Download citation
Download citation
link to html
The structure of trans-(bromo/­chloro)­hy­drido­tetra­kis­(tri-me­thyl­phos­phine)­rhod­ium(III) bis­(tetra­bromo­pyro­catechol-ato-O,O')­borate dichloromethane solvate, [RhCl0·74Br0·26H-(C3­H9­P)4]­(C12­BBr8­O4)·­CH2Cl2, is reported. The RhIII com­plex shows bromine/chlorine compositional disorder with a trans arrangement of the hydride and halide ligands. The anion has approximate D2d symmetry, with a central spiro-B atom distorted from regular tetrahedral geometry by the small chelating O-B-O angles.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199013554/gd1060sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199013554/gd1060Isup2.hkl
Contains datablock I

CCDC reference: 140938

Comment top

The compound trans-[RhCl0.74Br0.26H(PMe3)4][B(1,2-O2C6Br4)2] CH2Cl2, (I), was obtained as a side-product from the reaction between [Rh(PMe3)4]Cl and B2(1,2-O2C6Br4)2. A number of structures of the bis(catecholato)borate anion, [B(cat)2] (cat = 1,2-O2C6H4), have been reported both with organic cations (Clegg et al., 1998a) and with metal-complex cations (Clegg et al., 1999) and this anion seems to be a favoured product in many reactions involving H(Bcat), B2(cat)2 and B2(cat)3.

The geometry of the anion in this salt is similar to those of the unsubstituted anion in previously reported structures. Thus B—O distances in (I) range from 1.453 (11)–1.486 (11) Å {cf. 1.452–1.519 Å in [B(cat)2] anions}. The O—C distances [1.330 (9)–1.339 (8) Å] are similar to those in other [B(cat)2] anions [1.338–1.375 Å]. The B—O distances and O—C distances in these tetrahedral anions are longer than those in the diborane(4) compound B2(1,2-O2C6H4)2 [B—O = 1.382 (2)–1.394 (2) Å, O—C = 1.386 (2)–1.387 (2) Å] consistent with an increased coordination number and hybridization change at boron. The structure of B2(1,2-O2C6Br4)2 has not been characterized to date. The coordination around boron is slightly elongated from tetrahedral with two small O—B—O chelating angles [105.1 (6) and 103.9 (6)°]. The rings are close to planar [torsion angles O1C51C52O2 = 4.12(1.05) and O3C61C62O4 = 0.90(0.89)°]. In other [B(cat)2] anions slight folding is reported about the O···O vector with dihedral angles between the BO2 and O2C2 planes of up to 13.9 (2)° (Clegg et al., 1999), however, in the anion of (I) these angles are only 2.4 (2) and 4.6 (2)°. The anion has approximate D2 d symmetry.

The hydride and halide ligands in the cation of (I), which contains four phosphine ligands, are trans to each other consistent with the relative high and low trans influences of hydride and halide ligands, respectively. Compositional disorder was observed in the halide site and was modelled with components of bromine and chlorine in the ratio ca 3:1 (see Experimental). Presumably the source of the bromine here is the catecholate 1,2-O2C6Br4. The Rh-PMe3 distances [2.322 (2)–2.357 (2) Å] are similar to those of other RhIII cations [2.281 (3)–2.397 (3) Å] (Marder et al., 1987; Westcott et al., 1993). Ignoring the Br/Cl disorder, the geometry around rhodium is octahedral with cis P—Rh—P bond angles ranging from 90.57 (8)–91.45 (8)°, though the trans P—Rh—P angles are somewhat distorted from linearity [P1Rh1P3 166.27 (9) and P2Rh1P4 159.16 (9)°].

The [B(1,2-O2C6Br4)2] anions form an intricate packing supported by Br···Br interactions. The interactions, shown in Fig. 2 include the unique contacts: Br1···Br6i = 3.656 (2), Br5···Br3ii = 3.287 (2), Br4···Br8iii = 3.617 (1) and Br8···Br1iii = 3.519 (1) Å [(i) −x, y − 1/2, 3/2 − z, (ii) −1/2 − x, 2 − y, 1/2 + z, (iii) x − 1/2, 5/2 − y, 1 − z] (van der Waals radius of bromine = 1.85 Å, Bondi, 1965). The shortest published Br···Br interaction is 3.202 (3) Å in CPh3Br (Desiraju, 1989 and references therein). Database studies on Cl···Cl, Br···Br and I···I interactions have shown that these contacts are generally of two types (Ramasubbu et al., 1986). Either both C—X···X (X = halide) angles are equal and around 160±10° or one of the angles is about 175° and the other around 80°. As shown in Table 1, both of these types are observed. That these contacts have specific directional effects appear to dominate in the packing in (I), whereas classic hydrogen bonding between organic cations and the O atoms in [B(cat)2], forming ion pairs, is found in salts of this anion (Clegg et al., 1998a).

Experimental top

B2(1,2-O2C6Br4)2 was prepared as described by Clegg et al. (1998b). Compound (I) was obtained as a minor side-product from the reaction between [Rh(PMe3)4]Cl and B2(1,2-O2C6Br4)2 in CH2Cl2 after the addition of pentane. 31P {1H} NMR (CDCl3) multiplet at δ −10.6, 11B {1H} NMR δ 12.3 p.p.m. Crystals of (I) suitable for X-ray diffraction were grown from a CH2Cl2 solution layered with hexane at 243 K.

Refinement top

The position of the hydride was located in the electron-density difference map and was refined with fixed coordinates and Uiso value. Other hydrogen atoms were constrained to idealized geometries and assigned isotropic displacement parameters 1.5 times Uiso value of their attached carbon (or 1.2 Uiso for CH2Cl2).

Compositional disorder was suspected in the halide when unaccounted electron density was present when it was modelled as pure chloride. Both components of the disorder were refined anisotropically and the site occupancies refined to 0.74 (1) and 0.26 (1) for Cl and Br, respectively. The Rh—Cl and Rh—Br distances were constrained to standard bond distances [Rh—Cl 2.44 Å, Rh—Br 2.56 Å] (Orpen et al., 1989) and the anisotropic displacement parameters of the Cl and Br atoms constrained to be the same.

The CH2Cl2 solvent molecule was disordered and modelled with two images of equal occupancy ratio, with their carbon atom in the same location. The C—Cl distances were constrained.

Computing details top

Data collection: SMART (Siemens, 1995a); cell refinement: SAINT (Siemens, 1995a); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Siemens, 1995b); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Structure of anion and cation of (I) drawn at the 50% level. H atoms bonded to C are omitted for clarity.
[Figure 2] Fig. 2. Packing of anions of (I) showing Br···Br interactions. Symmetry code: (i) −x, −1/2 + y, 3/2 − z; (ii) −1/2 − x, 2 − y, 1/2 + z; (iii) −1/2 + x, 5/2 − y, 1 − z.
trans-[hydrotetrakis(trimethylphosphine)Rhodiumchloride/bromide] [(tetrabromobenzene-1,2-diolato)borate] dichloromethane solvate top
Crystal data top
[RhCl0.73Br0.27H(C3H9P)4](C12BBr8O4)·CH2Cl2Dx = 2.100 Mg m3
Mr = 1398.57Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 462 reflections
a = 13.0140 (9) Åθ = 5–25°
b = 16.3990 (15) ŵ = 8.19 mm1
c = 20.726 (3) ÅT = 173 K
V = 4423.3 (8) Å3Rhomb, pale yellow
Z = 40.80 × 0.30 × 0.30 mm
F(000) = 2667
Data collection top
Siemens SMART Area Detector
diffractometer
10124 independent reflections
Radiation source: fine-focus sealed tube7391 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 60 pixels mm-1θmax = 27.5°, θmin = 1.6°
ω rotation with narrow frame scansh = 1616
Absorption correction: multi-scan (SADABS; sheldrick, 1997)
?
k = 1921
Tmin = 0.026, Tmax = 0.086l = 1526
28033 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms: see text
wR(F2) = 0.113Calculated w = 1/[σ2(Fo2) + (0.057P)2]
where P = (Max{Fo2,0} + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
10124 reflectionsΔρmax = 1.44 e Å3
430 parametersΔρmin = 1.10 e Å3
8 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.486 (10)
Crystal data top
[RhCl0.73Br0.27H(C3H9P)4](C12BBr8O4)·CH2Cl2V = 4423.3 (8) Å3
Mr = 1398.57Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 13.0140 (9) ŵ = 8.19 mm1
b = 16.3990 (15) ÅT = 173 K
c = 20.726 (3) Å0.80 × 0.30 × 0.30 mm
Data collection top
Siemens SMART Area Detector
diffractometer
10124 independent reflections
Absorption correction: multi-scan (SADABS; sheldrick, 1997)
?
7391 reflections with I > 2σ(I)
Tmin = 0.026, Tmax = 0.086Rint = 0.050
28033 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H atoms: see text
wR(F2) = 0.113Δρmax = 1.44 e Å3
S = 1.03Δρmin = 1.10 e Å3
10124 reflectionsAbsolute structure: Flack (1983)
430 parametersAbsolute structure parameter: 0.486 (10)
8 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles, correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R factor obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Unit-cell dimensions were determined from reflections taken from three sets of 30 frames (at 0.3° steps in ω) at 10 s. A full hemisphere of reciprocal space was scanned by 0.3° ω steps at ϕ = 0, 90 and 180° at 20 s per frame with the area detector held at 2θ = −27°. The crystal-to-detector distance was 4.974 cm. Crystal decay was monitored by repeating the initial 50 frames at the end of data collection and analysing the duplicate reflections. No decay was observed. The data showed inversion twinning with the Flack parameter (Flack, 1983) refining to 0.486 (10).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh10.12299 (4)0.68363 (3)0.20445 (3)0.02169 (13)
Cl100.1299 (9)0.7901 (9)0.2912 (8)0.044 (4)0.74 (1)
Br100.1530 (13)0.7914 (8)0.2899 (7)0.026 (2)0.26 (1)
H10.10600.60480.13540.050*
P10.0034 (2)0.63206 (14)0.27492 (13)0.0408 (6)
P20.2436 (2)0.58707 (14)0.23955 (13)0.0379 (6)
P30.25129 (14)0.75992 (13)0.15273 (12)0.0303 (5)
P40.00308 (15)0.74355 (13)0.14093 (11)0.0289 (5)
Br10.13374 (6)1.02967 (5)0.50410 (5)0.0396 (2)
Br20.01471 (8)0.89700 (7)0.40725 (6)0.0636 (3)
Br30.23684 (9)0.88166 (6)0.41526 (7)0.0692 (4)
Br40.36971 (6)1.01277 (5)0.50684 (5)0.0440 (2)
Br50.10621 (8)1.22497 (7)0.82408 (5)0.0543 (3)
Br60.11777 (9)1.42797 (7)0.83927 (6)0.0647 (3)
Br70.12498 (10)1.54016 (6)0.70702 (7)0.0779 (4)
Br80.11962 (7)1.45053 (5)0.56376 (5)0.0479 (2)
B10.1232 (7)1.1722 (5)0.6064 (5)0.036 (2)
O10.2122 (4)1.1256 (3)0.5815 (3)0.0344 (14)
O20.0333 (4)1.1293 (3)0.5824 (3)0.0333 (14)
O30.1262 (4)1.2580 (3)0.5847 (3)0.0328 (12)
O40.1236 (4)1.1783 (3)0.6780 (3)0.0336 (12)
C110.0755 (7)0.5433 (6)0.2535 (6)0.062 (3)
H11A0.0290 (10)0.4966 (11)0.250 (3)0.092*
H11B0.110 (5)0.5525 (18)0.2122 (18)0.092*
H11C0.127 (4)0.532 (3)0.2870 (18)0.092*
C120.0424 (8)0.6099 (7)0.3558 (5)0.063 (3)
H12A0.085 (5)0.655 (2)0.3712 (14)0.094*
H12B0.084 (5)0.560 (2)0.3551 (8)0.094*
H12C0.0164 (8)0.603 (4)0.3848 (9)0.094*
C130.0986 (6)0.7054 (6)0.2990 (5)0.054 (3)
H13A0.0645 (7)0.7556 (16)0.313 (3)0.081*
H13B0.140 (3)0.6831 (17)0.335 (2)0.081*
H13C0.144 (3)0.718 (3)0.2624 (11)0.081*
C210.3176 (8)0.6019 (8)0.3126 (6)0.076 (4)
H21A0.2714 (11)0.617 (5)0.3480 (11)0.114*
H21B0.368 (4)0.645 (4)0.3058 (14)0.114*
H21C0.353 (5)0.5512 (17)0.324 (2)0.114*
C220.1910 (7)0.4844 (5)0.2519 (6)0.062 (3)
H22A0.162 (5)0.4642 (18)0.2113 (10)0.094*
H22B0.137 (4)0.4865 (9)0.285 (3)0.094*
H22C0.2459 (14)0.4478 (12)0.266 (3)0.094*
C230.3438 (6)0.5600 (5)0.1816 (6)0.053 (3)
H23A0.3136 (11)0.555 (4)0.1385 (8)0.079*
H23B0.375 (4)0.508 (2)0.1940 (18)0.079*
H23C0.397 (3)0.603 (2)0.181 (2)0.079*
C310.2181 (7)0.8677 (5)0.1389 (5)0.047 (3)
H31A0.192 (4)0.8915 (11)0.1789 (9)0.070*
H31B0.165 (4)0.8713 (5)0.105 (2)0.070*
H31C0.2795 (13)0.8975 (9)0.125 (3)0.070*
C320.3028 (7)0.7288 (5)0.0746 (5)0.052 (3)
H32A0.2506 (18)0.737 (4)0.0412 (7)0.078*
H32B0.322 (5)0.6710 (12)0.0762 (10)0.078*
H32C0.364 (3)0.762 (3)0.0644 (15)0.078*
C330.3680 (6)0.7726 (5)0.2035 (5)0.049 (2)
H33A0.399 (3)0.7192 (6)0.211 (3)0.074*
H33B0.3488 (9)0.798 (4)0.2447 (13)0.074*
H33C0.417 (2)0.808 (3)0.1811 (14)0.074*
C410.0512 (6)0.8427 (5)0.1658 (5)0.042 (2)
H41A0.014 (3)0.8856 (5)0.143 (2)0.063*
H41B0.041 (4)0.8495 (15)0.2123 (7)0.063*
H41C0.1247 (12)0.8464 (14)0.156 (3)0.063*
C420.0297 (7)0.7576 (6)0.0554 (4)0.049 (2)
H42A0.090 (3)0.793 (3)0.0518 (5)0.074*
H42B0.0286 (18)0.782 (3)0.0328 (7)0.074*
H42C0.045 (4)0.7046 (7)0.0359 (8)0.074*
C430.1166 (6)0.6842 (6)0.1275 (5)0.050 (2)
H43A0.150 (3)0.673 (3)0.1689 (5)0.076*
H43B0.0980 (9)0.6328 (18)0.106 (3)0.076*
H43C0.164 (2)0.7147 (17)0.100 (3)0.076*
C510.1730 (6)1.0665 (5)0.5446 (4)0.029 (2)
C520.0655 (6)1.0706 (4)0.5429 (4)0.024 (2)
C530.0109 (5)1.0200 (4)0.5034 (4)0.027 (2)
C540.0638 (7)0.9618 (5)0.4652 (5)0.038 (2)
C550.1663 (7)0.9603 (5)0.4652 (4)0.034 (2)
C560.2253 (5)1.0116 (4)0.5057 (4)0.028 (2)
C610.1236 (6)1.3046 (5)0.6373 (4)0.029 (2)
C620.1230 (5)1.2581 (4)0.6915 (3)0.027 (2)
C630.1169 (6)1.2951 (5)0.7522 (4)0.037 (2)
C640.1163 (7)1.3795 (5)0.7569 (5)0.043 (2)
C650.1209 (6)1.4254 (4)0.7012 (5)0.035 (2)
C660.1219 (6)1.3906 (5)0.6393 (4)0.036 (2)
C910.1108 (7)0.6297 (5)0.4883 (5)0.049 (2)*0.559 (10)
H91A0.1236 (7)0.5711 (5)0.4962 (5)0.059*0.559 (10)
H91B0.0978 (7)0.6389 (5)0.4418 (5)0.059*0.559 (10)
Cl20.2113 (14)0.6908 (13)0.5172 (14)0.365 (9)*0.559 (10)
Cl30.0149 (12)0.6658 (13)0.5344 (10)0.293 (7)*0.559 (10)
C91A0.1108 (7)0.6297 (5)0.4883 (5)0.049 (2)*0.441 (10)
H91C0.0540 (15)0.6265 (17)0.4566 (15)0.059*0.441 (10)
H91D0.1197 (15)0.5769 (17)0.5107 (15)0.059*0.441 (10)
Cl2A0.2208 (15)0.6662 (17)0.4566 (15)0.365 (9)*0.441 (10)
Cl3A0.099 (2)0.7163 (12)0.5438 (10)0.293 (7)*0.441 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.0146 (2)0.0242 (2)0.0262 (3)0.0001 (2)0.0028 (3)0.0006 (3)
Cl100.012 (6)0.070 (4)0.049 (4)0.001 (3)0.003 (3)0.022 (2)
Br100.008 (6)0.045 (3)0.027 (3)0.001 (3)0.002 (3)0.016 (2)
P10.0275 (11)0.0482 (13)0.047 (2)0.0025 (10)0.0135 (11)0.0142 (13)
P20.0228 (10)0.0377 (11)0.053 (2)0.0072 (9)0.0047 (11)0.0111 (12)
P30.0226 (9)0.0267 (10)0.0417 (14)0.0056 (8)0.0084 (10)0.0052 (11)
P40.0246 (9)0.0314 (11)0.0307 (12)0.0014 (8)0.0056 (9)0.0037 (10)
Br10.0283 (4)0.0440 (4)0.0464 (5)0.0077 (4)0.0044 (4)0.0017 (4)
Br20.0567 (6)0.0621 (7)0.0721 (8)0.0249 (5)0.0073 (6)0.0377 (7)
Br30.0647 (7)0.0470 (6)0.0960 (10)0.0050 (5)0.0267 (7)0.0335 (7)
Br40.0295 (4)0.0522 (5)0.0503 (6)0.0133 (4)0.0017 (5)0.0067 (5)
Br50.0509 (6)0.0785 (7)0.0335 (5)0.0063 (5)0.0002 (5)0.0036 (5)
Br60.0551 (6)0.0824 (7)0.0565 (7)0.0014 (6)0.0028 (6)0.0413 (6)
Br70.0913 (8)0.0392 (5)0.1033 (10)0.0015 (6)0.0291 (9)0.0258 (6)
Br80.0336 (4)0.0472 (5)0.0630 (6)0.0039 (4)0.0072 (5)0.0119 (5)
B10.026 (4)0.035 (5)0.047 (6)0.010 (4)0.008 (5)0.008 (5)
O10.024 (3)0.043 (3)0.036 (4)0.002 (2)0.010 (3)0.013 (3)
O20.019 (3)0.039 (3)0.041 (4)0.002 (2)0.005 (3)0.020 (3)
O30.029 (3)0.034 (3)0.035 (3)0.002 (3)0.003 (3)0.007 (3)
O40.034 (3)0.035 (3)0.032 (3)0.003 (3)0.001 (3)0.008 (3)
C110.033 (5)0.060 (6)0.091 (9)0.006 (4)0.021 (6)0.021 (7)
C120.049 (6)0.093 (8)0.046 (7)0.005 (6)0.020 (5)0.029 (7)
C130.032 (5)0.073 (7)0.058 (6)0.002 (4)0.015 (5)0.006 (6)
C210.056 (7)0.104 (9)0.067 (9)0.030 (6)0.013 (6)0.013 (8)
C220.054 (6)0.035 (5)0.098 (10)0.016 (4)0.014 (6)0.036 (6)
C230.028 (4)0.039 (5)0.092 (9)0.000 (4)0.027 (5)0.014 (6)
C310.051 (5)0.024 (4)0.066 (7)0.014 (4)0.004 (5)0.007 (5)
C320.054 (6)0.040 (5)0.061 (7)0.017 (4)0.023 (5)0.003 (5)
C330.019 (4)0.042 (4)0.086 (7)0.004 (4)0.004 (5)0.021 (5)
C410.039 (5)0.040 (5)0.047 (6)0.015 (4)0.009 (4)0.005 (5)
C420.064 (6)0.057 (6)0.026 (5)0.000 (5)0.010 (5)0.011 (5)
C430.028 (4)0.067 (6)0.056 (6)0.009 (5)0.012 (5)0.019 (5)
C510.032 (4)0.029 (4)0.027 (5)0.003 (3)0.005 (4)0.002 (4)
C520.021 (4)0.022 (4)0.028 (5)0.002 (3)0.001 (3)0.000 (4)
C530.025 (4)0.029 (4)0.028 (4)0.002 (3)0.009 (4)0.006 (4)
C540.042 (5)0.031 (4)0.041 (6)0.016 (4)0.011 (4)0.004 (5)
C550.050 (5)0.028 (4)0.023 (5)0.002 (4)0.011 (4)0.014 (4)
C560.024 (4)0.024 (4)0.037 (5)0.003 (3)0.002 (4)0.002 (4)
C610.015 (3)0.045 (4)0.026 (4)0.003 (4)0.002 (4)0.016 (4)
C620.019 (3)0.038 (4)0.023 (4)0.005 (4)0.001 (3)0.009 (3)
C630.020 (4)0.056 (5)0.033 (5)0.006 (4)0.002 (4)0.007 (4)
C640.022 (4)0.041 (4)0.066 (7)0.003 (4)0.003 (5)0.040 (5)
C650.025 (4)0.034 (4)0.047 (5)0.006 (4)0.002 (5)0.012 (4)
C660.010 (3)0.051 (5)0.047 (5)0.001 (4)0.010 (4)0.024 (4)
Geometric parameters (Å, º) top
Rh1—P42.322 (2)Br8—C661.848 (9)
Rh1—P22.345 (2)B1—O21.453 (11)
Rh1—P32.346 (2)B1—O31.478 (10)
Rh1—P12.357 (2)B1—O11.482 (10)
Rh1—Cl102.507 (14)B1—O41.486 (11)
Rh1—Br102.531 (12)O1—C511.335 (9)
P1—C111.787 (10)O2—C521.330 (9)
P1—C131.798 (9)O3—C611.333 (8)
P1—C121.817 (11)O4—C621.339 (8)
P2—C211.811 (11)C51—C561.388 (11)
P2—C231.828 (9)C51—C521.401 (10)
P2—C221.835 (9)C52—C531.365 (10)
P3—C321.826 (10)C53—C541.418 (11)
P3—C311.841 (8)C54—C551.333 (11)
P3—C331.859 (9)C55—C561.415 (11)
P4—C431.792 (8)C61—C621.357 (10)
P4—C411.817 (8)C61—C661.412 (11)
P4—C421.838 (10)C62—C631.399 (10)
Br1—C531.889 (7)C63—C641.387 (11)
Br2—C541.903 (9)C64—C651.380 (13)
Br3—C551.891 (8)C65—C661.404 (11)
Br4—C561.879 (7)C91—Cl31.680 (9)
Br5—C631.887 (8)C91—Cl21.752 (9)
Br6—C641.883 (9)C91A—Cl2A1.685 (10)
Br7—C651.886 (7)C91A—Cl3A1.833 (10)
P4—Rh1—P2159.16 (9)O1—C51—C52111.2 (7)
P4—Rh1—P391.04 (8)C56—C51—C52120.5 (8)
P2—Rh1—P391.45 (8)O2—C52—C53130.2 (7)
P4—Rh1—P190.57 (8)O2—C52—C51109.5 (7)
P2—Rh1—P191.88 (8)C53—C52—C51120.3 (8)
P3—Rh1—P1166.27 (9)C52—C53—C54119.4 (7)
P4—Rh1—Cl1097.9 (4)C52—C53—Br1117.5 (6)
P2—Rh1—Cl10102.9 (4)C54—C53—Br1123.0 (6)
P3—Rh1—Cl1086.0 (3)C55—C54—C53119.9 (8)
P1—Rh1—Cl1080.3 (3)C55—C54—Br2121.8 (7)
C11—P1—C13104.6 (4)C53—C54—Br2117.9 (6)
C11—P1—C12103.8 (6)C54—C55—C56122.1 (8)
C13—P1—C1296.0 (5)C54—C55—Br3119.9 (7)
C11—P1—Rh1120.3 (4)C56—C55—Br3117.8 (6)
C13—P1—Rh1114.4 (3)C51—C56—C55117.6 (7)
C12—P1—Rh1114.5 (3)C51—C56—Br4118.5 (6)
C21—P2—C23101.7 (5)C55—C56—Br4123.9 (6)
C21—P2—C22101.8 (6)O3—C61—C62110.8 (6)
C23—P2—C2297.8 (5)O3—C61—C66126.6 (7)
C21—P2—Rh1121.6 (4)C62—C61—C66122.5 (7)
C23—P2—Rh1115.9 (4)O4—C62—C61112.1 (6)
C22—P2—Rh1114.4 (3)O4—C62—C63127.8 (7)
C32—P3—C31102.5 (5)C61—C62—C63120.1 (7)
C32—P3—C33103.5 (5)C64—C63—C62119.7 (8)
C31—P3—C3399.9 (4)C64—C63—Br5123.5 (7)
C32—P3—Rh1121.2 (3)C62—C63—Br5116.7 (6)
C31—P3—Rh1114.6 (3)C65—C64—C63119.1 (8)
C33—P3—Rh1112.5 (3)C65—C64—Br6121.8 (6)
C43—P4—C41104.2 (4)C63—C64—Br6119.0 (8)
C43—P4—C4296.3 (5)C64—C65—C66122.9 (7)
C41—P4—C42104.0 (5)C64—C65—Br7119.5 (6)
C43—P4—Rh1116.2 (3)C66—C65—Br7117.6 (7)
C41—P4—Rh1117.5 (3)C65—C66—C61115.6 (8)
C42—P4—Rh1115.9 (3)C65—C66—Br8123.9 (6)
O2—B1—O3112.2 (7)C61—C66—Br8120.5 (6)
O2—B1—O1105.1 (6)Cl3—C91—Cl299.2 (8)
O3—B1—O1111.3 (8)Cl2A—C91A—Cl3A92.4 (9)
O2—B1—O4112.3 (8)C53—Br1—Br8i156.0 (3)
O3—B1—O4103.9 (6)C53—Br1—Br6ii84.9 (2)
O1—B1—O4112.4 (7)C55—Br3—Br5iii168.3 (3)
C51—O1—B1105.9 (6)C56—Br4—Br8iv153.6 (3)
C52—O2—B1107.9 (6)C63—Br5—Br3v137.1 (3)
C61—O3—B1107.2 (6)C64—Br6—Br1vi176.5 (3)
C62—O4—B1106.0 (6)C66—Br8—Br1iv111.9 (2)
O1—C51—C56128.0 (7)C66—Br8—Br4i116.4 (2)
Symmetry codes: (i) x+1/2, y+5/2, z+1; (ii) x, y1/2, z+3/2; (iii) x1/2, y+2, z1/2; (iv) x1/2, y+5/2, z+1; (v) x1/2, y+2, z+1/2; (vi) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[RhCl0.73Br0.27H(C3H9P)4](C12BBr8O4)·CH2Cl2
Mr1398.57
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)13.0140 (9), 16.3990 (15), 20.726 (3)
V3)4423.3 (8)
Z4
Radiation typeMo Kα
µ (mm1)8.19
Crystal size (mm)0.80 × 0.30 × 0.30
Data collection
DiffractometerSiemens SMART Area Detector
diffractometer
Absorption correctionMulti-scan (SADABS; Sheldrick, 1997)
Tmin, Tmax0.026, 0.086
No. of measured, independent and
observed [I > 2σ(I)] reflections
28033, 10124, 7391
Rint0.050
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.113, 1.03
No. of reflections10124
No. of parameters430
No. of restraints8
H-atom treatmentH atoms: see text
Δρmax, Δρmin (e Å3)1.44, 1.10
Absolute structureFlack (1983)
Absolute structure parameter0.486 (10)

Computer programs: SMART (Siemens, 1995a), SAINT (Siemens, 1995a), SAINT, SHELXTL (Siemens, 1995b), SHELXTL.

Selected geometric parameters (Å, º) top
Rh1—P42.322 (2)Br6—C641.883 (9)
Rh1—P22.345 (2)Br7—C651.886 (7)
Rh1—P32.346 (2)Br8—C661.848 (9)
Rh1—P12.357 (2)B1—O21.453 (11)
Rh1—Cl102.507 (14)B1—O31.478 (10)
Rh1—Br102.531 (12)B1—O11.482 (10)
Br1—C531.889 (7)B1—O41.486 (11)
Br2—C541.903 (9)O1—C511.335 (9)
Br3—C551.891 (8)O2—C521.330 (9)
Br4—C561.879 (7)O3—C611.333 (8)
Br5—C631.887 (8)O4—C621.339 (8)
P4—Rh1—P2159.16 (9)C43—P4—C4296.3 (5)
P4—Rh1—P391.04 (8)C41—P4—C42104.0 (5)
P2—Rh1—P391.45 (8)O2—B1—O3112.2 (7)
P4—Rh1—P190.57 (8)O2—B1—O1105.1 (6)
P2—Rh1—P191.88 (8)O3—B1—O1111.3 (8)
P3—Rh1—P1166.27 (9)O2—B1—O4112.3 (8)
C11—P1—C13104.6 (4)O3—B1—O4103.9 (6)
C11—P1—C12103.8 (6)O1—B1—O4112.4 (7)
C13—P1—C1296.0 (5)C53—Br1—Br8i156.0 (3)
C21—P2—C23101.7 (5)C53—Br1—Br6ii84.9 (2)
C21—P2—C22101.8 (6)C55—Br3—Br5iii168.3 (3)
C23—P2—C2297.8 (5)C56—Br4—Br8iv153.6 (3)
C32—P3—C31102.5 (5)C63—Br5—Br3v137.1 (3)
C32—P3—C33103.5 (5)C64—Br6—Br1vi176.5 (3)
C31—P3—C3399.9 (4)C66—Br8—Br1iv111.9 (2)
C43—P4—C41104.2 (4)C66—Br8—Br4i116.4 (2)
Symmetry codes: (i) x+1/2, y+5/2, z+1; (ii) x, y1/2, z+3/2; (iii) x1/2, y+2, z1/2; (iv) x1/2, y+5/2, z+1; (v) x1/2, y+2, z+1/2; (vi) x, y+1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds