Download citation
Download citation
link to html
The reaction of 2,2′:6′,2′′-terpyridine (terpy) with CuCl2 in the presence of sodium sulfite led to the synthesis of the ionic complex aqua­chlorido(2,2′:6′,2′′-terpyridyl-κ3N,N′,N′′)copper(II) chlorido(dithionato-κO)(2,2′:6′,2′′-terpyridyl-κ3N,N′,N′′)cuprate(II) dihydrate, [CuCl(C15H11N3)(H2O)][CuCl(S2O6)(C15H11N3)]·2H2O, (I), and the in situ synthesis of the S2O62− dianion. Compound (I) is composed of a [CuCl(terpy)(H2O)]+ cation, a [Cu(S2O6)(terpy)] anion and two solvent water mol­ecules. Thermogravimetric analysis indicated the loss of two water mol­ecules at ca 363 K, and at 433 K the weight loss indicated a total loss of 2.5 water mol­ecules. The crystal structure analysis of the resulting pale-green dried crystals, μ-dithio­nato-κ2O:O′-bis­[chlorido(2,2′:6′,2′′-terpyridyl-κ3N,N′,N′′)copper(II)] monohydrate, [Cu2Cl2(S2O6)(C15H11N3)2]·H2O, (II), revealed a net loss of 1.5 water mol­ecules and the formation of a binuclear complex with two [CuCl(terpy)]+ cations bridged by a dithio­nate dianion. The crystal-to-crystal transformation involved an effective reduction in the unit-cell volume of ca 7.6%. In (I), the ions are linked by O—H...O hydrogen bonds involving the coordinated and solvent water mol­ecules and O atoms of the dithio­nate unit, to form ribbon-like polymer chains propagating in [100]. These chains are linked by Cu...Cl inter­actions [3.2626 (7) Å in the cation and 3.3492 (7) Å in the anion] centred about inversion centres, to form two-dimensional networks lying in and parallel to (0\overline{1}1). In (II), symmetry-related mol­ecules are linked by O—H...O hydrogen bonds involving the partially occupied disordered water mol­ecule and an O atom of the bridging thio­sulfite anion, to form ribbon-like polymer chains propagating in [100]. These chains are also linked by Cu...Cl inter­actions [3.3765 (12) Å] centred about inversion centres to form similar two-dimensional networks to (I) lying in and parallel to (0\overline{2}2), crosslinked into three dimensions by C—H...O=S and C—H...O(water) inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110041090/ga3158sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110041090/ga3158Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110041090/ga3158IIsup3.hkl
Contains datablock II

CCDC references: 804114; 804115

Comment top

Crystal-to-crystal structural transformations are not uncommon and many of these transformations are the result of dehydration of transition metal complexes or polymers (Habib et al., 2008; Lin et al., 2008; Mahmoudi & Morsali, 2008; Mobin et al., 2009). Some of these structural transformations have been shown by in situ powder X-ray diffraction to be reversible on rehydration (Wang et al., 2007; Aslani et al., 2008; Sereda et al., 2009). The ligand 2,2':6',2''-terpyridine (terpy) was first synthesized by Morgan & Burstall (1932). Since then, a very large number of transition metal complexes containing terpy have been synthesized and studied for their optical and electrochemical properties: metal-to-ligand charge transfer (MLCT) in the visible-light region, reversible reduction and oxidation, and fairly intense luminescence. A search of the Cambridge Structural Database (CSD, Version 5.1, last update May 2010; Allen, 2002) revealed the presence of more than 1100 structures involving terpy, the majority being coordination complexes.

The dithionate anion is a potentially useful component for the synthesis of multidimensional coordination polymers (Rusanov et al., 2003; Neels, et al., 2003). A search of the CSD revealed the presence of 119 transition metal complexes containing this anion. However, in the majority of cases it is not coordinated to the metal atom. Three coordination modes were found in this CSD search (A, B and C; see scheme). Coordination mode A was observed for six compounds, of which four are copper(II) complexes (Bernhardt et al., 2004; Ishii, 2001a; Donlevy et al., 1990). Coordination mode B was observed for only two compounds, both of which are copper(II) complexes (Turba et al., 2008; Ishii, 2001a); one of them, catena-poly[(µ2-dithionato-O,O')aqua[2,6-bis(2-pyridyl)pyridine]copper(II)], also involves a terpyridine ligand (Ishii, 2001a). Bridging mode C was observed in seven compounds, of which three involve a copper(II) atom (Degtyarenko et al., 2008; Kim et al., 2003; Ishii, 2001b).

Here, we report the synthesis and crystal structure of a copper(II) terpy ionic complex, (I), with the in situ synthesis of the dithionate anion which coordinates in mode A. On heating, (I) undergoes a crystal-to-crystal transformation to form a binuclear copper(II) terpy dithionate-bridged complex, (II), with the anion coordinating in bridging mode C.

Complex (I) was synthesized by adding sodium sulfite to an aqueous solution of terpy and CuCl2.2H2O. It consists of a [ClCu(terpy)(H2O)]+ cation, a [Cu(terpy)(S2O6)]- anion and two solvent water molecules (Fig. 1). In the cation, atom Cu1 is coordinated to three N atoms of the terpy ligand and a Cl- ion in the basal plane, and to a water molecule in the apical position. The coordination environment can be described as distorted square-pyramidal with a τ value for Cu1 of 0.19 (where τ = 0 for square pyramidal and 1 for trigonal pyramidal; Addison et al., 1984; Spek, 2009). This cation has pseudo-mirror symmetry and is very similar to the same cation in aquachlorido(2,2':6',6''-terpyridyl)copper(II) chloride monohydrate, (III) (Schmitt et al., 2010). The latter possesses crystallographic mirror symmetry and was produced as a by-product of the synthesis of (I). In the anion of (I), atom Cu2 is coordinated by the three N atoms of the terpy ligand and a Cl- ion in the basal plane. The coordination geometry is completed by an O atom of the dithionate anion in the apical position. The coordination environment is also distorted square-pyramidal, with a τ value for Cu2 of 0.18. The majority of the bond distances and angles in the cation and anion (Table 1) are similar to those found in (III). The main difference concerns the apical Cu—O distances: that involving an O atom of the dithionate anion, Cu1—O1, is 2.3901 (16) Å, while that involving the coordinated water molecule, Cu2—O1W, is 2.2816 (16) Å. Interestingly, in complex (III) the Cu—O(water) distance is significantly longer, at 2.3348 (19) Å.

In the crystal structure of (I) the ions are linked by O—H···O hydrogen bonds involving the coordinated and solvent water molecules and O atoms of the dithionate unit (Table 2), to form ribbon-like polymer chains propagating in [100]. These chains are linked by Cu···Cl interactions [3.2626 (7) Å in the cation and 3.3492 (7) Å in the anion, Table 1] centred about inversion centres, to form two-dimensional networks lying in and parallel to (011), as shown in Fig. 2. The overall arrangement has pseudo I centring (Spek, 2009). In the crystal structure there is one signifiant SO···π interaction, involving the S2O6 bond and the N4/C16–C20 pyridine ring of a neighbouring molecule at (x, 1 + y, z), with an O···centroid distance of 3.275 (2) Å and an SO···π angle of 134.8 (1)°. There is also a large number of C—H···O interactions involving both the water and the SO O atoms, as well as a C—H···Cl interaction (Table 2), and these lead finally to the formation of a three-dimensional network.

Previous work on silmilar complexes has shown that, by careful heating, the solvent and coordinated water molecules can be eliminated. This will leave free coordination sites on the metal atom that can be filled by suitably positioned O or N atoms (Sereda et al., 2008; Xue et al., 2008; Zhang et al., 2009). The emerald-green crystals of (I) were heated to 433 K by thermogravimetry, which indicated the loss of two water molecules at ca 363 K (weight loss of 3.94%, theoretical value 4.1%). The total weight loss at 433 K was 6.01% (equivalent to ca 2.5H2O), whereas the theoretical value for the loss of three water molecules is 6.15%. The resulting material was found to be crystalline; the original crystals had retained their shape but were now pale-green in colour. X-ray diffraction analysis revealed that complex (I) had lost the coordinated water molecule in the cation and apparently only 1.5 solvent water molecules. Dehydration led to the formation of a centrosymmetric binuclear complex, (II), which is composed of two [ClCu(terpy)]+ cations bridged by a dithionate dianion and a partially occupied water molecule (Fig. 3). The crystal-to-crystal transformation resulted in a contraction of the unit-cell volume by more than 50%, and a reduction in the length of the longest cell axis in (I) (i.e. the c axis) of more than 12 Å.

In (II), atom Cu1 is coordinated to the three N atoms of the terpy ligand and a Cl- ion in the basal plane, and to an O atom of the dithionate anion in the axial position. Again, the coordination environment can be described as distorted square-pyramidal, with a τ value of 0.16. The Cu—Cl and Cu—N bond distances are similar to those in complexes (I) and (III) (Table 3). The main difference concerns the Cu—O(dithionate) bond distance, which is longer than in (I) by 0.083 (2) Å. These distances are comparable with values observed in the copper(II) dithionate-bridged complex described by Ishii (2001b).

In the crystal structure of complex (II), molecules related by an inversion centre are linked by O—H···O hydrogen bonds involving the disordered water molecule and an O atom of the bridging thiosulfite anion, so forming a ribbon-like polymer chain propagating in [100] (Table 4, Fig. 4). These chains are linked by weak Cu···Cli interactions [3.3765 (12) Å; see Table 3 for symmetry code] to form two-dimensional networks lying parallel to and in (022), as shown in Fig. 4. As in (I), there are a number of C—H···O interactions involving both the water and the SO O atoms (Table 4), which lead finally to the formation of a three-dimensional network.

In conclusion, we have shown that by careful drying the water molecule coordinated to the cation in the ionic complex, (I), can be removed and the vacant coordination site is then taken by an O atom of the thiosulfite ligand of the anion. This results in the transformation of the ionic complex (I) into a centrosymmetric binuclear complex, (II), as demonstrated in Fig. 5.

Experimental top

For the synthesis of complex (I), an aqueous solution (20 ml) of copper(II) chloride dihydrate (0.429 mmol, 75 mg) and 2,2':6'2''-terpyridine (0.429 mmol, 100 mg) was heated at 353 K for 1 h. After hot filtration, the green solution was cooled to room temperature and sodium sulfite (1.717 mmol, 216 mg) was added. The resulting solution was left in the fridge for two months and emerald-green block-like crystals of (I) were obtained (yield 38 mg; 20%).

Pale-green crystals of (II) were obtained after thermogravimetric analysis of compound (I); see Comment. A sample of (I) (ca 20 mg) was heated to 433 K in a closed aluminium oxide crucible at a rate of 2 K min-1 (gas flow 150 ml min-1) at atmospheric pressure.

A small quantity of blue-green crystals were obtained as a by-product during the synthesis of (I). They were identified by X-ray crystallographic analysis to be the mononuclear complex aquachlorido(2,2':6',6''-terpyridyl)copper(II) chloride monohydrate (Schmitt et al., 2010), i.e. compound (III) mentioned above.

The analytical and spectroscopic data for (I) and (II) are available in the archived CIF.

Refinement top

In a difference Fourier map for compound (II) a peak of 2.0 e Å-3 was observed near an inversion centre. It was refined as a partially occupied solvent water molecule (O1W) with an occupancy of 0.5. For compound (I), the water H atoms were located in a difference electron-density map and refined isotropically, with O—H distance restraints of 0.84 (2) Å. For compound (II), the water H atoms could also be located in a difference electron-density map and they were refined with O—H distance restraints of 0.84 (2) Å and Uiso(H) = 1.5Ueq(O). For both (I) and (II), C-bound H atoms were included in calculated positions and treated as riding, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). For compound (I), a certain number of reflections were excluded from the structure factor file. This was due to the fact that the crystal exposure time was too long and this caused overloads on the image plate. The individual intensities of these reflections could not be measured acurately and they were omitted from the final structure factor file. A comparison of similar bond lengths in the two crystal structures shows that this has little effect on the final structure analysis.

Computing details top

For both compounds, data collection: X-AREA (Stoe & Cie, 2006); cell refinement: X-AREA (Stoe & Cie, 2006); data reduction: X-RED32 (Stoe & Cie, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of complex (I), viewed along the b axis, showing the O—H···O hydrogen bonds and the Cu···Cl interactions as thin lines (see Tables 1 and 2 for details).
[Figure 3] Fig. 3. The molecular structure of complex (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The symmetry-related disordered water molecule is not shown.
[Figure 4] Fig. 4. The crystal packing of complex (II), viewed along the b axis, showing the O—H···O hydrogen bonds and the Cu···Cl interactions as thin lines (see Tables 3 and 4 for details).
[Figure 5] Fig. 5. An illustration of the transformation of the ionic complex, (I), into the binuclear complex, (II). [Note that the water molecule is only partially occupied (0.5) in (II).]
(I) [aquachlorido(2,2':6',2''-terpyridyl-κ3N,N',N'')]copper(II) [chlorido(2,2':6',2''-terpyridyl-κ3N,N',N'')(dithionato-κO)]cuprate(II) dihydrate top
Crystal data top
[Cu(C15H11N3)Cl(H2O)][Cu(C15H11N3)(S2O6)Cl]·2H2OZ = 2
Mr = 878.68F(000) = 892
Triclinic, P1Dx = 1.763 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0705 (10) ÅCell parameters from 33786 reflections
b = 8.589 (1) Åθ = 1.6–29.7°
c = 25.177 (3) ŵ = 1.64 mm1
α = 83.096 (10)°T = 173 K
β = 82.870 (11)°Plate, emerald-green
γ = 73.675 (11)°0.50 × 0.37 × 0.20 mm
V = 1655.2 (3) Å3
Data collection top
Stoe IPDS II
diffractometer
8888 independent reflections
Radiation source: fine-focus sealed tube8053 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ϕ and ω scansθmax = 29.3°, θmin = 1.6°
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
h = 1110
Tmin = 0.254, Tmax = 1.00k = 1111
25099 measured reflectionsl = 3434
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.8251P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
8888 reflectionsΔρmax = 0.95 e Å3
485 parametersΔρmin = 1.47 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0042 (11)
Crystal data top
[Cu(C15H11N3)Cl(H2O)][Cu(C15H11N3)(S2O6)Cl]·2H2Oγ = 73.675 (11)°
Mr = 878.68V = 1655.2 (3) Å3
Triclinic, P1Z = 2
a = 8.0705 (10) ÅMo Kα radiation
b = 8.589 (1) ŵ = 1.64 mm1
c = 25.177 (3) ÅT = 173 K
α = 83.096 (10)°0.50 × 0.37 × 0.20 mm
β = 82.870 (11)°
Data collection top
Stoe IPDS II
diffractometer
8888 independent reflections
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
8053 reflections with I > 2σ(I)
Tmin = 0.254, Tmax = 1.00Rint = 0.073
25099 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0426 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.95 e Å3
8888 reflectionsΔρmin = 1.47 e Å3
485 parameters
Special details top

Experimental. All reagents were purchased from commercial sources and used as received. IR spectra were recorded as KBr pellets on a Perkin–Elmer 1720X FT–IR spectrometer. The TG curves were recorded using a Mettler 4000 thermogravimetric module. IR (ν, cm-1): 3430 (m), 3130 (m), 3028 (m), 3012 (m), 1638 (w), 1598 (m), 1575 (m), 1563 (m), 1498 (w), 1474 (m), 1448 (s), 1402 (m), 1326 (m), 1303 (m), 1292 (w), 1253 (m), 1192 (w), 1165 (m), 1141 (w), 1095 (w), 1049 (w), 1035 (m), 971 (w), 897 (w), 828 (w), 792 (w), 773 (s), 747 (w), 730 (w), 670 (w), 649 (m), 631 (w), 514 (w), 499 (w).

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.92648 (3)1.03098 (3)0.07310 (1)0.0186 (1)
Cl10.77228 (6)1.18102 (6)0.00877 (2)0.0259 (1)
S10.74212 (6)1.06445 (6)0.20771 (2)0.0203 (1)
S20.55085 (6)1.25443 (6)0.24565 (2)0.0198 (1)
O10.7458 (2)1.1294 (2)0.15131 (6)0.0318 (4)
O20.6775 (2)0.9207 (2)0.21878 (8)0.0335 (5)
O30.89971 (19)1.05022 (19)0.23207 (7)0.0287 (4)
O40.3932 (2)1.2666 (2)0.22174 (7)0.0378 (5)
O50.6178 (2)1.39478 (18)0.23308 (7)0.0309 (4)
O60.5436 (2)1.19897 (18)0.30252 (6)0.0270 (4)
N10.8251 (2)0.8362 (2)0.08322 (7)0.0202 (4)
N21.0847 (2)0.8855 (2)0.12054 (6)0.0185 (4)
N31.0936 (2)1.1670 (2)0.07649 (7)0.0198 (4)
C10.6874 (3)0.8218 (3)0.06187 (8)0.0248 (5)
C20.6238 (3)0.6863 (3)0.07431 (9)0.0294 (6)
C30.7037 (3)0.5625 (3)0.11062 (9)0.0297 (6)
C40.8468 (3)0.5767 (3)0.13336 (9)0.0262 (6)
C50.9051 (2)0.7141 (2)0.11851 (8)0.0207 (5)
C61.0574 (2)0.7422 (2)0.13905 (8)0.0202 (5)
C71.1672 (3)0.6353 (3)0.17359 (9)0.0258 (5)
C81.3035 (3)0.6844 (3)0.18884 (9)0.0282 (6)
C91.3289 (3)0.8354 (3)0.16963 (8)0.0257 (5)
C101.2155 (2)0.9332 (2)0.13432 (8)0.0202 (5)
C111.2244 (2)1.0939 (2)0.10766 (8)0.0202 (5)
C121.3561 (3)1.1635 (3)0.11229 (9)0.0266 (6)
C131.3520 (3)1.3150 (3)0.08534 (10)0.0306 (6)
C141.2170 (3)1.3911 (3)0.05444 (9)0.0297 (6)
C151.0907 (3)1.3131 (3)0.05071 (9)0.0252 (5)
Cu20.56952 (3)0.45330 (3)0.42605 (1)0.0178 (1)
Cl20.69844 (7)0.28510 (6)0.49239 (2)0.0275 (1)
O1W0.7420 (2)0.3435 (2)0.35353 (6)0.0269 (4)
N40.3838 (2)0.3445 (2)0.41731 (7)0.0193 (4)
N50.4290 (2)0.6189 (2)0.37818 (6)0.0178 (4)
N60.6930 (2)0.6301 (2)0.42210 (7)0.0198 (4)
C160.3703 (3)0.1981 (2)0.43978 (9)0.0251 (5)
C170.2415 (3)0.1320 (3)0.42913 (10)0.0308 (6)
C180.1232 (3)0.2192 (3)0.39412 (11)0.0330 (7)
C190.1356 (3)0.3703 (3)0.37046 (9)0.0270 (6)
C200.2672 (2)0.4292 (2)0.38300 (8)0.0192 (5)
C210.2933 (2)0.5885 (2)0.36047 (8)0.0190 (5)
C220.1912 (3)0.7027 (3)0.32537 (8)0.0241 (5)
C230.2368 (3)0.8470 (3)0.30947 (9)0.0268 (6)
C240.3794 (3)0.8757 (2)0.32802 (8)0.0245 (5)
C250.4735 (2)0.7562 (2)0.36341 (8)0.0197 (5)
C260.6259 (3)0.7641 (2)0.38918 (8)0.0210 (5)
C270.6953 (3)0.8955 (3)0.38208 (10)0.0301 (6)
C280.8350 (3)0.8912 (3)0.40989 (11)0.0348 (7)
C290.9041 (3)0.7533 (3)0.44297 (10)0.0310 (6)
C300.8297 (3)0.6257 (3)0.44801 (9)0.0247 (5)
O2W0.0346 (2)0.3188 (2)0.23615 (9)0.0413 (6)
O3W0.8449 (2)0.6037 (2)0.28363 (7)0.0347 (5)
H1A0.631000.907300.037300.0300*
H2A0.526500.678800.058100.0350*
H3A0.661600.469100.119900.0360*
H4A0.903400.493600.158600.0310*
H7A1.149800.531900.186400.0310*
H8A1.380000.613800.212600.0340*
H9A1.420600.870300.180300.0310*
H12A1.448001.108600.133600.0320*
H13A1.440801.365600.088100.0370*
H14A1.210801.495500.036000.0360*
H15A0.998801.365300.029100.0300*
H1WA0.682 (4)0.304 (4)0.3370 (12)0.044 (9)*
H1WB0.766 (5)0.413 (4)0.3268 (13)0.079 (14)*
H16A0.452200.137800.463800.0300*
H17A0.234700.028300.445700.0370*
H18A0.033700.176000.386200.0400*
H19A0.055300.432000.346200.0320*
H22A0.093700.682600.312700.0290*
H23A0.169400.927100.285600.0320*
H24A0.411700.973700.316900.0290*
H27A0.648200.987900.358400.0360*
H28A0.882500.981700.406200.0420*
H29A1.001000.746800.461900.0370*
H30A0.877100.531000.470700.0300*
H2WA0.023 (3)0.245 (3)0.2448 (12)0.035 (8)*
H2WB0.144 (2)0.295 (5)0.2357 (15)0.061 (11)*
H3WA0.903 (4)0.530 (3)0.2650 (12)0.054 (10)*
H3WB0.791 (4)0.681 (3)0.2644 (12)0.048 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0194 (1)0.0195 (1)0.0178 (1)0.0058 (1)0.0067 (1)0.0005 (1)
Cl10.0275 (2)0.0291 (2)0.0215 (2)0.0075 (2)0.0104 (2)0.0043 (2)
S10.0185 (2)0.0207 (2)0.0227 (2)0.0046 (2)0.0032 (2)0.0061 (2)
S20.0190 (2)0.0209 (2)0.0192 (2)0.0036 (2)0.0037 (2)0.0031 (2)
O10.0266 (7)0.0424 (9)0.0222 (7)0.0019 (7)0.0001 (6)0.0065 (6)
O20.0341 (8)0.0248 (7)0.0468 (10)0.0136 (6)0.0021 (7)0.0124 (7)
O30.0221 (7)0.0257 (7)0.0389 (9)0.0028 (6)0.0117 (6)0.0056 (6)
O40.0209 (7)0.0544 (11)0.0386 (9)0.0028 (7)0.0089 (6)0.0178 (8)
O50.0374 (8)0.0181 (6)0.0355 (9)0.0068 (6)0.0018 (7)0.0014 (6)
O60.0363 (8)0.0254 (7)0.0207 (7)0.0113 (6)0.0004 (6)0.0033 (5)
N10.0222 (7)0.0211 (7)0.0185 (7)0.0071 (6)0.0029 (6)0.0020 (6)
N20.0182 (7)0.0202 (7)0.0165 (7)0.0023 (6)0.0038 (5)0.0040 (6)
N30.0199 (7)0.0209 (7)0.0196 (7)0.0059 (6)0.0036 (6)0.0034 (6)
C10.0252 (9)0.0298 (10)0.0220 (9)0.0097 (8)0.0038 (7)0.0055 (7)
C20.0279 (9)0.0386 (11)0.0271 (10)0.0164 (9)0.0016 (8)0.0072 (9)
C30.0346 (10)0.0298 (10)0.0295 (11)0.0171 (9)0.0018 (8)0.0060 (8)
C40.0312 (10)0.0232 (9)0.0251 (10)0.0093 (8)0.0019 (8)0.0021 (7)
C50.0231 (8)0.0201 (8)0.0186 (8)0.0050 (7)0.0011 (6)0.0041 (7)
C60.0211 (8)0.0193 (8)0.0185 (8)0.0026 (7)0.0020 (6)0.0024 (6)
C70.0282 (9)0.0213 (8)0.0242 (9)0.0011 (7)0.0046 (7)0.0007 (7)
C80.0272 (9)0.0277 (10)0.0258 (10)0.0003 (8)0.0083 (8)0.0002 (8)
C90.0219 (8)0.0295 (10)0.0245 (10)0.0023 (8)0.0083 (7)0.0031 (8)
C100.0191 (8)0.0226 (8)0.0184 (8)0.0027 (7)0.0038 (6)0.0049 (7)
C110.0202 (8)0.0234 (8)0.0176 (8)0.0044 (7)0.0035 (6)0.0066 (7)
C120.0246 (9)0.0300 (10)0.0292 (10)0.0093 (8)0.0071 (8)0.0089 (8)
C130.0296 (10)0.0325 (11)0.0368 (12)0.0166 (9)0.0018 (8)0.0122 (9)
C140.0368 (11)0.0243 (9)0.0305 (11)0.0127 (8)0.0004 (9)0.0050 (8)
C150.0276 (9)0.0236 (9)0.0249 (10)0.0074 (7)0.0035 (7)0.0014 (7)
Cu20.0202 (1)0.0178 (1)0.0175 (1)0.0075 (1)0.0067 (1)0.0012 (1)
Cl20.0306 (2)0.0293 (2)0.0234 (2)0.0095 (2)0.0117 (2)0.0071 (2)
O1W0.0262 (7)0.0347 (8)0.0229 (7)0.0122 (6)0.0028 (6)0.0053 (6)
N40.0217 (7)0.0186 (7)0.0188 (7)0.0075 (6)0.0025 (6)0.0014 (6)
N50.0189 (7)0.0183 (7)0.0175 (7)0.0060 (6)0.0049 (5)0.0012 (5)
N60.0220 (7)0.0201 (7)0.0202 (7)0.0088 (6)0.0050 (6)0.0024 (6)
C160.0296 (9)0.0200 (8)0.0269 (10)0.0094 (7)0.0031 (8)0.0001 (7)
C170.0340 (11)0.0208 (9)0.0402 (12)0.0132 (8)0.0016 (9)0.0004 (8)
C180.0303 (10)0.0260 (10)0.0494 (14)0.0162 (8)0.0075 (9)0.0054 (9)
C190.0241 (9)0.0241 (9)0.0365 (11)0.0097 (7)0.0086 (8)0.0033 (8)
C200.0196 (8)0.0189 (8)0.0214 (9)0.0073 (6)0.0022 (6)0.0050 (6)
C210.0200 (8)0.0190 (8)0.0193 (8)0.0056 (7)0.0049 (6)0.0032 (6)
C220.0235 (9)0.0252 (9)0.0251 (10)0.0070 (7)0.0095 (7)0.0001 (7)
C230.0308 (10)0.0237 (9)0.0249 (10)0.0048 (8)0.0103 (8)0.0034 (7)
C240.0302 (9)0.0196 (8)0.0233 (9)0.0067 (7)0.0061 (7)0.0035 (7)
C250.0231 (8)0.0182 (8)0.0195 (8)0.0079 (7)0.0039 (7)0.0009 (6)
C260.0222 (8)0.0194 (8)0.0231 (9)0.0082 (7)0.0024 (7)0.0023 (7)
C270.0318 (10)0.0232 (9)0.0391 (12)0.0140 (8)0.0057 (9)0.0000 (8)
C280.0333 (11)0.0309 (11)0.0479 (14)0.0193 (9)0.0051 (10)0.0065 (10)
C290.0256 (9)0.0367 (11)0.0368 (12)0.0149 (9)0.0075 (8)0.0072 (9)
C300.0239 (9)0.0279 (9)0.0254 (10)0.0092 (8)0.0064 (7)0.0051 (8)
O2W0.0239 (7)0.0272 (8)0.0736 (14)0.0103 (6)0.0045 (8)0.0003 (8)
O3W0.0388 (9)0.0384 (9)0.0293 (9)0.0127 (8)0.0049 (7)0.0051 (7)
Geometric parameters (Å, º) top
Cu1—Cl12.2203 (6)C9—C101.387 (3)
Cu1—O12.3901 (16)C10—C111.477 (2)
Cu1—N12.0368 (17)C11—C121.380 (3)
Cu1—N21.9342 (16)C12—C131.387 (3)
Cu1—N32.0322 (17)C13—C141.381 (4)
Cu2—Cl22.2284 (6)C14—C151.385 (4)
Cu2—O1W2.2816 (16)C1—H1A0.9500
Cu2—N42.0216 (17)C2—H2A0.9500
Cu2—N51.9447 (16)C3—H3A0.9500
Cu2—N62.0245 (17)C4—H4A0.9500
S1—O11.4618 (16)C7—H7A0.9500
S1—O21.4551 (18)C8—H8A0.9500
S1—S22.1332 (7)C9—H9A0.9500
S1—O31.4481 (17)C12—H12A0.9500
S2—O51.4413 (17)C13—H13A0.9500
S2—O61.4532 (16)C14—H14A0.9500
S2—O41.4464 (18)C15—H15A0.9500
O1W—H1WB0.89 (3)C16—C171.383 (3)
O1W—H1WA0.84 (3)C17—C181.378 (4)
O2W—H2WA0.88 (3)C18—C191.386 (4)
O2W—H2WB0.85 (2)C19—C201.381 (3)
O3W—H3WA0.83 (3)C20—C211.478 (2)
O3W—H3WB0.82 (3)C21—C221.393 (3)
N1—C51.358 (2)C22—C231.390 (3)
N1—C11.335 (3)C23—C241.387 (3)
N2—C61.330 (2)C24—C251.391 (3)
N2—C101.331 (2)C25—C261.481 (3)
N3—C151.337 (3)C26—C271.379 (3)
N3—C111.356 (2)C27—C281.389 (4)
N4—C161.343 (3)C28—C291.384 (4)
N4—C201.352 (2)C29—C301.377 (4)
N5—C211.333 (2)C16—H16A0.9500
N5—C251.326 (2)C17—H17A0.9500
N6—C261.355 (3)C18—H18A0.9500
N6—C301.339 (3)C19—H19A0.9500
C1—C21.387 (4)C22—H22A0.9500
C2—C31.382 (3)C23—H23A0.9500
C3—C41.392 (4)C24—H24A0.9500
C4—C51.384 (3)C27—H27A0.9500
C5—C61.480 (2)C28—H28A0.9500
C6—C71.388 (3)C29—H29A0.9500
C7—C81.393 (4)C30—H30A0.9500
C8—C91.390 (3)
Cu1···Cl1i3.2626 (7)Cu2···Cl2ii3.3492 (7)
Cl1—Cu1—O1100.64 (4)C10—C11—C12123.70 (18)
Cl1—Cu1—N199.82 (5)N3—C11—C10114.19 (15)
Cl1—Cu1—N2171.48 (5)C11—C12—C13118.9 (2)
Cl1—Cu1—N399.31 (5)C12—C13—C14119.0 (2)
O1—Cu1—N188.17 (6)C13—C14—C15119.1 (2)
O1—Cu1—N287.88 (6)N3—C15—C14122.3 (2)
O1—Cu1—N394.37 (6)C2—C1—H1A119.00
N1—Cu1—N280.10 (7)N1—C1—H1A119.00
N1—Cu1—N3159.89 (7)C1—C2—H2A120.00
N2—Cu1—N380.06 (7)C3—C2—H2A120.00
Cl2—Cu2—O1W100.19 (4)C4—C3—H3A121.00
Cl2—Cu2—N499.33 (5)C2—C3—H3A120.00
Cl2—Cu2—N5169.95 (5)C5—C4—H4A121.00
Cl2—Cu2—N699.80 (5)C3—C4—H4A121.00
O1W—Cu2—N492.98 (7)C8—C7—H7A121.00
O1W—Cu2—N589.86 (6)C6—C7—H7A121.00
O1W—Cu2—N691.22 (7)C9—C8—H8A120.00
N4—Cu2—N579.93 (7)C7—C8—H8A120.00
N4—Cu2—N6159.36 (7)C8—C9—H9A121.00
N5—Cu2—N679.88 (7)C10—C9—H9A121.00
S2—S1—O1102.20 (7)C11—C12—H12A121.00
S2—S1—O2105.88 (8)C13—C12—H12A121.00
S2—S1—O3105.03 (7)C14—C13—H13A121.00
O1—S1—O2114.14 (11)C12—C13—H13A120.00
O1—S1—O3114.06 (10)C15—C14—H14A120.00
O2—S1—O3113.96 (10)C13—C14—H14A120.00
S1—S2—O4104.82 (7)N3—C15—H15A119.00
S1—S2—O5104.25 (7)C14—C15—H15A119.00
S1—S2—O6105.06 (7)N4—C16—C17122.3 (2)
O4—S2—O5114.60 (10)C16—C17—C18118.8 (2)
O4—S2—O6113.49 (10)C17—C18—C19119.6 (2)
O5—S2—O6113.26 (10)C18—C19—C20118.6 (2)
Cu1—O1—S1131.99 (10)C19—C20—C21123.49 (18)
Cu2—O1W—H1WB117 (2)N4—C20—C21114.25 (15)
H1WA—O1W—H1WB97 (3)N4—C20—C19122.26 (18)
Cu2—O1W—H1WA107 (2)N5—C21—C20112.75 (16)
H2WA—O2W—H2WB122 (3)C20—C21—C22126.82 (18)
H3WA—O3W—H3WB110 (3)N5—C21—C22120.41 (18)
Cu1—N1—C1127.48 (15)C21—C22—C23117.8 (2)
C1—N1—C5118.74 (17)C22—C23—C24120.9 (2)
Cu1—N1—C5113.65 (12)C23—C24—C25117.74 (18)
C6—N2—C10122.17 (16)N5—C25—C26112.65 (16)
Cu1—N2—C10118.93 (13)N5—C25—C24120.80 (17)
Cu1—N2—C6118.90 (13)C24—C25—C26126.55 (17)
Cu1—N3—C15127.65 (15)N6—C26—C25114.28 (17)
C11—N3—C15118.51 (18)C25—C26—C27124.43 (18)
Cu1—N3—C11113.80 (12)N6—C26—C27121.3 (2)
C16—N4—C20118.46 (18)C26—C27—C28119.3 (2)
Cu2—N4—C20114.33 (12)C27—C28—C29119.2 (2)
Cu2—N4—C16127.15 (15)C28—C29—C30118.7 (2)
Cu2—N5—C25119.00 (13)N6—C30—C29122.5 (2)
C21—N5—C25122.36 (16)C17—C16—H16A119.00
Cu2—N5—C21118.62 (13)N4—C16—H16A119.00
Cu2—N6—C30126.80 (15)C18—C17—H17A121.00
Cu2—N6—C26114.11 (14)C16—C17—H17A121.00
C26—N6—C30119.09 (19)C17—C18—H18A120.00
N1—C1—C2122.3 (2)C19—C18—H18A120.00
C1—C2—C3119.2 (2)C18—C19—H19A121.00
C2—C3—C4119.0 (2)C20—C19—H19A121.00
C3—C4—C5118.8 (2)C21—C22—H22A121.00
N1—C5—C6114.05 (15)C23—C22—H22A121.00
N1—C5—C4121.98 (18)C24—C23—H23A120.00
C4—C5—C6123.98 (18)C22—C23—H23A120.00
N2—C6—C7120.52 (18)C23—C24—H24A121.00
C5—C6—C7126.36 (17)C25—C24—H24A121.00
N2—C6—C5113.12 (16)C26—C27—H27A120.00
C6—C7—C8117.9 (2)C28—C27—H27A120.00
C7—C8—C9120.8 (2)C29—C28—H28A120.00
C8—C9—C10117.5 (2)C27—C28—H28A120.00
N2—C10—C11112.93 (16)C28—C29—H29A121.00
C9—C10—C11126.04 (17)C30—C29—H29A121.00
N2—C10—C9121.02 (18)C29—C30—H30A119.00
N3—C11—C12122.09 (18)N6—C30—H30A119.00
Cl1—Cu1—O1—S1164.21 (12)C11—N3—C15—C140.5 (3)
N1—Cu1—O1—S164.56 (14)Cu1—N3—C11—C12176.13 (16)
N2—Cu1—O1—S115.60 (14)Cu1—N3—C11—C102.1 (2)
N3—Cu1—O1—S195.46 (14)Cu1—N3—C15—C14177.08 (17)
Cl1—Cu1—N1—C18.76 (18)C15—N3—C11—C10180.00 (18)
Cl1—Cu1—N1—C5175.36 (13)C15—N3—C11—C121.8 (3)
O1—Cu1—N1—C191.73 (18)C20—N4—C16—C170.2 (3)
O1—Cu1—N1—C584.16 (14)Cu2—N4—C16—C17177.08 (17)
N2—Cu1—N1—C1179.9 (2)Cu2—N4—C20—C19177.29 (16)
N2—Cu1—N1—C54.01 (13)Cu2—N4—C20—C212.7 (2)
N3—Cu1—N1—C1170.56 (19)C16—N4—C20—C190.0 (3)
N3—Cu1—N1—C513.6 (3)C16—N4—C20—C21179.97 (18)
O1—Cu1—N2—C685.64 (14)Cu2—N5—C21—C202.4 (2)
O1—Cu1—N2—C1093.22 (14)Cu2—N5—C21—C22178.85 (15)
N1—Cu1—N2—C62.87 (14)C25—N5—C21—C20179.08 (17)
N1—Cu1—N2—C10178.27 (15)Cu2—N5—C25—C24178.14 (14)
N3—Cu1—N2—C6179.55 (15)Cu2—N5—C25—C262.8 (2)
N3—Cu1—N2—C101.59 (14)C25—N5—C21—C220.3 (3)
Cl1—Cu1—N3—C11170.98 (13)C21—N5—C25—C26178.68 (17)
Cl1—Cu1—N3—C156.74 (19)C21—N5—C25—C240.4 (3)
O1—Cu1—N3—C1187.48 (14)Cu2—N6—C30—C29179.51 (18)
O1—Cu1—N3—C1594.81 (19)C30—N6—C26—C270.2 (3)
N1—Cu1—N3—C119.2 (3)Cu2—N6—C26—C251.1 (2)
N1—Cu1—N3—C15168.57 (19)Cu2—N6—C26—C27180.00 (17)
N2—Cu1—N3—C110.40 (14)C26—N6—C30—C290.7 (3)
N2—Cu1—N3—C15178.11 (19)C30—N6—C26—C25179.08 (18)
N6—Cu2—N4—C2015.2 (3)N1—C1—C2—C30.9 (3)
O1W—Cu2—N5—C2190.01 (14)C1—C2—C3—C40.5 (3)
O1W—Cu2—N5—C2588.55 (15)C2—C3—C4—C50.5 (3)
N4—Cu2—N5—C213.04 (14)C3—C4—C5—N11.2 (3)
N4—Cu2—N5—C25178.40 (15)C3—C4—C5—C6178.9 (2)
N6—Cu2—N5—C21178.72 (15)N1—C5—C6—C7177.1 (2)
N6—Cu2—N5—C252.72 (14)C4—C5—C6—N2177.71 (19)
Cl2—Cu2—N6—C26171.79 (13)C4—C5—C6—C73.0 (3)
Cl2—Cu2—N6—C308.43 (19)N1—C5—C6—N22.3 (2)
O1W—Cu2—N6—C2687.65 (14)N2—C6—C7—C81.2 (3)
O1W—Cu2—N6—C3092.13 (18)C5—C6—C7—C8179.5 (2)
N4—Cu2—N6—C2614.1 (3)C6—C7—C8—C90.5 (3)
N4—Cu2—N6—C30166.08 (19)C7—C8—C9—C101.0 (3)
N5—Cu2—N6—C261.99 (14)C8—C9—C10—N21.7 (3)
N5—Cu2—N6—C30178.23 (19)C8—C9—C10—C11177.3 (2)
N5—Cu2—N4—C203.08 (14)N2—C10—C11—N33.3 (2)
N6—Cu2—N4—C16167.79 (18)C9—C10—C11—C124.2 (3)
O1W—Cu2—N4—C1690.73 (18)N2—C10—C11—C12174.86 (19)
Cl2—Cu2—N4—C1610.11 (18)C9—C10—C11—N3177.69 (19)
Cl2—Cu2—N4—C20172.91 (13)C10—C11—C12—C13179.8 (2)
O1W—Cu2—N4—C2086.25 (14)N3—C11—C12—C131.8 (3)
N5—Cu2—N4—C16179.93 (19)C11—C12—C13—C140.4 (3)
O1—S1—S2—O461.46 (10)C12—C13—C14—C150.8 (4)
O3—S1—S2—O4179.21 (10)C13—C14—C15—N30.7 (4)
O3—S1—S2—O560.03 (10)N4—C16—C17—C180.2 (4)
O1—S1—S2—O559.31 (10)C16—C17—C18—C190.0 (4)
O1—S1—S2—O6178.66 (10)C17—C18—C19—C200.2 (4)
O2—S1—S2—O458.31 (11)C18—C19—C20—N40.2 (3)
O2—S1—S2—O5179.08 (11)C18—C19—C20—C21179.8 (2)
O2—S1—S2—O661.57 (11)N4—C20—C21—N50.3 (2)
O3—S1—S2—O659.33 (10)N4—C20—C21—C22178.32 (19)
S2—S1—O1—Cu1174.62 (10)C19—C20—C21—N5179.68 (19)
O2—S1—O1—Cu171.58 (15)C19—C20—C21—C221.7 (3)
O3—S1—O1—Cu161.85 (15)N5—C21—C22—C230.5 (3)
C1—N1—C5—C40.8 (3)C20—C21—C22—C23179.0 (2)
C1—N1—C5—C6179.26 (18)C21—C22—C23—C240.1 (3)
Cu1—N1—C5—C64.5 (2)C22—C23—C24—C250.7 (3)
Cu1—N1—C1—C2175.98 (17)C23—C24—C25—N50.9 (3)
C5—N1—C1—C20.3 (3)C23—C24—C25—C26178.0 (2)
Cu1—N1—C5—C4175.50 (16)N5—C25—C26—N61.0 (2)
Cu1—N2—C6—C51.3 (2)N5—C25—C26—C27177.9 (2)
Cu1—N2—C6—C7179.37 (15)C24—C25—C26—N6180.0 (2)
C10—N2—C6—C5179.93 (17)C24—C25—C26—C271.1 (3)
C10—N2—C6—C70.6 (3)N6—C26—C27—C281.0 (3)
Cu1—N2—C10—C9177.85 (15)C25—C26—C27—C28177.8 (2)
Cu1—N2—C10—C113.1 (2)C26—C27—C28—C291.7 (4)
C6—N2—C10—C91.0 (3)C27—C28—C29—C301.2 (4)
C6—N2—C10—C11178.10 (17)C28—C29—C30—N60.0 (4)
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O6iii0.84 (3)1.95 (3)2.787 (2)176 (3)
O1W—H1WB···O3W0.89 (3)2.06 (3)2.918 (2)162 (3)
O2W—H2WA···O3iv0.88 (3)2.01 (3)2.831 (2)154 (3)
O2W—H2WB···O4iii0.85 (2)1.95 (2)2.785 (2)169 (4)
O3W—H3WA···O2Wv0.83 (3)2.00 (3)2.811 (2)166 (3)
O3W—H3WB···O20.82 (3)2.24 (3)3.052 (2)168 (3)
C4—H4A···O2Wv0.952.473.407 (3)169
C7—H7A···O2Wv0.952.433.347 (3)162
C8—H8A···O5vi0.952.343.217 (3)154
C9—H9A···O2v0.952.563.496 (3)171
C12—H12A···O1v0.952.563.335 (3)139
C18—H18A···O1Wvii0.952.573.213 (3)126
C19—H19A···O3Wvii0.952.503.446 (3)178
C22—H22A···O3Wvii0.952.513.452 (3)175
C24—H24A···O60.952.433.363 (3)167
C27—H27A···O60.952.193.141 (3)179
C29—H29A···Cl2viii0.952.743.690 (3)174
Symmetry codes: (iii) x, y1, z; (iv) x1, y1, z; (v) x+1, y, z; (vi) x+1, y1, z; (vii) x1, y, z; (viii) x+2, y+1, z+1.
(II) (µ-dithionato-1:2κ2O:O')-bis[2,2':6',2''-terpyridyl-κ3N,N',N'')copper(II)] monohydrate top
Crystal data top
[Cu2(C15H11N3)2(Cl)2(S2O6)]·H2OZ = 1
Mr = 842.65F(000) = 426
Triclinic, P1Dx = 1.828 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1961 (13) ÅCell parameters from 6211 reflections
b = 8.6029 (15) Åθ = 1.8–25.5°
c = 12.2566 (19) ŵ = 1.76 mm1
α = 107.927 (13)°T = 173 K
β = 99.171 (13)°Plate, pale-green
γ = 105.244 (13)°0.21 × 0.13 × 0.11 mm
V = 765.7 (2) Å3
Data collection top
Stoe IPDS II
diffractometer
2724 independent reflections
Radiation source: fine-focus sealed tube2001 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
h = 99
Tmin = 0.846, Tmax = 1.00k = 1010
8262 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 0.89 w = 1/[σ2(Fo2) + (0.0451P)2]
where P = (Fo2 + 2Fc2)/3
2724 reflections(Δ/σ)max = 0.003
232 parametersΔρmax = 0.28 e Å3
2 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Cu2(C15H11N3)2(Cl)2(S2O6)]·H2Oγ = 105.244 (13)°
Mr = 842.65V = 765.7 (2) Å3
Triclinic, P1Z = 1
a = 8.1961 (13) ÅMo Kα radiation
b = 8.6029 (15) ŵ = 1.76 mm1
c = 12.2566 (19) ÅT = 173 K
α = 107.927 (13)°0.21 × 0.13 × 0.11 mm
β = 99.171 (13)°
Data collection top
Stoe IPDS II
diffractometer
2724 independent reflections
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
2001 reflections with I > 2σ(I)
Tmin = 0.846, Tmax = 1.00Rint = 0.055
8262 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 0.89Δρmax = 0.28 e Å3
2724 reflectionsΔρmin = 0.48 e Å3
232 parameters
Special details top

Experimental. IR (ν, cm-1): 3435 (m), 3012 (m), 1598 (m), 1575 (m), 1498 (w), 1474 (m), 1448 (s), 1326 (m), 1303 (m), 1253 (m), 1192 (w), 1165 (w), 1141 (w), 1049 (w), 1035 (w), 1019 (m), 828 (w), 792 (w), 773 (s), 730 (w), 649 (w), 514 (w).

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.62148 (6)0.64301 (5)0.16282 (4)0.0323 (2)
Cl10.73281 (12)0.69647 (12)0.01910 (8)0.0389 (3)
S10.89632 (11)0.87944 (11)0.44994 (7)0.0329 (3)
O10.8512 (3)0.8817 (3)0.33023 (19)0.0366 (8)
O20.7588 (3)0.8854 (3)0.5098 (2)0.0404 (8)
O30.9735 (3)0.7477 (3)0.4565 (2)0.0411 (9)
N10.4520 (4)0.7782 (3)0.1677 (2)0.0330 (9)
N20.4891 (4)0.5609 (3)0.2630 (2)0.0301 (9)
N30.7276 (4)0.4603 (3)0.1821 (2)0.0330 (9)
C10.4386 (5)0.8893 (4)0.1132 (3)0.0370 (11)
C20.3136 (5)0.9691 (5)0.1192 (3)0.0389 (12)
C30.1949 (5)0.9339 (4)0.1827 (3)0.0416 (12)
C40.2074 (5)0.8198 (4)0.2414 (3)0.0366 (11)
C50.3368 (4)0.7473 (4)0.2330 (3)0.0322 (10)
C60.3602 (4)0.6214 (4)0.2890 (3)0.0326 (11)
C70.2589 (5)0.5621 (5)0.3576 (3)0.0384 (11)
C80.2891 (5)0.4308 (5)0.3924 (3)0.0364 (11)
C90.4191 (5)0.3654 (5)0.3618 (3)0.0370 (12)
C100.5217 (4)0.4362 (4)0.2975 (3)0.0330 (11)
C110.6644 (4)0.3830 (4)0.2556 (3)0.0339 (11)
C120.7306 (5)0.2649 (4)0.2849 (3)0.0379 (11)
C130.8586 (5)0.2186 (5)0.2354 (3)0.0429 (12)
C140.9197 (5)0.2937 (5)0.1585 (3)0.0412 (12)
C150.8518 (5)0.4142 (4)0.1351 (3)0.0369 (12)
O1W0.5551 (7)0.0699 (7)0.4479 (5)0.051 (2)0.500
H10.519400.914100.068200.0440*
H20.309601.047800.079600.0470*
H30.106000.985900.186800.0500*
H40.127200.793200.286400.0440*
H70.171700.609600.380100.0460*
H80.219500.385500.437700.0440*
H90.438100.273900.384200.0440*
H120.688200.215900.338800.0460*
H130.904100.136200.253800.0520*
H141.006900.263000.122500.0500*
H150.895400.466800.083200.0440*
H1WA0.472 (9)0.065 (13)0.486 (8)0.0750*0.500
H1WB0.638 (9)0.044 (13)0.487 (8)0.0750*0.500
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0352 (3)0.0323 (3)0.0326 (3)0.0135 (2)0.0136 (2)0.0119 (2)
Cl10.0429 (5)0.0445 (5)0.0346 (5)0.0173 (4)0.0170 (4)0.0160 (4)
S10.0332 (5)0.0314 (5)0.0317 (5)0.0096 (4)0.0109 (4)0.0082 (4)
O10.0394 (14)0.0360 (13)0.0269 (13)0.0071 (11)0.0044 (11)0.0084 (11)
O20.0351 (14)0.0419 (15)0.0431 (15)0.0103 (12)0.0186 (12)0.0122 (12)
O30.0478 (16)0.0321 (14)0.0481 (15)0.0170 (12)0.0188 (13)0.0147 (12)
N10.0348 (16)0.0294 (15)0.0344 (16)0.0103 (13)0.0132 (13)0.0095 (13)
N20.0317 (16)0.0265 (15)0.0279 (15)0.0095 (12)0.0052 (12)0.0058 (12)
N30.0331 (16)0.0294 (15)0.0312 (16)0.0081 (13)0.0071 (13)0.0065 (12)
C10.042 (2)0.0287 (19)0.039 (2)0.0114 (16)0.0126 (17)0.0101 (16)
C20.043 (2)0.034 (2)0.041 (2)0.0160 (17)0.0095 (18)0.0135 (17)
C30.041 (2)0.031 (2)0.048 (2)0.0156 (17)0.0097 (18)0.0061 (17)
C40.035 (2)0.0319 (19)0.042 (2)0.0129 (16)0.0160 (17)0.0079 (16)
C50.0351 (19)0.0247 (17)0.0301 (18)0.0072 (15)0.0090 (16)0.0031 (14)
C60.0355 (19)0.0272 (18)0.0293 (18)0.0078 (15)0.0072 (15)0.0054 (14)
C70.037 (2)0.041 (2)0.0315 (19)0.0088 (17)0.0123 (16)0.0076 (16)
C80.036 (2)0.039 (2)0.0292 (18)0.0050 (16)0.0095 (16)0.0116 (16)
C90.040 (2)0.037 (2)0.032 (2)0.0073 (17)0.0084 (17)0.0153 (16)
C100.0348 (19)0.0303 (19)0.0273 (18)0.0072 (15)0.0055 (15)0.0060 (14)
C110.0309 (19)0.0295 (18)0.0306 (18)0.0037 (15)0.0036 (15)0.0043 (15)
C120.037 (2)0.0318 (19)0.041 (2)0.0102 (16)0.0033 (17)0.0127 (16)
C130.040 (2)0.035 (2)0.049 (2)0.0135 (17)0.0055 (19)0.0114 (18)
C140.036 (2)0.040 (2)0.043 (2)0.0164 (17)0.0076 (17)0.0073 (17)
C150.035 (2)0.035 (2)0.034 (2)0.0097 (16)0.0096 (16)0.0052 (16)
O1W0.048 (4)0.047 (3)0.057 (4)0.016 (3)0.015 (3)0.019 (3)
Geometric parameters (Å, º) top
Cu1—Cl12.2220 (11)C5—C61.485 (5)
Cu1—O12.473 (2)C6—C71.386 (5)
Cu1—N12.030 (3)C7—C81.389 (6)
Cu1—N21.934 (3)C8—C91.380 (6)
Cu1—N32.041 (3)C9—C101.392 (5)
S1—O11.462 (2)C10—C111.473 (5)
S1—O21.443 (3)C11—C121.381 (5)
S1—O31.452 (3)C12—C131.379 (6)
S1—S1i2.1474 (13)C13—C141.383 (6)
O1W—H1WA0.88 (8)C14—C151.379 (6)
O1W—H1WB0.89 (9)C1—H10.9500
N1—C51.357 (5)C2—H20.9500
N1—C11.340 (4)C3—H30.9500
N2—C61.335 (5)C4—H40.9500
N2—C101.340 (4)C7—H70.9500
N3—C151.336 (5)C8—H80.9500
N3—C111.363 (4)C9—H90.9500
C1—C21.375 (6)C12—H120.9500
C2—C31.370 (6)C13—H130.9500
C3—C41.399 (5)C14—H140.9500
C4—C51.367 (5)C15—H150.9500
Cu1···Cl1ii3.3765 (12)
Cl1—Cu1—O196.47 (7)N2—C6—C5112.9 (3)
Cl1—Cu1—N199.26 (8)C6—C7—C8117.8 (4)
Cl1—Cu1—N2168.94 (8)C7—C8—C9120.7 (4)
Cl1—Cu1—N399.51 (9)C8—C9—C10118.6 (4)
O1—Cu1—N193.04 (10)N2—C10—C9119.9 (3)
O1—Cu1—N294.58 (10)C9—C10—C11126.7 (3)
O1—Cu1—N393.51 (10)N2—C10—C11113.3 (3)
N1—Cu1—N279.90 (12)N3—C11—C12121.4 (3)
N1—Cu1—N3159.27 (12)C10—C11—C12124.8 (3)
N2—Cu1—N379.99 (12)N3—C11—C10113.8 (3)
O1—S1—O2113.74 (15)C11—C12—C13119.6 (3)
O1—S1—O3113.51 (15)C12—C13—C14119.0 (4)
S1i—S1—O1104.69 (12)C13—C14—C15118.7 (4)
O2—S1—O3114.28 (16)N3—C15—C14123.0 (3)
S1i—S1—O2104.64 (11)C2—C1—H1118.00
S1i—S1—O3104.57 (11)N1—C1—H1118.00
Cu1—O1—S1123.60 (15)C1—C2—H2120.00
H1WA—O1W—H1WB107 (8)C3—C2—H2120.00
Cu1—N1—C1128.2 (3)C4—C3—H3121.00
C1—N1—C5117.2 (3)C2—C3—H3121.00
Cu1—N1—C5114.6 (2)C3—C4—H4120.00
Cu1—N2—C6119.1 (2)C5—C4—H4121.00
Cu1—N2—C10118.8 (3)C8—C7—H7121.00
C6—N2—C10121.9 (3)C6—C7—H7121.00
Cu1—N3—C11113.8 (2)C7—C8—H8120.00
Cu1—N3—C15127.9 (2)C9—C8—H8120.00
C11—N3—C15118.2 (3)C10—C9—H9121.00
N1—C1—C2123.2 (4)C8—C9—H9121.00
C1—C2—C3119.3 (4)C11—C12—H12120.00
C2—C3—C4118.6 (4)C13—C12—H12120.00
C3—C4—C5118.9 (4)C14—C13—H13120.00
N1—C5—C6113.5 (3)C12—C13—H13120.00
C4—C5—C6123.7 (3)C13—C14—H14121.00
N1—C5—C4122.8 (3)C15—C14—H14121.00
N2—C6—C7120.9 (3)N3—C15—H15119.00
C5—C6—C7126.1 (3)C14—C15—H15118.00
Cl1—Cu1—O1—S1154.20 (16)Cu1—N1—C5—C60.7 (4)
N1—Cu1—O1—S1106.12 (18)C1—N1—C5—C42.2 (5)
N2—Cu1—O1—S126.02 (19)C1—N1—C5—C6179.4 (3)
N3—Cu1—O1—S154.21 (19)Cu1—N2—C6—C50.6 (4)
Cl1—Cu1—N1—C110.0 (3)Cu1—N2—C6—C7178.1 (3)
Cl1—Cu1—N1—C5168.5 (2)C10—N2—C6—C5174.8 (3)
O1—Cu1—N1—C187.0 (3)C10—N2—C6—C72.8 (5)
O1—Cu1—N1—C594.4 (2)Cu1—N2—C10—C9175.0 (3)
N2—Cu1—N1—C1178.9 (3)Cu1—N2—C10—C112.3 (4)
N2—Cu1—N1—C50.3 (2)C6—N2—C10—C90.4 (5)
N3—Cu1—N1—C1164.7 (3)C6—N2—C10—C11177.6 (3)
N3—Cu1—N1—C513.8 (4)Cu1—N3—C11—C105.1 (4)
O1—Cu1—N2—C692.1 (2)Cu1—N3—C11—C12175.6 (3)
O1—Cu1—N2—C1092.4 (2)C15—N3—C11—C10177.0 (3)
N1—Cu1—N2—C60.2 (2)C15—N3—C11—C122.4 (5)
N1—Cu1—N2—C10175.3 (3)Cu1—N3—C15—C14177.0 (3)
N3—Cu1—N2—C6175.1 (3)C11—N3—C15—C140.7 (5)
N3—Cu1—N2—C100.4 (2)N1—C1—C2—C30.6 (6)
Cl1—Cu1—N3—C11171.9 (2)C1—C2—C3—C41.2 (5)
Cl1—Cu1—N3—C1510.4 (3)C2—C3—C4—C50.2 (5)
O1—Cu1—N3—C1190.9 (2)C3—C4—C5—N11.5 (5)
O1—Cu1—N3—C1586.8 (3)C3—C4—C5—C6178.5 (3)
N1—Cu1—N3—C1117.3 (4)N1—C5—C6—N20.8 (4)
N1—Cu1—N3—C15165.0 (3)N1—C5—C6—C7178.2 (3)
N2—Cu1—N3—C113.1 (2)C4—C5—C6—N2176.4 (3)
N2—Cu1—N3—C15179.2 (3)C4—C5—C6—C71.0 (6)
O2—S1—O1—Cu166.8 (2)N2—C6—C7—C83.7 (5)
O3—S1—O1—Cu166.1 (2)C5—C6—C7—C8173.5 (3)
S1i—S1—O1—Cu1179.55 (12)C6—C7—C8—C91.6 (5)
O1—S1—S1i—O1i180.00 (15)C7—C8—C9—C101.3 (5)
O1—S1—S1i—O2i60.09 (16)C8—C9—C10—N22.4 (5)
O1—S1—S1i—O3i60.38 (16)C8—C9—C10—C11179.2 (3)
O2—S1—S1i—O1i60.09 (16)N2—C10—C11—N34.8 (4)
O2—S1—S1i—O2i180.00 (16)N2—C10—C11—C12175.8 (3)
O2—S1—S1i—O3i59.54 (16)C9—C10—C11—N3172.2 (3)
O3—S1—S1i—O1i60.38 (16)C9—C10—C11—C127.1 (6)
O3—S1—S1i—O2i59.54 (16)N3—C11—C12—C132.6 (5)
O3—S1—S1i—O3i180.00 (15)C10—C11—C12—C13176.7 (3)
Cu1—N1—C1—C2177.4 (3)C11—C12—C13—C140.9 (5)
C5—N1—C1—C21.1 (5)C12—C13—C14—C150.8 (6)
Cu1—N1—C5—C4176.6 (3)C13—C14—C15—N30.9 (6)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2iii0.88 (8)2.05 (8)2.803 (7)142 (8)
O1W—H1WB···O2iv0.89 (9)1.94 (10)2.759 (7)153 (10)
C7—H7···O3v0.952.403.342 (5)174
C8—H8···O3iii0.952.473.421 (5)176
C9—H9···O1W0.952.473.404 (7)168
C12—H12···O1W0.952.313.253 (7)172
C13—H13···O1iv0.952.603.429 (5)146
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu(C15H11N3)Cl(H2O)][Cu(C15H11N3)(S2O6)Cl]·2H2O[Cu2(C15H11N3)2(Cl)2(S2O6)]·H2O
Mr878.68842.65
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)173173
a, b, c (Å)8.0705 (10), 8.589 (1), 25.177 (3)8.1961 (13), 8.6029 (15), 12.2566 (19)
α, β, γ (°)83.096 (10), 82.870 (11), 73.675 (11)107.927 (13), 99.171 (13), 105.244 (13)
V3)1655.2 (3)765.7 (2)
Z21
Radiation typeMo KαMo Kα
µ (mm1)1.641.76
Crystal size (mm)0.50 × 0.37 × 0.200.21 × 0.13 × 0.11
Data collection
DiffractometerStoe IPDS II
diffractometer
Stoe IPDS II
diffractometer
Absorption correctionMulti-scan
(MULABS in PLATON; Spek, 2009)
Multi-scan
(MULABS in PLATON; Spek, 2009)
Tmin, Tmax0.254, 1.000.846, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
25099, 8888, 8053 8262, 2724, 2001
Rint0.0730.055
(sin θ/λ)max1)0.6880.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.06 0.034, 0.079, 0.89
No. of reflections88882724
No. of parameters485232
No. of restraints62
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.95, 1.470.28, 0.48

Computer programs: X-AREA (Stoe & Cie, 2006), X-RED32 (Stoe & Cie, 2006), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Selected interatomic distances (Å) for (I) top
Cu1—Cl12.2203 (6)Cu2—Cl22.2284 (6)
Cu1—O12.3901 (16)Cu2—O1W2.2816 (16)
Cu1—N12.0368 (17)Cu2—N42.0216 (17)
Cu1—N21.9342 (16)Cu2—N51.9447 (16)
Cu1—N32.0322 (17)Cu2—N62.0245 (17)
Cu1···Cl1i3.2626 (7)Cu2···Cl2ii3.3492 (7)
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O6iii0.84 (3)1.95 (3)2.787 (2)176 (3)
O1W—H1WB···O3W0.89 (3)2.06 (3)2.918 (2)162 (3)
O2W—H2WA···O3iv0.88 (3)2.01 (3)2.831 (2)154 (3)
O2W—H2WB···O4iii0.85 (2)1.95 (2)2.785 (2)169 (4)
O3W—H3WA···O2Wv0.83 (3)2.00 (3)2.811 (2)166 (3)
O3W—H3WB···O20.82 (3)2.24 (3)3.052 (2)168 (3)
C4—H4A···O2Wv0.952.473.407 (3)169
C7—H7A···O2Wv0.952.433.347 (3)162
C8—H8A···O5vi0.952.343.217 (3)154
C9—H9A···O2v0.952.563.496 (3)171
C12—H12A···O1v0.952.563.335 (3)139
C18—H18A···O1Wvii0.952.573.213 (3)126
C19—H19A···O3Wvii0.952.503.446 (3)178
C22—H22A···O3Wvii0.952.513.452 (3)175
C24—H24A···O60.952.433.363 (3)167
C27—H27A···O60.952.193.141 (3)179
C29—H29A···Cl2viii0.952.743.690 (3)174
Symmetry codes: (iii) x, y1, z; (iv) x1, y1, z; (v) x+1, y, z; (vi) x+1, y1, z; (vii) x1, y, z; (viii) x+2, y+1, z+1.
Selected interatomic distances (Å) for (II) top
Cu1—Cl12.2220 (11)Cu1—N21.934 (3)
Cu1—O12.473 (2)Cu1—N32.041 (3)
Cu1—N12.030 (3)
Cu1···Cl1i3.3765 (12)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2ii0.88 (8)2.05 (8)2.803 (7)142 (8)
O1W—H1WB···O2iii0.89 (9)1.94 (10)2.759 (7)153 (10)
C7—H7···O3iv0.952.403.342 (5)174
C8—H8···O3ii0.952.473.421 (5)176
C9—H9···O1W0.952.473.404 (7)168
C12—H12···O1W0.952.313.253 (7)172
C13—H13···O1iii0.952.603.429 (5)146
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds