (3)
C7—O4—C4—H434.0C4—C5—C6—H6a31.1
C4—O4—C7—C8179.9 (2)C4—C5—C6—H6b153.4
C4—O4—C7—H7a60.1H5—C5—C6—O1146.1
C4—O4—C7—H7b60.1H5—C5—C6—H6a94.6
C5—O5—C1—O143.8 (2)H5—C5—C6—H6b27.7
C5—O5—C1—C276.3 (3)O4—C7—C8—C9156.1 (2)
C5—O5—C1—H1163.7O4—C7—C8—C1323.7 (3)
C1—O5—C5—C475.9 (2)H7a—C7—C8—C983.8
C1—O5—C5—C644.1 (2)H7a—C7—C8—C1396.4
C1—O5—C5—H5164.1H7b—C7—C8—C936.4
O1—C1—C2—O269.0 (3)H7b—C7—C8—C13143.4
O1—C1—C2—C356.2 (3)C7—C8—C9—C10179.5 (3)
O1—C1—C2—H2177.1C7—C8—C9—H90.3
O5—C1—C2—O2175.1 (3)C13—C8—C9—C100.7 (4)
O5—C1—C2—C359.7 (3)C13—C8—C9—H9179.6
O5—C1—C2—H261.2C7—C8—C13—C12179.9 (3)
H1—C1—C2—O255.3C7—C8—C13—H130.1
H1—C1—C2—C3179.5C9—C8—C13—C120.2 (4)
H1—C1—C2—H258.6C9—C8—C13—H13179.7
O2—C2—C3—O343.8 (2)C8—C9—C10—C111.2 (5)
O2—C2—C3—C4163.4 (2)C8—C9—C10—H10179.3
O2—C2—C3—H376.8H9—C9—C10—C11179.0
C1—C2—C3—O381.1 (2)H9—C9—C10—H100.4
C1—C2—C3—C438.4 (3)C9—C10—C11—C121.3 (5)
C1—C2—C3—H3158.2C9—C10—C11—H11178.9
H2—C2—C3—O3158.0H10—C10—C11—C12179.3
H2—C2—C3—C482.4H10—C10—C11—H110.5
H2—C2—C3—H337.4C10—C11—C12—C130.8 (5)
O3—C3—C4—O4157.5 (2)C10—C11—C12—H12179.8
O3—C3—C4—C584.9 (3)H11—C11—C12—C13179.4
O3—C3—C4—H435.6H11—C11—C12—H120.0
C2—C3—C4—O479.8 (3)C11—C12—C13—C80.3 (5)
C2—C3—C4—C537.8 (3)C11—C12—C13—H13179.6
C2—C3—C4—H4158.2H12—C12—C13—C8179.7
H3—C3—C4—O440.0H12—C12—C13—H130.2
H3—C3—C4—C5157.6
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z+1; (iii) x+1, y, z; (iv) x1/2, y+1/2, z; (v) x, y+1, z; (vi) x+1/2, y+1/2, z; (vii) x+1/2, y1/2, z; (viii) x1/2, y1/2, z; (ix) x, y1, z; (x) x+1/2, y1/2, z; (xi) x+1/2, y1/2, z+1; (xii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H21···O1ii0.94 (4)2.03 (2)2.761 (3)134 (3)
O2—H21···O30.94 (4)2.56 (4)2.764 (3)92 (2)
O3—H31···O2xi0.93 (3)1.85 (3)2.741 (2)159 (4)
C2—H2···O3v1.042.603.305 (4)125
C7—H7b···O5vii1.042.433.409 (3)157
C5—H5···Cgviii1.042.713.635 (3)148
Symmetry codes: (ii) x, y, z+1; (v) x, y+1, z; (vii) x+1/2, y1/2, z; (viii) x1/2, y1/2, z; (xi) x+1/2, y1/2, z+1.
(III) 1,6-anhydro-3,4-O-(S)-benzylidene-β-D-galactopyranose top
Crystal data top
C13H14O5F(000) = 264
Mr = 250.25Dx = 1.45 Mg m3
Monoclinic, P21Melting point = 459–462 K
Hall symbol: P 2y1Cu Kα radiation, λ = 1.54178 Å
a = 9.0956 (3) ÅCell parameters from 76 reflections
b = 5.8461 (2) Åθ = 2–45°
c = 11.0603 (5) ŵ = 0.94 mm1
β = 102.871 (4)°T = 293 K
V = 573.34 (4) Å3Rectangular prism, colourless
Z = 20.43 × 0.30 × 0.17 mm
Data collection top
Philips PW1100 four-circle
diffractometer
1127 reflections with I > 0
Radiation source: X-ray tubeRint = 0.049
Graphite monochromatorθmax = 67.5°, θmin = 4.1°
ω/2θ scansh = 1010
Absorption correction: ψ-scan
(North et al., 1968)
k = 77
Tmin = 0.760, Tmax = 0.850l = 1313
2368 measured reflections2 standard reflections every 90 min
1127 independent reflections intensity decay: none
Refinement top
Refinement on F0 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.043 w = k/[(a + b Fo)2(c + d(sinθ)/λ)]
S = 1.05(Δ/σ)max < 0.001
1127 reflectionsΔρmax = 0.15 e Å3
167 parametersΔρmin = 0.12 e Å3
Crystal data top
C13H14O5V = 573.34 (4) Å3
Mr = 250.25Z = 2
Monoclinic, P21Cu Kα radiation
a = 9.0956 (3) ŵ = 0.94 mm1
b = 5.8461 (2) ÅT = 293 K
c = 11.0603 (5) Å0.43 × 0.30 × 0.17 mm
β = 102.871 (4)°
Data collection top
Philips PW1100 four-circle
diffractometer
1127 reflections with I > 0
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.049
Tmin = 0.760, Tmax = 0.8502 standard reflections every 90 min
2368 measured reflections intensity decay: none
1127 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.043H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.15 e Å3
1127 reflectionsΔρmin = 0.12 e Å3
167 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1739 (2)0.450000.5794 (2)0.0610 (11)
O20.5544 (3)0.2745 (6)0.5685 (2)0.0632 (12)
O30.40298 (17)0.3488 (5)0.83675 (14)0.0406 (8)
O40.2845 (2)0.0107 (5)0.84334 (16)0.0489 (9)
O50.2455 (3)0.1091 (6)0.51352 (18)0.0588 (11)
C10.2890 (3)0.3421 (7)0.5331 (2)0.0506 (13)
C20.4393 (3)0.3576 (6)0.6253 (2)0.0427 (11)
C30.4423 (3)0.2134 (7)0.7409 (2)0.0417 (11)
C40.3271 (3)0.0171 (6)0.7268 (2)0.0445 (12)
C50.1901 (3)0.0595 (7)0.6228 (2)0.0509 (14)
C60.1029 (3)0.2754 (8)0.6378 (3)0.0559 (14)
C70.3703 (3)0.1849 (6)0.9202 (2)0.0414 (11)
C80.2819 (2)0.2800 (6)1.0074 (2)0.0371 (10)
C90.2712 (3)0.1490 (7)1.1094 (2)0.0470 (12)
C100.1879 (3)0.2222 (8)1.1920 (3)0.0594 (16)
C110.1161 (4)0.4318 (8)1.1733 (3)0.0618 (17)
C120.1260 (3)0.5651 (7)1.0728 (3)0.0560 (14)
C130.2101 (3)0.4903 (7)0.9895 (2)0.0447 (12)
H210.597 (5)0.387 (10)0.529 (4)0.056 (12)*
H10.298800.415940.449750.06500*
H20.460260.527320.651880.05400*
H30.549530.142140.768190.05200*
H40.379320.133460.708520.05700*
H50.122240.085720.608950.06400*
H6a0.010300.257960.593850.05500*
H6b0.111350.312930.731120.05500*
H70.469050.116570.973690.05000*
H90.325530.008791.123460.04700*
H100.180140.122211.268080.06000*
H110.053100.487931.235210.06300*
H120.072040.721411.059900.05500*
H130.218120.592140.914120.04300*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0514 (11)0.0568 (13)0.0718 (13)0.0027 (10)0.0072 (10)0.0168 (11)
O20.0709 (12)0.0567 (14)0.0759 (13)0.0031 (11)0.0456 (11)0.0015 (11)
O30.0379 (8)0.0444 (10)0.0400 (8)0.0074 (8)0.0098 (6)0.0063 (8)
O40.0692 (11)0.0357 (9)0.0449 (9)0.0066 (9)0.0196 (8)0.0007 (8)
O50.0758 (13)0.0594 (13)0.0410 (9)0.0193 (11)0.0124 (9)0.0093 (9)
C10.0622 (16)0.0476 (16)0.0417 (12)0.0058 (14)0.0110 (11)0.0051 (13)
C20.0472 (12)0.0362 (13)0.0481 (12)0.0025 (11)0.0177 (10)0.0022 (11)
C30.0406 (11)0.0429 (15)0.0427 (11)0.0025 (11)0.0118 (9)0.0019 (12)
C40.0586 (14)0.0322 (12)0.0459 (12)0.0005 (11)0.0182 (10)0.0019 (11)
C50.0618 (16)0.0466 (17)0.0441 (13)0.0164 (14)0.0117 (11)0.0075 (12)
C60.0428 (12)0.068 (2)0.0525 (14)0.0035 (14)0.0007 (10)0.0064 (14)
C70.0382 (10)0.0456 (14)0.0383 (11)0.0053 (10)0.0040 (9)0.0023 (11)
C80.0278 (9)0.0424 (14)0.0379 (11)0.0003 (10)0.0005 (7)0.0035 (10)
C90.0430 (12)0.0543 (17)0.0413 (12)0.0055 (12)0.0042 (9)0.0043 (12)
C100.0585 (16)0.076 (2)0.0446 (13)0.0011 (17)0.0133 (11)0.0035 (15)
C110.0561 (16)0.075 (2)0.0569 (16)0.0052 (16)0.0177 (13)0.0147 (16)
C120.0419 (13)0.0547 (18)0.0690 (17)0.0086 (13)0.0070 (11)0.0128 (15)
C130.0392 (11)0.0413 (15)0.0501 (13)0.0015 (11)0.0024 (9)0.0009 (12)
Geometric parameters (Å, º) top
O1—C11.412 (4)C5—H51.041
O1—C61.436 (4)C5—C61.519 (5)
O2—H210.92 (5)C6—H6b1.041
O2—C21.421 (4)C6—H6a1.042
O3—C71.407 (4)C7—H71.039
O3—C31.431 (4)C7—C81.494 (4)
O4—C41.426 (3)C8—C91.384 (4)
O4—C71.440 (4)C8—C131.386 (5)
O5—C11.422 (5)C9—H91.042
O5—C51.439 (4)C9—C101.379 (4)
C1—H11.039C10—H101.040
C1—C21.515 (3)C10—C111.382 (6)
C2—H21.040C11—H111.039
C2—C31.527 (4)C11—C121.377 (5)
C3—H31.042C12—H121.032
C3—C41.538 (5)C12—C131.393 (5)
C4—H41.041C13—H131.040
C4—C51.516 (4)
H6a···H6b1.698H21···H2i2.87 (5)
C2···H211.98 (5)C12···H12iv2.874
O3···H72.023C7···H6b2.879
O5···H12.026H21···H1i2.90 (6)
O1···H12.027O2···O52.905 (3)
O2···H22.030H1···H11vi2.905
O5···H52.048O4···C62.936 (4)
O4···H72.050O2···O5viii2.949 (4)
O1···H6b2.051C13···H7v2.950
O1···H6a2.053C13···H12iv2.954
C8···H72.057C8···H7v2.972
O4···H42.061C13···H6b2.984
O5···H21i2.06 (5)C1···H6a2.986
O3···H32.064C1···H21i2.99 (6)
C11···H122.092H21···H10v3.00 (4)
C2···H32.094C1···H6b3.002
C10···H92.095O4···H11iv3.003
C12···H112.098C5···H21i3.00 (5)
C10···H112.099C7···H43.006
C5···H42.099H7···H7x3.009
C2···H12.101H7···H7v3.009
C1···H22.101O5···H6aiii3.011
C4···H32.104C5···H11iv3.013
C8···H92.104C7···H7v3.020
C3···H22.106)O1···C33.020 (3)
C11···H102.107C11···H12iv3.021
C9···H102.107O1···H5ix3.023
C13···H122.108C10···H1xi3.024
C4···H52.109O4···H93.039
C12···H132.112C3···H6b3.044
C8···H132.113C12···H9ii3.059
C3···H42.116C3···C63.064 (3)
C5···H6a2.124C9···H12vii3.064
C5···H6b2.127O4···C93.080 (3)
C6···H52.148C2···H43.100
H21···H22.20 (5)C8···H6b3.110
C1···C52.219 (5)C12···H3v3.113
C3···C72.228 (4)H21···H33.12 (5)
H3···H42.230C5···H6aiii3.127
H2···H4ii2.252O3···C63.130 (3)
O3···O42.260 (4)C2···C63.130 (4)
O1···O52.267 (4)C6···H5ix3.133
C1···C62.287 (5)C6···H13.135
O5···C62.304 (4)C1···H53.135
C4···C72.306 (4)C5···H13.135
O3···C42.311 (4)C11···H1xi3.139
H5···H6a2.330O3···H43.142
O1···C52.331 (4)C1···H10vi3.151
O4···C32.339 (4)C4···H21i3.15 (5)
O2···H32.350C8···H12iv3.157
H4···H52.369C3···H213.16 (5)
O5···C42.372 (3)O1···C43.161 (3)
O2···C32.381 (4)O5···H6b3.164
C9···C112.381 (5)H6b···H12iv3.183
O2···C12.391 (4)C13···H3v3.185
C9···C132.392 (5)O1···O33.186 (3)
C10···C122.396 (6)O3···C53.188 (4)
C11···C132.400 (5)O1···H53.195
C8···C122.402 (5)C2···H4ii3.197
O5···C22.403 (4)C2···H9v3.203
O4···C82.406 (4)O1···H4ii3.205
C8···C102.407 (4)H6a···H10xii3.210
H11···H122.409C11···H3v3.210
O1···C22.415 (3)H6b···H10xii3.211
O4···C52.415 (3)H7···H9v3.215
H9···H102.416H4···H73.215
H10···H112.419C2···H21i3.22 (6)
O3···C82.421 (3)O2···C1i3.224 (5)
H5···H6aiii2.426C10···H12iv3.228
H12···H132.427H21···H1viii3.23 (6)
O3···C22.435 (3)H2···H10v3.240
H7···H92.439C13···H73.246
O3···H22.453H1···H6aix3.248
C7···C92.465 (4)C9···H2x3.251
H1···H22.473O2···C2i3.254 (4)
O3···H132.495H21···H5viii3.25 (5)
H6b···H11iv2.497H10···H12vii3.279
O4···H6b2.505H9···H13vii3.279)
H3···H9v2.507C4···H2vii3.286
O2···H1i2.518O5···H23.287
C1···C32.523 (4)O3···C13.287 (3)
C7···C132.530 (5)C9···H12iv3.291
C3···C52.538 (4)O2···H4viii3.296
O2···H12.540H1···H3viii3.308
H3···H72.543C1···H33.317
O3···H9v2.550C9···H113.321
C4···C62.552 (4)C11···H93.322
H6a···H11iv2.559C10···H123.328
O1···H22.588O3···H4ii3.329
C9···H72.594C13···H93.335
C3···H72.594C10···H12vii3.337
C7···H32.601C8···H123.337
C2···C42.603 (5)C12···H103.337
H6b···H132.613C9···H133.338
C4···H6b2.624C11···H133.338
C7···H92.629O2···O2i3.339 (4)
H2···H32.630)O2···O2viii3.339 (4)
H5···H11iv2.631C13···H113.340
O5···H42.641C5···H33.341
O5···H10vi2.648C13···H9ii3.344
O3···H6b2.658C8···H103.348
O3···H7v2.667O2···C43.349 (4)
H21···H12.67 (4)H12···H12iv3.353
O4···H13vii2.679H12···H12xii3.353
H1···H10vi2.680O2···H10v3.359
H21···H4viii2.69 (5)C8···H3v3.361
H5···H6b2.707C11···H6bxii3.367
O4···H52.741H4···H13vii3.373
C7···H132.748O4···C133.379 (5)
O2···H21i2.75 (5)O3···C9v3.381 (4)
H9···H12vii2.752C10···H3v3.384
C9···C122.755 (5)C1···H43.385
C8···C112.769 (5)C4···H23.391
C6···H11iv2.775C4···H6a3.399
C10···C132.778 (5)H21···H21viii3.41 (8)
O1···H5ii2.786H21···H21i3.41 (8)
O1···H6aix2.803C3···H13.406
H2···H9v2.803C5···C73.411 (4)
O5···H6a2.807C7···H9v3.419
C4···H72.809O2···H43.423
O5···C32.810 (3)C3···H53.430
O2···H2i2.811C6···H43.431
O3···C132.817 (4)C9···H3v3.438
C3···H9v2.818C2···H6b3.449
O4···H32.825C1···H21viii3.46 (6)
C1···C42.827 (5)C10···H2x3.473
C1···H212.83 (5)H12···H13xii3.476
H7···H13x2.843O5···H33.486
C2···C52.855 (5)C3···H21i3.50 (5)
C1—O1—C6106.8 (2)O5—C5—C6102.3 (3)
H21—O2—C2113 (3)C4—C5—C6114.4 (3)
C7—O3—C3103.5 (3)H6b—C6—H6a109.3
C4—O4—C7107.1 (2)H6b—C6—O1110.8
C1—O5—C5101.7 (3)H6b—C6—C5111.0
H1—C1—O1110.7H6a—C6—O1110.9
H1—C1—O5109.8H6a—C6—C5110.7
H1—C1—C2109.2O1—C6—C5104.1 (2)
O1—C1—O5106.2 (2)H7—C7—O3110.7
O1—C1—C2111.1 (2)H7—C7—O4110.5
O5—C1—C2109.8 (3)H7—C7—C8107.2
H2—C2—O2110.2O3—C7—O4105.1 (2)
H2—C2—C1109.2O3—C7—C8113.1 (3)
H2—C2—C3108.8O4—C7—C8110.2 (2)
O2—C2—C1109.0 (2)C9—C8—C13119.4 (3)
O2—C2—C3107.7 (3)C9—C8—C7117.8 (3)
C1—C2—C3112.0 (2)C13—C8—C7122.8 (3)
H3—C3—O3112.3H9—C9—C10119.2
H3—C3—C2107.7H9—C9—C8119.7
H3—C3—C4107.7C10—C9—C8121.1 (3)
O3—C3—C2110.8 (3)H10—C10—C9120.5
O3—C3—C4102.2 (2)H10—C10—C11120.3
C2—C3—C4116.3 (2)C9—C10—C11119.2 (3)
H4—C4—O4112.4H11—C11—C12119.9
H4—C4—C5108.9H11—C11—C10119.6
H4—C4—C3108.7C12—C11—C10120.6 (3)
O4—C4—C5110.3 (2)H12—C12—C11119.9
O4—C4—C3104.1 (2)H12—C12—C13120.1
C5—C4—C3112.4 (3)C11—C12—C13120.1 (4)
H5—C5—O5110.3H13—C13—C8120.5
H5—C5—C4109.8H13—C13—C12119.8
H5—C5—C6112.8C8—C13—C12119.7 (3)
O5—C5—C4106.7 (2)
C6—O1—C1—O525.2 (3)H3—C3—C4—O494.9
C6—O1—C1—C294.1 (3)H3—C3—C4—C5145.7
C6—O1—C1—H1144.4H3—C3—C4—H425.1
C1—O1—C6—C51.1 (3)O4—C4—C5—O5168.7 (3)
C1—O1—C6—H6a118.0O4—C4—C5—C656.3 (4)
C1—O1—C6—H6b120.5O4—C4—C5—H571.7
H21—O2—C2—C191 (3)C3—C4—C5—O553.0 (4)
H21—O2—C2—C3148 (3)C3—C4—C5—C659.4 (4)
H21—O2—C2—H229 (3)C3—C4—C5—H5172.6
C7—O3—C3—C2164.4 (2)H4—C4—C5—O567.5
C7—O3—C3—C439.9 (2)H4—C4—C5—C6179.9
C7—O3—C3—H375.2H4—C4—C5—H552.1
C3—O3—C7—O442.0 (2)O5—C5—C6—O126.3 (3)
C3—O3—C7—C8162.3 (2)O5—C5—C6—H6a92.9
C3—O3—C7—H777.3O5—C5—C6—H6b145.5
C7—O4—C4—C31.3 (3)C4—C5—C6—O188.8 (3)
C7—O4—C4—C5122.1 (3)C4—C5—C6—H6a152.1
C7—O4—C4—H4116.2C4—C5—C6—H6b30.5
C4—O4—C7—O326.4 (3)H5—C5—C6—O1144.7
C4—O4—C7—C8148.6 (2)H5—C5—C6—H6a25.6
C4—O4—C7—H793.1H5—C5—C6—H6b96.0
C5—O5—C1—O142.1 (3)O3—C7—C8—C9166.5 (2)
C5—O5—C1—C278.1 (3)O3—C7—C8—C1314.2 (3)
C5—O5—C1—H1161.8O4—C7—C8—C976.2 (3)
C1—O5—C5—C479.5 (3)O4—C7—C8—C13103.1 (3)
C1—O5—C5—C641.0 (3)H7—C7—C8—C944.2
C1—O5—C5—H5161.3H7—C7—C8—C13136.5
O1—C1—C2—O2172.3 (3)C7—C8—C9—C10178.1 (3)
O1—C1—C2—C368.6 (4)C7—C8—C9—H91.0
O1—C1—C2—H252.0C13—C8—C9—C101.3 (4)
O5—C1—C2—O270.5 (3)C13—C8—C9—H9179.7
O5—C1—C2—C348.6 (3)C7—C8—C13—C12178.2 (2)
O5—C1—C2—H2169.2C7—C8—C13—H131.6
H1—C1—C2—O250.0C9—C8—C13—C121.1 (4)
H1—C1—C2—C3169.1C9—C8—C13—H13179.1
H1—C1—C2—H270.4C8—C9—C10—C111.1 (5)
O2—C2—C3—O3146.1 (2)C8—C9—C10—H10179.7
O2—C2—C3—C497.9 (3)H9—C9—C10—C11179.9
O2—C2—C3—H323.0H9—C9—C10—H100.7
C1—C2—C3—O394.1 (3)C9—C10—C11—C120.7 (5)
C1—C2—C3—C421.9 (4)C9—C10—C11—H11180.0
C1—C2—C3—H3142.8H10—C10—C11—C12180.0
H2—C2—C3—O326.7H10—C10—C11—H110.7
H2—C2—C3—C4142.7C10—C11—C12—C130.6 (5)
H2—C2—C3—H396.4C10—C11—C12—H12179.9
O3—C3—C4—O423.5 (3)H11—C11—C12—C13179.9
O3—C3—C4—C595.9 (3)H11—C11—C12—H120.8
O3—C3—C4—H4143.5C11—C12—C13—C80.8 (4)
C2—C3—C4—O4144.2 (3)C11—C12—C13—H13179.4
C2—C3—C4—C524.8 (4)H12—C12—C13—C8179.9
C2—C3—C4—H495.8H12—C12—C13—H130.1
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y+1, z; (iii) x, y1/2, z+1; (iv) x, y1/2, z+2; (v) x+1, y+1/2, z+2; (vi) x, y, z1; (vii) x, y1, z; (viii) x+1, y+1/2, z+1; (ix) x, y+1/2, z+1; (x) x+1, y1/2, z+2; (xi) x, y, z+1; (xii) x, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H21···O5viii0.91 (6)2.06 (5)2.950 (4)161 (4)
C1—H1···O2viii1.042.523.224 (5)125
C9—H9···O3x1.042.553.381 (4)136
C3—H3···Cgx1.042.983.971 (3)160
C12—H12···Cgxii1.042.763.539 (3)132
Symmetry codes: (viii) x+1, y+1/2, z+1; (x) x+1, y1/2, z+2; (xii) x, y+1/2, z+2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC13H14O5C13H16O5C13H14O5
Mr250.25252.27250.25
Crystal system, space groupMonoclinic, P21Monoclinic, C2Monoclinic, P21
Temperature (K)293293293
a, b, c (Å)13.0265 (7), 7.0672 (3), 6.3376 (2)11.9752 (5), 5.7487 (2), 18.0759 (14)9.0956 (3), 5.8461 (2), 11.0603 (5)
β (°) 96.432 (4) 100.295 (6) 102.871 (4)
V3)579.77 (4)1224.34 (12)573.34 (4)
Z242
Radiation typeCu KαCu KαCu Kα
µ (mm1)0.930.880.94
Crystal size (mm)0.43 × 0.33 × 0.170.43 × 0.33 × 0.050.43 × 0.30 × 0.17
Data collection
DiffractometerPhilips PW1100 four-circle
diffractometer
Philips PW1100 four-circle
diffractometer
Philips PW1100 four-circle
diffractometer
Absorption correctionψ-scan
(North et al., 1968)
ψ-scan
(North et al., 1968)
ψ-scan
(North et al., 1968)
Tmin, Tmax0.776, 0.8540.794, 0.9570.760, 0.850
No. of measured, independent and
observed (I > 0) reflections
2488, 1148, 1148 2496, 1208, 1208 2368, 1127, 1127
Rint0.0160.0330.049
(sin θ/λ)max1)0.5990.5990.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.032, 1.00 0.032, 0.040, 1.08 0.034, 0.043, 1.05
No. of reflections114812081127
No. of parameters167171167
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.130.13, 0.130.15, 0.12

Computer programs: Philips PW1100 software (Hornstra & Vossers, 1973), LSUCRE (Appleman, 1984), Xtal3.6 (Hall et al., 1999), SIR97 (Altomare et al., 1997), CRYLSQ in Xtal3.6, BONDLA and CIFIO in Xtal3.6.

Selected geometric parameters (Å, º) for (I) top
O2—C21.436 (3)O3—C31.437 (3)
O2—C2—C3103.8 (2)O4—C4—C5110.8 (2)
O3—C3—C2102.5 (2)O4—C4—C3106.2 (2)
O3—C3—C4110.2 (2)
C7—O2—C2—C31.4 (2)C3—O3—C7—O240.3 (2)
C2—O2—C7—O323.7 (2)O2—C2—C3—O325.2 (2)
C7—O3—C3—C240.1 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O2i0.96 (5)1.86 (5)2.803 (3)167 (4)
C2—H2···O4ii1.042.593.317 (2)126
C7—H7···O1iii1.042.543.316 (2)131
C13—H13···O11.042.403.353 (3)152
C1—H1···O5iv1.042.543.317 (3)131
C4—H4···Cgi1.042.833.843 (3)165
C10—H10···Cgv1.042.903.752 (4)140
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+2; (iii) x, y, z+1; (iv) x+1, y+1/2, z+1; (v) x, y+1/2, z+2.
Selected geometric parameters (Å, º) for (II) top
O2—C21.420 (3)O3—C31.412 (4)
O2—C2—C3111.4 (2)O4—C4—C5105.6 (2)
O3—C3—C2112.3 (2)O4—C4—C3111.1 (2)
O3—C3—C4107.1 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O2—H21···O1i0.94 (4)2.03 (2)2.761 (3)134 (3)
O3—H31···O2ii0.93 (3)1.85 (3)2.741 (2)159 (4)
C2—H2···O3iii1.042.603.305 (4)125
C7—H7b···O5iv1.042.433.409 (3)157
C5—H5···Cgv1.042.713.635 (3)148
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y1/2, z+1; (iii) x, y+1, z; (iv) x+1/2, y1/2, z; (v) x1/2, y1/2, z.
Selected geometric parameters (Å, º) for (III) top
O2—C21.421 (4)O3—C31.431 (4)
O2—C2—C3107.7 (3)O4—C4—C5110.3 (2)
O3—C3—C2110.8 (3)O4—C4—C3104.1 (2)
O3—C3—C4102.2 (2)
C7—O3—C3—C439.9 (2)C4—O4—C7—O326.4 (3)
C3—O3—C7—O442.0 (2)O3—C3—C4—O423.5 (3)
C7—O4—C4—C31.3 (3)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O2—H21···O5i0.91 (6)2.06 (5)2.950 (4)161 (4)
C1—H1···O2i1.042.523.224 (5)125
C9—H9···O3ii1.042.553.381 (4)136
C3—H3···Cgii1.042.983.971 (3)160
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1/2, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds