Download citation
Download citation
link to html
The solid-state structure of the title compound, [Na2Mn2(C32H56N2OSi2)2O2] or [1,8-C10H6(NSiiPr3)2Mn(μ3-O)Na(THF)]2, which lies across a crystallographic twofold axis, exhibits a central [Mn2O2Na2]4+ core, with two oxide groups, each triply bridging between the two MnIII ions and an Na+ ion. Additional coordination is provided to each MnIII centre by a 1,8-C10H6(NSiiPr3)2 [1,8-bis­(triisopropyl­silyl­amido)­naph­tha­lene] ligand and to the Na+ centres by a tetra­hydro­furan mol­ecule. The presence of an additional Na...H—C agostic inter­action potentially contributes to the distortion around the bridging oxide group.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827011002442X/ga3151sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011002442X/ga3151Isup2.hkl
Contains datablock I

CCDC reference: 790627

Comment top

Polynuclear transition metal complexes containing oxygen-based bridging ligands are of significant interest as models for bioinorganic systems (Vincent et al., 1989; Christou, 1989; Libby et al., 1991; Wang et al., 1991). In the case of manganese, complexes such as [Mn4O2(O2CR)xLn]y (x = 6 or 7; y = -1, 0, 1) have been used to model the photosynthetic water oxidation centre (WOC) within green plants and cyanobacteria. In this paper we describe the crystallographic characterization of the title compound, [1,8-C10H6(NSiiPr3)2Mn(µ3-O)Na(THF)]2 (THF is tetrahydrofuran), (I), which features a central [Mn2O2Na2]4+ core.

The crystal structure of (I) is shown in Fig. 1, and important bond distances and angles are shown in Table 1. The complex lies across a crystallographic twofold axis and consists of a central [Mn2O2Na2]4+ core, with two oxide groups, each triply bridging, between the two MnIII ions and an Na+ ion. Additional coordination to each MnIII centre is provided by a 1,8-C10H6(NSiiPr3)2 ligand and to the Na+ centres by a THF molecule.

The MnIII centres in (I) are each coordinated by two amide N atoms and two bridging oxides in a tetrahedrally distorted square-planar environment where the mean tetrahedral distortion, defined as the mean of the absolute deviations of the ligand atoms from the MnN2O2 least-squares mean plane, is 0.51 (3) Å. The N1—Mn1—N2 angle is wider than that in 1,8-C10H6(NSiiPr3)2Li(THF)MnCl(THF), (II) [85.83 (7)°; Blake et al., 2009], presumably in part a reflection of the different coordination environments of the metal cations in these two complexes. The Mn—N distances in (I) are significantly shorter than that in (II) [2.1093 (17) Å], due to the smaller ionic radius of MnIII compared with MnII (Shannon & Prewitt, 1969, 1970). In (I), the MnIII centre lies 1.150 (3) Å out of the N1/C1/C10/C9/N2 plane of the ligand, which exhibits a significant twisting of the framework: the amide N atoms are significantly distorted from the naphthalenyl plane [N···naphthalenyl plane distances are 0.460 (5) and -0.518 (5) Å for atoms N1 and N2, respectively].

The Mn2O2 moiety deviates somewhat from planarity, the angle between the O1—Mn1—O1i and O1—Mn1i—O1i planes being 12.10 (4)° [symmetry code: (i) -x + 1, y, -z + 3/2]. The Mn1···Mn1i distance in (I) is longer than that found in [HC(CMeNDipp)2Mn(µ-O)]2, (III) [2.659 (1) Å; Dipp = 2,6-diisopropylphenyl; Chai et al., 2005], but shorter than that for the central Mn2O2 core in [nBu4N][Mn4O2(O2CPh)9H2O], (IV) [2.816 (4) Å; Wang et al., 1991]. The Mn—O distances in (I) are slightly shorter than the analogous values for (IV) [1.900 (11), 1.905 (11), 1.913 (10) and 1.909 (10) Å]. Both these complexes feature µ3-bridging oxides, between two MnIII centres and one Na+ centre in the case of (I), and between three MnIII centres in the case of (IV).

The Na—O distances in (I) (Table 1) reflect the differing coordination environments around each O atom. The Na1—O1 distance is somewhat shorter than that found in other triply-bridged complexes, e.g. [Ph2SiO]8[AlO2Na]4.5THF, which has these distances in the range 2.204 (5)–2.392 (6) Å (Veith et al., 2007). These differences are presumably a consequence of the differing coordination environments in these two complexes. The Na1—O2 distance in (I) is significantly longer than the Na1—O1 distance, but it lies within the range of other Na—THF interactions in the literature (Allen, 2002) and is very similar to analogous Na—O distances in other complexes, such as [(THF)3Na][(N2)Mo{N(Ad)C6H3-2,6-Me2}3] [2.254 (10) Å; Peters et al., 1999] and Na2Ga4(SitBu3)4.2THF [2.252 (3) Å; Wiberg et al., 2002]. The geometry around atom O1 is highly distorted trigonal pyramidal [Na1—O1—Mn1i = 156.41 (14)°], with atom O1 lying 0.286 (2) Å out of the plane defined by atoms Mn1, Mn1i and Na1.

In addition to the coordination by the triply bridging oxide and the THF molecule, the Na+ centre interacts significantly with atoms C9, C10 and N2 of the 1,8-bis(triisopropylsilylamido)naphthalene ligand (Table 1, Fig. 2). Finally, there is an additional agostic interaction with H14C [Na1···H14Ci = 2.41 Å, Na1···C14i = 2.994 (4) Å and Na1···H14Ci—C14i = 118°], which potentially contributes to the distortion around the bridging oxide.

The dimer of (I) features possible C—H···O interactions (Table 2). However, as these involve bridging O atoms, are quite long and involve unactivated methyl H atoms, they may not be significant in themselves but a result of steric crowding. One methyl H atom is also implicated in a possible intramolecular C—H···π interaction with the ring C1–C5/C10 (Table 2). There are no specific directional intermolecular interactions.

Related literature top

For related literature, see: Allen (2002); Blake et al. (2009); Chai et al. (2005); Christou (1989); Libby et al. (1991); Peters et al. (1999); Shannon & Prewitt (1969, 1970); Sheldrick (2008); Veith et al. (2007); Vincent et al. (1989); Wang et al. (1991); Wiberg et al. (2002).

Experimental top

A solution of 1,8-C10H6(NSiiPr3)2Li(THF)MnCl(THF) (0.075 g, 0.11 mmol; Blake et al., 2009) in toluene (10 ml) was added to a stirred slurry of NaOtBu (0.010 g, 0.11 mmol) in toluene (10 ml) and the mixture stirred at room temperature for 24 h. Removal of volatiles in vacuo gave a brown solid, which was extracted with hexanes (10 ml). The solution was filtered and concentrated to ca 5 ml, which yielded brown crystals of [1,8-C10H6(NSiiPr3)2Mn(µ3-O)Na(THF)]2, (I), after storage at 238 K.

Refinement top

The intensity of the diffraction falls off very steeply above ca 2θ = 50°, and accordingly a cut-off was applied at 2θ = 50.2°. This feature appeared consistent throughout the frame set, suggesting that no changes occurred to the crystal during data collection.

Methyl H atoms were located in circular difference Fourier syntheses and thereafter refined as part of a rigid rotating group, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C). The remaining H atoms were placed geometrically and refined with C—H(aromatic) = 0.95 Å, C—H(methylene) = 0.99 Å and C—H(methine) = 1.00 Å, and with Uiso(H) = 1.2Ueq(C). Rigid-bond restraints (Sheldrick, 2008), with effective standard deviations of 0.01 Å2 for 1,2-atom pairs and 0.001 Å2 for 1,3-atom pairs, were applied to the anisotropic displacement parameters of the THF atoms (O2/C29–C32).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002) and SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-numbering scheme for the reference asymmetric unit. Displacement ellipsoids are drawn at the 20% probability level and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of (I), indicating the full coordination around Na1. Displacement ellipsoids are drawn at the 30% probability level. For clarity, atoms C11, C13, C16, C17 and C19 of the isopropyl groups on Si1, and atoms C20, C22, C23, C25, C26 and C28 of the isopropyl groups on Si2, have been omitted, and only those H atoms involved in agostic interactions are shown. The interactions of Na1 with atoms C9, C10, N2 and H14C are shown as dashed lines. [Symmetry code: (i) -x + 1, y, -z + 3/2.]
Bis[µ3-1,8-bis(triisopropylsilylamido)naphthalene]bis(tetrahydrofuran)di- µ3-oxido-dimanganese(III)disodium top
Crystal data top
[Na2Mn2(C32H56N2OSi2)2O2]F(000) = 2736
Mr = 1269.80Dx = 1.216 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 7869 reflections
a = 25.209 (2) Åθ = 2.3–27.1°
b = 17.6946 (15) ŵ = 0.49 mm1
c = 15.5541 (13) ÅT = 150 K
V = 6938.0 (10) Å3Plate, brown
Z = 40.27 × 0.27 × 0.07 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6173 independent reflections
Radiation source: sealed tube5327 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 8.366 pixels mm-1θmax = 25.1°, θmin = 2.3°
ω rotation with narrow frames scansh = 2430
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2120
Tmin = 0.652, Tmax = 0.746l = 1718
34383 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.061P)2 + 9.211P]
where P = (Fo2 + 2Fc2)/3
6173 reflections(Δ/σ)max = 0.001
373 parametersΔρmax = 0.59 e Å3
10 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Na2Mn2(C32H56N2OSi2)2O2]V = 6938.0 (10) Å3
Mr = 1269.80Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 25.209 (2) ŵ = 0.49 mm1
b = 17.6946 (15) ÅT = 150 K
c = 15.5541 (13) Å0.27 × 0.27 × 0.07 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6173 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5327 reflections with I > 2σ(I)
Tmin = 0.652, Tmax = 0.746Rint = 0.047
34383 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06710 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.21Δρmax = 0.59 e Å3
6173 reflectionsΔρmin = 0.35 e Å3
373 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.45141 (2)0.72512 (3)0.78677 (3)0.02163 (16)
Si10.42062 (4)0.82489 (6)0.97030 (7)0.0284 (2)
Na10.40911 (6)0.74511 (10)0.59699 (10)0.0433 (4)
O10.47915 (9)0.71703 (13)0.67526 (15)0.0241 (5)
N10.42181 (11)0.80197 (15)0.86268 (18)0.0244 (6)
C10.40060 (14)0.8528 (2)0.8021 (2)0.0277 (8)
Si20.36400 (4)0.59814 (6)0.74039 (7)0.0293 (3)
O20.36783 (14)0.75504 (19)0.4689 (2)0.0599 (9)
N20.37806 (11)0.69412 (16)0.7531 (2)0.0269 (7)
C20.41805 (17)0.9275 (2)0.7992 (3)0.0372 (9)
H20.44890.94140.83060.045*
C30.3915 (2)0.9825 (2)0.7512 (3)0.0475 (11)
H30.40391.03320.75200.057*
C40.3486 (2)0.9647 (2)0.7041 (3)0.0466 (11)
H40.33031.00330.67370.056*
C50.33033 (17)0.8886 (2)0.6991 (2)0.0374 (9)
C60.28456 (19)0.8699 (3)0.6520 (3)0.0488 (12)
H60.26620.90820.62120.059*
C70.26663 (17)0.7984 (3)0.6501 (3)0.0478 (11)
H70.23380.78760.62260.057*
C80.29556 (15)0.7392 (2)0.6882 (3)0.0372 (9)
H80.28220.68910.68460.045*
C90.34357 (14)0.7523 (2)0.7311 (2)0.0265 (8)
C100.35890 (14)0.8301 (2)0.7436 (2)0.0285 (8)
C110.30765 (17)0.8202 (3)0.9726 (3)0.0511 (12)
H11A0.27490.83800.99970.077*
H11B0.31400.76750.98870.077*
H11C0.30430.82400.90990.077*
C120.35418 (16)0.8689 (2)1.0027 (3)0.0375 (9)
H120.35320.86731.06690.045*
C130.34472 (17)0.9513 (2)0.9783 (3)0.0457 (11)
H13A0.34300.95590.91560.069*
H13B0.37390.98251.00030.069*
H13C0.31120.96861.00340.069*
C140.52835 (16)0.8800 (2)0.9599 (3)0.0439 (11)
H14A0.55040.92550.96350.066*
H14B0.52310.86650.89940.066*
H14C0.54610.83830.98970.066*
C150.47425 (16)0.8952 (2)1.0022 (3)0.0366 (9)
H150.46230.94530.97980.044*
C160.4806 (2)0.9052 (3)1.0998 (3)0.0531 (12)
H16A0.49360.85791.12510.080*
H16B0.44620.91811.12520.080*
H16C0.50610.94581.11130.080*
C170.48236 (17)0.6986 (2)1.0332 (3)0.0416 (10)
H17A0.50570.73081.06780.062*
H17B0.49610.69540.97440.062*
H17C0.48100.64791.05850.062*
C180.42650 (16)0.7324 (2)1.0317 (3)0.0366 (9)
H180.40420.69530.99930.044*
C190.4038 (2)0.7337 (3)1.1241 (3)0.0528 (12)
H19A0.40480.68251.14830.079*
H19B0.36710.75171.12280.079*
H19C0.42520.76751.15990.079*
C200.29409 (19)0.4865 (3)0.8192 (3)0.0522 (12)
H20A0.32040.47160.86230.078*
H20B0.29960.45710.76650.078*
H20C0.25840.47690.84150.078*
C210.30020 (16)0.5712 (2)0.7991 (3)0.0390 (10)
H210.27010.58520.76030.047*
C220.29364 (18)0.6179 (3)0.8816 (3)0.0484 (11)
H22A0.26120.60230.91140.073*
H22B0.29120.67170.86680.073*
H22C0.32430.60970.91910.073*
C230.4252 (2)0.4610 (2)0.7654 (4)0.0563 (13)
H23A0.45860.43960.78680.084*
H23B0.42300.45340.70300.084*
H23C0.39530.43590.79340.084*
C240.42352 (16)0.5462 (2)0.7854 (3)0.0376 (9)
H240.45520.56870.75650.045*
C250.43202 (18)0.5582 (2)0.8819 (3)0.0450 (11)
H25A0.40280.53500.91380.067*
H25B0.43320.61250.89430.067*
H25C0.46560.53490.89930.067*
C260.3207 (2)0.5150 (3)0.5934 (3)0.0606 (14)
H26A0.31830.51310.53050.091*
H26B0.28550.52450.61760.091*
H26C0.33420.46670.61500.091*
C270.35826 (17)0.5782 (2)0.6199 (3)0.0407 (10)
H270.34290.62530.59440.049*
C280.41262 (18)0.5685 (3)0.5765 (3)0.0467 (11)
H28A0.42590.51730.58710.070*
H28B0.43760.60540.60030.070*
H28C0.40900.57670.51440.070*
C290.3572 (3)0.6956 (3)0.4095 (4)0.0757 (17)
H29A0.33510.65610.43710.091*
H29B0.39080.67220.39010.091*
C300.3282 (3)0.7295 (3)0.3344 (3)0.0718 (15)
H30A0.34050.70700.27960.086*
H30B0.28950.72170.33980.086*
C310.3417 (2)0.8109 (3)0.3387 (4)0.0745 (15)
H31A0.31370.84260.31240.089*
H31B0.37610.82170.31040.089*
C320.3448 (3)0.8224 (4)0.4343 (5)0.100 (2)
H32A0.36720.86680.44800.120*
H32B0.30900.83070.45860.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0210 (3)0.0221 (3)0.0218 (3)0.0003 (2)0.0002 (2)0.0020 (2)
Si10.0308 (5)0.0298 (5)0.0245 (5)0.0002 (4)0.0022 (4)0.0050 (4)
Na10.0359 (9)0.0592 (10)0.0348 (9)0.0016 (8)0.0039 (7)0.0007 (8)
O10.0220 (12)0.0293 (12)0.0211 (13)0.0007 (10)0.0004 (10)0.0017 (10)
N10.0269 (15)0.0223 (14)0.0241 (16)0.0004 (12)0.0014 (12)0.0060 (12)
C10.0299 (19)0.0295 (18)0.0237 (19)0.0028 (15)0.0079 (15)0.0015 (15)
Si20.0282 (5)0.0280 (5)0.0316 (6)0.0072 (4)0.0016 (4)0.0039 (4)
O20.057 (2)0.065 (2)0.0574 (19)0.0079 (17)0.0162 (16)0.0167 (16)
N20.0205 (14)0.0280 (15)0.0321 (17)0.0023 (12)0.0006 (13)0.0037 (13)
C20.049 (2)0.0295 (19)0.033 (2)0.0041 (18)0.0042 (19)0.0016 (17)
C30.075 (3)0.025 (2)0.042 (3)0.003 (2)0.014 (2)0.0032 (19)
C40.068 (3)0.037 (2)0.035 (2)0.021 (2)0.007 (2)0.0090 (19)
C50.045 (2)0.043 (2)0.025 (2)0.0132 (19)0.0038 (18)0.0012 (17)
C60.054 (3)0.055 (3)0.037 (2)0.027 (2)0.009 (2)0.001 (2)
C70.033 (2)0.070 (3)0.041 (3)0.015 (2)0.0073 (19)0.006 (2)
C80.030 (2)0.049 (2)0.033 (2)0.0015 (18)0.0020 (17)0.0031 (19)
C90.0241 (18)0.0332 (18)0.0223 (18)0.0052 (15)0.0041 (14)0.0040 (15)
C100.0305 (19)0.0298 (18)0.0251 (19)0.0056 (16)0.0071 (15)0.0014 (15)
C110.036 (2)0.066 (3)0.051 (3)0.004 (2)0.011 (2)0.003 (2)
C120.039 (2)0.045 (2)0.028 (2)0.0061 (18)0.0065 (17)0.0081 (18)
C130.038 (2)0.051 (3)0.048 (3)0.012 (2)0.005 (2)0.007 (2)
C140.037 (2)0.037 (2)0.058 (3)0.0043 (18)0.000 (2)0.015 (2)
C150.038 (2)0.033 (2)0.039 (2)0.0009 (17)0.0030 (18)0.0084 (18)
C160.062 (3)0.053 (3)0.045 (3)0.004 (2)0.009 (2)0.020 (2)
C170.047 (3)0.041 (2)0.037 (2)0.005 (2)0.0013 (19)0.0031 (19)
C180.042 (2)0.036 (2)0.032 (2)0.0010 (18)0.0043 (18)0.0027 (17)
C190.067 (3)0.057 (3)0.033 (2)0.009 (2)0.013 (2)0.011 (2)
C200.051 (3)0.052 (3)0.054 (3)0.026 (2)0.006 (2)0.005 (2)
C210.031 (2)0.046 (2)0.040 (2)0.0123 (18)0.0027 (18)0.0040 (19)
C220.042 (2)0.057 (3)0.046 (3)0.002 (2)0.014 (2)0.002 (2)
C230.062 (3)0.027 (2)0.080 (4)0.001 (2)0.005 (3)0.000 (2)
C240.035 (2)0.0240 (18)0.054 (3)0.0046 (16)0.0028 (19)0.0024 (18)
C250.045 (3)0.038 (2)0.052 (3)0.0003 (19)0.008 (2)0.015 (2)
C260.069 (3)0.066 (3)0.047 (3)0.031 (3)0.007 (2)0.010 (2)
C270.046 (2)0.040 (2)0.037 (2)0.0123 (19)0.0006 (19)0.0081 (19)
C280.055 (3)0.045 (2)0.040 (3)0.008 (2)0.008 (2)0.011 (2)
C290.102 (5)0.065 (2)0.060 (4)0.010 (3)0.022 (3)0.007 (2)
C300.090 (4)0.090 (4)0.036 (2)0.005 (3)0.008 (2)0.003 (2)
C310.068 (4)0.087 (3)0.068 (3)0.014 (3)0.005 (3)0.013 (3)
C320.103 (5)0.087 (3)0.109 (5)0.050 (4)0.061 (4)0.031 (3)
Geometric parameters (Å, º) top
Mn1—O1i1.853 (2)C14—H14B0.9800
Mn1—O11.876 (2)C14—H14C0.9800
Mn1—N11.949 (3)C15—C161.537 (6)
Mn1—N21.999 (3)C15—H151.0000
Mn1—C12.608 (4)C16—H16A0.9800
Mn1—Mn1i2.7037 (10)C16—H16B0.9800
Mn1—Na13.1585 (17)C16—H16C0.9800
Si1—N11.723 (3)C17—C181.530 (6)
Si1—C181.901 (4)C17—H17A0.9800
Si1—C151.903 (4)C17—H17B0.9800
Si1—C121.915 (4)C17—H17C0.9800
Na1—O12.201 (3)C18—C191.548 (6)
Na1—O22.254 (4)C18—H181.0000
Na1—C92.665 (4)C19—H19A0.9800
Na1—N22.706 (4)C19—H19B0.9800
Na1—C14i2.994 (4)C19—H19C0.9800
Na1—C103.010 (4)C20—C211.539 (6)
O1—Mn1i1.853 (2)C20—H20A0.9800
N1—C11.408 (5)C20—H20B0.9800
C1—C21.394 (5)C20—H20C0.9800
C1—C101.447 (5)C21—C221.535 (6)
Si2—N21.746 (3)C21—H211.0000
Si2—C241.893 (4)C22—H22A0.9800
Si2—C211.910 (4)C22—H22B0.9800
Si2—C271.913 (4)C22—H22C0.9800
O2—C291.425 (6)C23—C241.540 (5)
O2—C321.431 (7)C23—H23A0.9800
N2—C91.391 (5)C23—H23B0.9800
C2—C31.398 (6)C23—H23C0.9800
C2—H20.9500C24—C251.530 (6)
C3—C41.343 (7)C24—H241.0000
C3—H30.9500C25—H25A0.9800
C4—C51.426 (6)C25—H25B0.9800
C4—H40.9500C25—H25C0.9800
C5—C61.406 (6)C26—C271.521 (6)
C5—C101.439 (5)C26—H26A0.9800
C6—C71.345 (7)C26—H26B0.9800
C6—H60.9500C26—H26C0.9800
C7—C81.406 (6)C27—C281.537 (6)
C7—H70.9500C27—H271.0000
C8—C91.402 (5)C28—H28A0.9800
C8—H80.9500C28—H28B0.9800
C9—C101.442 (5)C28—H28C0.9800
C11—C121.529 (6)C29—C301.503 (7)
C11—H11A0.9800C29—H29A0.9900
C11—H11B0.9800C29—H29B0.9900
C11—H11C0.9800C30—C311.481 (8)
C12—C131.525 (6)C30—H30A0.9900
C12—H121.0000C30—H30B0.9900
C13—H13A0.9800C31—C321.503 (9)
C13—H13B0.9800C31—H31A0.9900
C13—H13C0.9800C31—H31B0.9900
C14—C151.538 (6)C32—H32A0.9900
C14—H14A0.9800C32—H32B0.9900
O1i—Mn1—O186.37 (11)C12—C13—H13A109.5
O1i—Mn1—N1102.86 (11)C12—C13—H13B109.5
O1—Mn1—N1139.12 (11)H13A—C13—H13B109.5
O1i—Mn1—N2159.45 (11)C12—C13—H13C109.5
O1—Mn1—N294.67 (12)H13A—C13—H13C109.5
N1—Mn1—N289.78 (12)H13B—C13—H13C109.5
O1i—Mn1—C1120.12 (11)C15—C14—H14A109.5
O1—Mn1—C1109.50 (11)C15—C14—H14B109.5
N1—Mn1—C132.04 (12)H14A—C14—H14B109.5
N2—Mn1—C178.89 (12)C15—C14—H14C109.5
O1i—Mn1—Mn1i43.85 (7)H14A—C14—H14C109.5
O1—Mn1—Mn1i43.19 (7)H14B—C14—H14C109.5
N1—Mn1—Mn1i127.09 (9)C16—C15—C14110.5 (4)
N2—Mn1—Mn1i136.66 (9)C16—C15—Si1114.0 (3)
C1—Mn1—Mn1i118.93 (8)C14—C15—Si1113.8 (3)
O1i—Mn1—Na1128.71 (8)C16—C15—H15105.9
O1—Mn1—Na143.12 (8)C14—C15—H15105.9
N1—Mn1—Na1111.02 (9)Si1—C15—H15105.9
N2—Mn1—Na158.22 (10)C15—C16—H16A109.5
C1—Mn1—Na179.78 (9)C15—C16—H16B109.5
Mn1i—Mn1—Na184.86 (4)H16A—C16—H16B109.5
N1—Si1—C18106.49 (16)C15—C16—H16C109.5
N1—Si1—C15113.25 (17)H16A—C16—H16C109.5
C18—Si1—C15112.14 (19)H16B—C16—H16C109.5
N1—Si1—C12111.51 (17)C18—C17—H17A109.5
C18—Si1—C12106.66 (18)C18—C17—H17B109.5
C15—Si1—C12106.66 (18)H17A—C17—H17B109.5
O1—Na1—O2151.22 (13)C18—C17—H17C109.5
O1—Na1—C994.31 (11)H17A—C17—H17C109.5
O2—Na1—C9113.70 (14)H17B—C17—H17C109.5
O1—Na1—N270.15 (10)C17—C18—C19109.3 (3)
O2—Na1—N2133.26 (13)C17—C18—Si1114.6 (3)
C9—Na1—N230.00 (10)C19—C18—Si1115.1 (3)
O1—Na1—C14i85.47 (11)C17—C18—H18105.6
O2—Na1—C14i85.41 (14)C19—C18—H18105.6
C9—Na1—C14i121.31 (13)Si1—C18—H18105.6
N2—Na1—C14i133.09 (13)C18—C19—H19A109.5
O1—Na1—C1091.78 (11)C18—C19—H19B109.5
O2—Na1—C10115.87 (13)H19A—C19—H19B109.5
C9—Na1—C1028.62 (10)C18—C19—H19C109.5
N2—Na1—C1050.60 (10)H19A—C19—H19C109.5
C14i—Na1—C1092.70 (12)H19B—C19—H19C109.5
O1—Na1—Mn135.62 (6)C21—C20—H20A109.5
O2—Na1—Mn1172.06 (12)C21—C20—H20B109.5
C9—Na1—Mn158.86 (8)H20A—C20—H20B109.5
N2—Na1—Mn138.89 (7)C21—C20—H20C109.5
C14i—Na1—Mn1100.81 (10)H20A—C20—H20C109.5
C10—Na1—Mn159.33 (8)H20B—C20—H20C109.5
Mn1i—O1—Mn192.96 (10)C22—C21—C20110.1 (4)
Mn1i—O1—Na1156.41 (14)C22—C21—Si2110.8 (3)
Mn1—O1—Na1101.25 (11)C20—C21—Si2115.1 (3)
C1—N1—Si1119.6 (2)C22—C21—H21106.8
C1—N1—Mn1100.7 (2)C20—C21—H21106.8
Si1—N1—Mn1139.41 (17)Si2—C21—H21106.8
C2—C1—N1120.5 (3)C21—C22—H22A109.5
C2—C1—C10118.2 (3)C21—C22—H22B109.5
N1—C1—C10121.3 (3)H22A—C22—H22B109.5
C2—C1—Mn1131.6 (3)C21—C22—H22C109.5
N1—C1—Mn147.27 (15)H22A—C22—H22C109.5
C10—C1—Mn193.4 (2)H22B—C22—H22C109.5
N2—Si2—C24105.61 (16)C24—C23—H23A109.5
N2—Si2—C21111.08 (17)C24—C23—H23B109.5
C24—Si2—C21111.68 (19)H23A—C23—H23B109.5
N2—Si2—C27107.79 (17)C24—C23—H23C109.5
C24—Si2—C27109.5 (2)H23A—C23—H23C109.5
C21—Si2—C27111.02 (18)H23B—C23—H23C109.5
C29—O2—C32107.2 (4)C25—C24—C23109.3 (4)
C29—O2—Na1127.0 (3)C25—C24—Si2114.0 (3)
C32—O2—Na1125.7 (3)C23—C24—Si2115.0 (3)
C9—N2—Si2124.5 (2)C25—C24—H24105.9
C9—N2—Mn1116.1 (2)C23—C24—H24105.9
Si2—N2—Mn1118.97 (16)Si2—C24—H24105.9
C9—N2—Na173.36 (19)C24—C25—H25A109.5
Si2—N2—Na1106.36 (14)C24—C25—H25B109.5
Mn1—N2—Na182.88 (10)H25A—C25—H25B109.5
C1—C2—C3121.8 (4)C24—C25—H25C109.5
C1—C2—H2119.1H25A—C25—H25C109.5
C3—C2—H2119.1H25B—C25—H25C109.5
C4—C3—C2120.9 (4)C27—C26—H26A109.5
C4—C3—H3119.6C27—C26—H26B109.5
C2—C3—H3119.6H26A—C26—H26B109.5
C3—C4—C5120.8 (4)C27—C26—H26C109.5
C3—C4—H4119.6H26A—C26—H26C109.5
C5—C4—H4119.6H26B—C26—H26C109.5
C6—C5—C4121.0 (4)C26—C27—C28110.7 (4)
C6—C5—C10119.5 (4)C26—C27—Si2116.6 (3)
C4—C5—C10119.5 (4)C28—C27—Si2112.5 (3)
C7—C6—C5120.6 (4)C26—C27—H27105.3
C7—C6—H6119.7C28—C27—H27105.3
C5—C6—H6119.7Si2—C27—H27105.3
C6—C7—C8121.2 (4)C27—C28—H28A109.5
C6—C7—H7119.4C27—C28—H28B109.5
C8—C7—H7119.4H28A—C28—H28B109.5
C9—C8—C7121.7 (4)C27—C28—H28C109.5
C9—C8—H8119.2H28A—C28—H28C109.5
C7—C8—H8119.2H28B—C28—H28C109.5
N2—C9—C8122.3 (3)O2—C29—C30107.5 (5)
N2—C9—C10120.4 (3)O2—C29—H29A110.2
C8—C9—C10116.9 (3)C30—C29—H29A110.2
N2—C9—Na176.64 (19)O2—C29—H29B110.2
C8—C9—Na198.9 (2)C30—C29—H29B110.2
C10—C9—Na189.1 (2)H29A—C29—H29B108.5
C5—C10—C9119.2 (3)C31—C30—C29104.0 (5)
C5—C10—C1117.8 (3)C31—C30—H30A111.0
C9—C10—C1123.0 (3)C29—C30—H30A111.0
C5—C10—Na1101.9 (2)C31—C30—H30B111.0
C9—C10—Na162.26 (19)C29—C30—H30B111.0
C1—C10—Na1108.0 (2)H30A—C30—H30B109.0
C12—C11—H11A109.5C30—C31—C32100.9 (5)
C12—C11—H11B109.5C30—C31—H31A111.6
H11A—C11—H11B109.5C32—C31—H31A111.6
C12—C11—H11C109.5C30—C31—H31B111.6
H11A—C11—H11C109.5C32—C31—H31B111.6
H11B—C11—H11C109.5H31A—C31—H31B109.4
C13—C12—C11110.0 (4)O2—C32—C31106.3 (5)
C13—C12—Si1117.4 (3)O2—C32—H32A110.5
C11—C12—Si1111.2 (3)C31—C32—H32A110.5
C13—C12—H12105.8O2—C32—H32B110.5
C11—C12—H12105.8C31—C32—H32B110.5
Si1—C12—H12105.8H32A—C32—H32B108.7
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O1i0.982.443.401 (5)167
C28—H28B···O10.982.523.475 (5)165
C13—H13A···Cg10.982.833.714 (5)150
Symmetry code: (i) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Na2Mn2(C32H56N2OSi2)2O2]
Mr1269.80
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)150
a, b, c (Å)25.209 (2), 17.6946 (15), 15.5541 (13)
V3)6938.0 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.27 × 0.27 × 0.07
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.652, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
34383, 6173, 5327
Rint0.047
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.155, 1.21
No. of reflections6173
No. of parameters373
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.35

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002) and SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Mn1—O1i1.853 (2)Na1—O12.201 (3)
Mn1—O11.876 (2)Na1—O22.254 (4)
Mn1—N11.949 (3)Na1—C92.665 (4)
Mn1—N21.999 (3)Na1—N22.706 (4)
Mn1—C12.608 (4)Na1—C14i2.994 (4)
Mn1—Mn1i2.7037 (10)Na1—C103.010 (4)
N1—Mn1—N289.78 (12)Mn1i—O1—Na1156.41 (14)
Mn1i—O1—Mn192.96 (10)Mn1—O1—Na1101.25 (11)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O1i0.982.443.401 (5)167
C28—H28B···O10.982.523.475 (5)165
C13—H13A···Cg10.982.833.714 (5)150
Symmetry code: (i) x+1, y, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds