Download citation
Download citation
link to html
The title compound, N,N,N',N'-tetra­methyl­ethyl­enedi­ammon­ium di­aqua­(arsenate)­(hydrogen arsenate)­dizinc(II), (C6H18N2)0.5[Zn2(AsO4)(HAsO4)(H2O)2], is a new zincoarsenate obtained by hydro­thermal synthesis. The structure consists of infinite two-dimensional anionic layers alternating with planes containing centrosymmetric organic diprotonated template N,N,N',N'-tetra­methyl­ethyl­enedi­ammonium cations, [H3N­C6H12NH3]2+. The latter are interconnected to the framework through hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100005370/gd1075sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100005370/gd1075Isup2.hkl
Contains datablock I

CCDC reference: 147624

Comment top

Microporous compounds with an anionic framework are of particular interest because of their catalytic properties (Thomas, 1988) and their use as molecular sieves. During the last decade, many aluminophosphates (Chippindale et al., 1992; Yao et al., 1999), gallophosphates (Jones et al., 1991; Chippindale et al., 1998) and zincophosphates (Harrison et al., 1992; Chavez et al., 1999) with open frameworks have been synthesized hydrothermally. Replacement of phosphate by arsenate in the framework leads to a variety of phases (Bu et al., 1998; Harrison et al., 1999), some of which are analogous to zincophosphates (Harrison et al., 1999). In our search for novel framework structures containing zinc in combination with P or As atoms, we have discovered two new zincophosphate materials, namely Zn2(HPO4)2Cl2·2NC6H14 (Trojette et al., 1998) and [H2N2C6H16]0.5[Zn2(PO4)(HPO4)(H2O)]·H2O (Hajem et al., 1999). As part of these studies, we have examined the structure of [H2N2C6H16]0.5[Zn2(AsO4)(HAsO4)(H2O)2], (I) and report here its synthesis and structural characterization.

The title compound contains a layered structure (Fig. 1) consisting of organic sheets corresponding to N,N,N',N'-tetramethylethylenediamine (TMEDA) molecules and inorganic layers alternating along [010].

In the framework structure, the Zn atoms exhibit two types of coordination. The polyhedron around Zn1 is a distorted trigonal bipyramid formed by four O atoms and one terminal water molecule (OW2). The Zn2 atom is surrounded by five O atoms and one terminal water molecule (OW1) resulting in an octahedral coordination. The two As atoms are tetrahedrally coordinated by O atoms. The As1 atom has two As—O bonds bridging to Zn atoms. The remaining As—O bonds consist of an As1—O4H group and an As1O1 double bond. For the As2 atom, three of the coordinating O atoms are bonded to Zn atoms, while the fourth O atom is terminal (As2O5).

The two-dimensional framework can be considered as a parallel arrangement (along the [101] direction) of chains built up from ZnO6 and ZnO5 polyhedra interconnected by AsO4 tetrahedra (Fig. 2). Each chain makes –Zn1–Zn1–Zn2–Zn2– linkages (oxygen designation omitted) and every zinc polyhedron shares two edges with its nearest neighbor zinc polyhedron through four trigonally coordinated O atoms. These O atoms have a trigonal coordination because they contain not only Zn—O—Zn linkages, but also Zn—O—As linkages.

The TMEDA molecules are inserted between the inorganic layers and give rise to hydrogen bonds between H atoms of the protonated amine and O atoms of the framework (N—HN···O8; Fig. 1). Finally, the terminal –OH and OH2 groups participate in in-sheet hydrogen bonds, i.e. O4—HO4···O8, OW1—H1W1···O1, OW1—H2W1···O5, OW2—H1W2···O5 and OW2—H2W2···O1.

Experimental top

The title compound was synthesized hydrothermally from a 1:2:2:3:100 mixture of ZnO (0.12 g), HCl (38%, 0.29 g), H3AsO4 (80%, 0.51 g), C6H16N2 (0.50 g) and H2O (2.58 g). A thick gel formed which was then heated at 373 K for 7 d. The crystalline obtained product was filtered, washed with distilled water and dried in air at room temperature.

Refinement top

H atoms other than those of the aqua ligands or NH groups were treated as riding with O—H = 0.82 and C—H = 0.96–0.97 Å. The H atoms of NH groups were refined freely and aqua H atoms were refined with DFIX constraints and O—H = 0.90 Å.

Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of the structure of (I) down the a axis showing the location of the TMEDA molecules.
[Figure 2] Fig. 2. A polyhedral representation of the anion sheet viewed down the b direction.
N,N,N',N'-tetramethylethylenediammonium (arsenate)diaqua(hydrogen arsenate)dizinc(II) top
Crystal data top
(C6H18N2)0.5[Zn2(AsO4)(HAsO4)(H2O)2]Z = 2
Mr = 504.73F(000) = 490
Triclinic, P1Dx = 2.922 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.087 (1) ÅCell parameters from 25 reflections
b = 11.354 (2) Åθ = 11.2–13.9°
c = 6.622 (2) ŵ = 9.95 mm1
α = 101.15 (2)°T = 293 K
β = 96.64 (2)°Plate, colourless
γ = 102.79 (1)°0.45 × 0.25 × 0.14 mm
V = 573.7 (2) Å3
Data collection top
Enraf-Nonius CAD-4
diffractometer
2284 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 27.0°, θmin = 2.6°
ω/2θ scansh = 1010
Absorption correction: ψ scan
(North et al., 1968)
k = 140
Tmin = 0.063, Tmax = 0.248l = 88
2630 measured reflections2 standard reflections every 120 min
2499 independent reflections intensity decay: 0.7%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077Calculated w = 1/[σ2(Fo2) + (0.0505P)2 + 0.775P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2499 reflectionsΔρmax = 1.45 e Å3
196 parametersΔρmin = 0.79 e Å3
5 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0095 (10)
Crystal data top
(C6H18N2)0.5[Zn2(AsO4)(HAsO4)(H2O)2]γ = 102.79 (1)°
Mr = 504.73V = 573.7 (2) Å3
Triclinic, P1Z = 2
a = 8.087 (1) ÅMo Kα radiation
b = 11.354 (2) ŵ = 9.95 mm1
c = 6.622 (2) ÅT = 293 K
α = 101.15 (2)°0.45 × 0.25 × 0.14 mm
β = 96.64 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2284 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.020
Tmin = 0.063, Tmax = 0.2482 standard reflections every 120 min
2630 measured reflections intensity decay: 0.7%
2499 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0275 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 1.45 e Å3
2499 reflectionsΔρmin = 0.79 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.45470 (4)0.15530 (3)0.18012 (5)0.0092 (1)
As20.13060 (4)0.12917 (3)0.31863 (5)0.0080 (1)
Zn10.11517 (5)0.04617 (4)0.15912 (6)0.0119 (1)
Zn20.43666 (5)0.08903 (4)0.33855 (6)0.0107 (1)
O10.3695 (3)0.2702 (2)0.2734 (4)0.0184 (5)
O20.4659 (3)0.0665 (2)0.3523 (3)0.0125 (5)
O30.3543 (3)0.0721 (2)0.0584 (4)0.0137 (5)
O40.6634 (3)0.2186 (3)0.1535 (4)0.0240 (6)
HO40.67240.20480.02960.05 (2)*
O50.0273 (3)0.2501 (2)0.3265 (4)0.0157 (5)
O60.1891 (3)0.0324 (2)0.5578 (3)0.0113 (5)
O70.0696 (3)0.0499 (2)0.1435 (4)0.0138 (5)
O80.2938 (3)0.1892 (2)0.2375 (4)0.0122 (5)
OW10.3595 (3)0.2523 (2)0.3272 (4)0.0165 (5)
OW20.0281 (3)0.2236 (2)0.2659 (4)0.0170 (5)
N0.2025 (4)0.5578 (3)0.2035 (5)0.0192 (6)
C10.2376 (6)0.5494 (4)0.4263 (6)0.0294 (9)
H1C10.17180.59530.50710.05 (2)*
H2C10.35780.58340.48000.07 (2)*
H3C10.20570.46410.43490.03 (1)*
C20.3305 (5)0.5121 (4)0.0834 (7)0.0273 (9)
H1C20.31270.52570.05530.03 (1)*
H2C20.31600.42510.07640.05 (2)*
H3C20.44470.55630.15200.04 (1)*
C30.0206 (5)0.4912 (4)0.1097 (6)0.0196 (7)
H1C30.05670.52280.19510.02 (1)*
H2C30.00350.40350.10650.01 (1)*
HN0.218 (6)0.639 (1)0.203 (7)0.02 (1)*
H1W10.361 (6)0.265 (5)0.457 (3)0.03 (1)*
H2W10.255 (4)0.247 (7)0.291 (12)0.09 (3)*
H1W20.031 (7)0.242 (5)0.405 (2)0.03 (1)*
H2W20.139 (3)0.238 (6)0.250 (10)0.06 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.0090 (2)0.0121 (2)0.0062 (2)0.0021 (1)0.0003 (1)0.0026 (1)
As20.0074 (2)0.0109 (2)0.0059 (2)0.0034 (1)0.0005 (1)0.0017 (1)
Zn10.0106 (2)0.0157 (2)0.0088 (2)0.0020 (1)0.0013 (1)0.0027 (1)
Zn20.0112 (2)0.0137 (2)0.0078 (2)0.0045 (1)0.0017 (1)0.0025 (1)
O10.023 (1)0.016 (1)0.018 (1)0.009 (1)0.003 (1)0.003 (1)
O20.016 (1)0.017 (1)0.008 (1)0.008 (1)0.003 (1)0.005 (1)
O30.011 (1)0.020 (1)0.007 (1)0.001 (1)0.000 (1)0.002 (1)
O40.013 (1)0.039 (2)0.012 (1)0.008 (1)0.001 (1)0.005 (1)
O50.011 (1)0.015 (1)0.018 (1)0.000 (1)0.003 (1)0.002 (1)
O60.010 (1)0.015 (1)0.007 (1)0.002 (1)0.000 (1)0.000 (1)
O70.014 (1)0.024 (1)0.009 (1)0.009 (1)0.003 (1)0.008 (1)
O80.010 (1)0.014 (1)0.014 (1)0.004 (1)0.004 (1)0.003 (1)
OW10.015 (1)0.019 (1)0.016 (1)0.006 (1)0.002 (1)0.004 (1)
OW20.017 (1)0.019 (1)0.016 (1)0.004 (1)0.004 (1)0.005 (1)
N0.021 (2)0.012 (1)0.023 (2)0.003 (1)0.000 (1)0.003 (1)
C10.030 (2)0.028 (2)0.023 (2)0.000 (2)0.005 (2)0.003 (2)
C20.021 (2)0.025 (2)0.033 (2)0.007 (2)0.001 (2)0.001 (2)
C30.019 (2)0.017 (2)0.021 (2)0.003 (1)0.000 (1)0.004 (1)
Geometric parameters (Å, º) top
As1—O11.656 (2)O4—HO40.8200
As1—O21.669 (2)O6—Zn1i2.056 (2)
As1—O31.683 (2)O6—Zn2i2.116 (2)
As1—O41.725 (2)O7—Zn1ii2.086 (2)
As2—O51.669 (2)O8—Zn2viii2.182 (2)
As2—O61.692 (2)OW1—H1W10.896 (10)
As2—O71.693 (2)OW1—H2W10.898 (10)
As2—O81.707 (2)OW2—H1W20.900 (10)
Zn1—OW22.032 (3)OW2—H2W20.900 (10)
Zn1—O72.036 (2)N—C11.495 (5)
Zn1—O32.048 (2)N—C31.496 (5)
Zn1—O6i2.056 (2)N—C21.497 (5)
Zn1—O7ii2.086 (2)N—HN0.901 (10)
Zn1—Zn1ii3.1508 (10)C1—H1C10.9600
Zn2—O2iii2.061 (2)C1—H2C10.9600
Zn2—O32.071 (2)C1—H3C10.9600
Zn2—OW12.074 (3)C2—H1C20.9600
Zn2—O2iv2.078 (2)C2—H2C20.9600
Zn2—O6i2.116 (2)C2—H3C20.9600
Zn2—O8v2.182 (2)C3—C3ix1.514 (7)
Zn2—Zn2vi3.0757 (10)C3—H1C30.9700
O2—Zn2vii2.061 (2)C3—H2C30.9700
O2—Zn2iv2.078 (2)
O1—As1—O2109.78 (12)O6i—Zn2—Zn2vi86.76 (7)
O1—As1—O3113.58 (12)O8v—Zn2—Zn2vi86.47 (7)
O2—As1—O3112.19 (12)As1—O2—Zn2vii133.09 (14)
O1—As1—O4108.11 (14)As1—O2—Zn2iv129.96 (13)
O2—As1—O4106.62 (13)Zn2vii—O2—Zn2iv95.98 (10)
O3—As1—O4106.18 (12)As1—O3—Zn1131.82 (13)
O5—As2—O6109.33 (12)As1—O3—Zn2126.01 (13)
O5—As2—O7111.73 (12)Zn1—O3—Zn2101.54 (10)
O6—As2—O7108.98 (12)As1—O4—HO4109.5
O5—As2—O8106.16 (12)As2—O6—Zn1i132.13 (13)
O6—As2—O8112.70 (11)As2—O6—Zn2i122.90 (12)
O7—As2—O8107.97 (11)Zn1i—O6—Zn2i99.79 (10)
OW2—Zn1—O7101.80 (10)As2—O7—Zn1126.44 (13)
OW2—Zn1—O3147.79 (10)As2—O7—Zn1ii132.93 (14)
O7—Zn1—O3110.39 (10)Zn1—O7—Zn1ii99.70 (10)
OW2—Zn1—O6i93.94 (10)As2—O8—Zn2viii122.08 (13)
O7—Zn1—O6i103.08 (9)Zn2—OW1—H1W1104 (3)
O3—Zn1—O6i80.28 (9)Zn2—OW1—H2W1112 (5)
OW2—Zn1—O7ii90.88 (10)H1W1—OW1—H2W1112 (6)
O7—Zn1—O7ii80.30 (10)Zn1—OW2—H1W2107 (3)
O3—Zn1—O7ii93.23 (10)Zn1—OW2—H2W2116 (4)
O6i—Zn1—O7ii173.39 (9)H1W2—OW2—H2W2105 (5)
OW2—Zn1—Zn1ii98.18 (7)C1—N—C3110.1 (3)
O7—Zn1—Zn1ii40.73 (6)C1—N—C2110.8 (3)
O3—Zn1—Zn1ii105.22 (7)C3—N—C2112.9 (3)
O6i—Zn1—Zn1ii143.50 (7)C1—N—HN107 (3)
O7ii—Zn1—Zn1ii39.57 (7)C3—N—HN109 (3)
O2iii—Zn2—O3165.18 (10)C2—N—HN107 (3)
O2iii—Zn2—OW194.28 (10)N—C1—H1C1109.5
O3—Zn2—OW191.03 (10)N—C1—H2C1109.5
O2iii—Zn2—O2iv84.02 (10)H1C1—C1—H2C1109.5
O3—Zn2—O2iv91.70 (9)N—C1—H3C1109.5
OW1—Zn2—O2iv175.24 (10)H1C1—C1—H3C1109.5
O2iii—Zn2—O6i87.27 (9)H2C1—C1—H3C1109.5
O3—Zn2—O6i78.38 (9)N—C2—H1C2109.5
OW1—Zn2—O6i96.46 (10)N—C2—H2C2109.5
O2iv—Zn2—O6i87.91 (10)H1C2—C2—H2C2109.5
O2iii—Zn2—O8v91.28 (9)N—C2—H3C2109.5
O3—Zn2—O8v102.36 (9)H1C2—C2—H3C2109.5
OW1—Zn2—O8v92.10 (9)H2C2—C2—H3C2109.5
O2iv—Zn2—O8v83.50 (9)N—C3—C3ix110.4 (4)
O6i—Zn2—O8v171.40 (9)N—C3—H1C3109.6
O2iii—Zn2—Zn2vi42.22 (7)C3ix—C3—H1C3109.6
O3—Zn2—Zn2vi131.90 (7)N—C3—H2C3109.6
OW1—Zn2—Zn2vi136.34 (7)C3ix—C3—H2C3109.6
O2iv—Zn2—Zn2vi41.80 (6)H1C3—C3—H2C3108.1
Symmetry codes: (i) x, y, z1; (ii) x, y, z; (iii) x, y, z1; (iv) x+1, y, z; (v) x+1, y, z; (vi) x+1, y, z1; (vii) x, y, z+1; (viii) x1, y, z; (ix) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—HN···O8ix0.90 (1)1.87 (1)2.760 (4)168 (4)
O4—HO4···O8v0.821.802.619 (4)174
OW1—H1W1···O1iii0.90 (1)1.81 (1)2.700 (4)173 (5)
OW1—H2W1···O50.90 (1)1.84 (3)2.682 (3)156 (7)
OW2—H1W2···O5i0.90 (1)1.77 (1)2.659 (4)170 (5)
OW2—H2W2···O1ii0.90 (1)1.80 (2)2.686 (4)169 (6)
Symmetry codes: (i) x, y, z1; (ii) x, y, z; (iii) x, y, z1; (v) x+1, y, z; (ix) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C6H18N2)0.5[Zn2(AsO4)(HAsO4)(H2O)2]
Mr504.73
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.087 (1), 11.354 (2), 6.622 (2)
α, β, γ (°)101.15 (2), 96.64 (2), 102.79 (1)
V3)573.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)9.95
Crystal size (mm)0.45 × 0.25 × 0.14
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.063, 0.248
No. of measured, independent and
observed [I > 2σ(I)] reflections
2630, 2499, 2284
Rint0.020
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.077, 1.12
No. of reflections2499
No. of parameters196
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.45, 0.79

Computer programs: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992), CAD-4 EXPRESS, MolEN (Fair, 1990), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXL97.

Selected bond lengths (Å) top
As1—O11.656 (2)Zn1—O32.048 (2)
As1—O21.669 (2)Zn1—O6i2.056 (2)
As1—O31.683 (2)Zn1—O7ii2.086 (2)
As1—O41.725 (2)Zn2—O2iii2.061 (2)
As2—O51.669 (2)Zn2—O32.071 (2)
As2—O61.692 (2)Zn2—OW12.074 (3)
As2—O71.693 (2)Zn2—O2iv2.078 (2)
As2—O81.707 (2)Zn2—O6i2.116 (2)
Zn1—OW22.032 (3)Zn2—O8v2.182 (2)
Zn1—O72.036 (2)
Symmetry codes: (i) x, y, z1; (ii) x, y, z; (iii) x, y, z1; (iv) x+1, y, z; (v) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—HN···O8vi0.90 (1)1.87 (1)2.760 (4)168 (4)
O4—HO4···O8v0.821.802.619 (4)174.41
OW1—H1W1···O1iii0.90 (1)1.81 (1)2.700 (4)173 (5)
OW1—H2W1···O50.90 (1)1.84 (3)2.682 (3)156 (7)
OW2—H1W2···O5i0.90 (1)1.77 (1)2.659 (4)170 (5)
Symmetry codes: (i) x, y, z1; (iii) x, y, z1; (v) x+1, y, z; (vi) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds