Download citation
Download citation
link to html
In the structural motifs of two isomorphous triclinic salts, (C5H6Br2N3)2[MBr4] (M = CdII and MnII), each [MBr4]2− anion inter­acts with eight surrounding 2,6-diamino-3,5-di­bromo­pyridinium cations through inter­molecular C/N—H...Br and Br...Br inter­actions, leading to a three-dimensional framework structure. The cations show a minor degree of π–π stacking, adding extra stability to the three-dimensional architecture.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109028571/ga3128sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109028571/ga3128Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109028571/ga3128IIsup3.hkl
Contains datablock II

CCDC references: 719472; 727525

Comment top

Intermolecular interactions are the essence of supramolecular chemistry (Desiraju 1997), and the field of crystal supramolecularity seeks to understand intermolecular interactions by analysis of crystal packing. Dunitz's aphorism (Dunitz 1991; Dunitz, 1996), "the molecular crystal is the supramolecular entity par excellence", captures this view, and inspires research to extract this understanding.

Research in the field of organic–inorganic hybrid compounds is of great interest, because of their special magnetic (Cui et al., 2000), electronic (Lacroix et al., 1994) and optoelectronic properties (Chakravarthy & Guloy 1997). The influence of the features of the organic cations on the packing interactions that govern the crystal organization is expected to affect the packing and thus the specific properties. In the light of our research on hybrid compounds containing metal bromide anions with substituted pyridinium cations (Luque et al., 2001; Haddad et al., 2006; Al-Far & Ali, 2007a,b; Ali & Al-Far, 2007; Ali et al., 2007, 2008), two isomorphous compounds have been investigated containing the 3,5-dibromo-2,6-diaminopyridinium cation, 3,5-DB-2,6-DAPH, namely (C5H6Br2N3)2[MBr4], with M = Cd in compound (I), and M = Mn in compound (II). These complexes were prepared from the reaction of 2,6-diaminopyridine with the corresponding metal(II) salt in the presence of HBr and Br2. The introduction of amino groups at the 2- and 6-positions facilitates the electrophilic aromatic substitution of Br atoms at the 3- and 5-positions, and increases the nucleophilicity at the ring N atom (Al-Far & Ali, 2007b). Therefore, the protonation of the resulting 3,5-dibromo-2,6-diaminopyridine takes place on the pyridine N atom rather than on the amino N atoms. The bromination and protonation of the pyridine ring were expected to create many important centres of interaction with the bromido-metal anions, e.g. N—H···Br, (π)C—H···Br and possibly arl···aryl (π) stacking.

The [MBr4]2- anions in (I) and (II) (Fig. 1) exhibit a slightly distorted tetrahedral arrangement around M, with M—Br bonds in the ranges 2.5678 (9)–2.5917 (11) and 2.4928 (10)–2.5070 (9) Å for atoms Cd and Mn, respectively, giving mean values of of 2.5821 (12) and 2.5011 (11) Å (Tables 1 and 3). The Br—M—Br angles have ranges of 101.99 (3)–114.59 (4) and 103.33 (4)–113.82 (4)°, respectively. These values are in accordance with the corresponding values in the literature (Al-Far & Ali, 2007a; Morawitz et al., 2007). It is noteworthy that the Br—Mn—Br angles are narrower than for bis(dimethylammonium) tetrabromomanganese(II) (Morawitz et al., 2007), which might be due to the extensive packing interactions in the present work between the anion and surrounding cations, compared with the few interactions between the anion and cations (about four short hydrogen-bonding interactions and no Br···Br interactions) in the much less crowded environment of the latter salt.

In the cations of (I) and (II), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The rings in the two independent cations are nearly planar, with the largest deviation from plane 1 (N1/C1–C5) being for atom Br5, which lies 0.0813 (18) and 0.0751 (30) Å out of this plane in (I) and (II), respectively. For plane 2 (N4/C6–C10), atom Br7 has the largest deviation, being 0.0247 (32) and 0.0495 (62) Å out of this plane in (I) and (II), respectively.

The crystal packing involves extensive cation···anion interactions. The packing diagram can be regarded as a three-dimensional array of interacting cations and anions (Fig. 2) in which each anion interacts with eight surrounding cations (Fig. 3). Six of the cations interact via nine N—H···Br—M hydrogen-bonding interactions of types N—H···Br—M and H—N—H···Br—M, and two interactions of type C—H···Br (Fig. 3; Tables 2 and 4). Two of the cations interact with the anion via two C—Br···Br—M short contacts (see Table 5).

The cations also interact to some extent by offset face-to-face interactions, approximately along the (011) direction, adding extra lattice stability. This is evident from their centroid separation distances. In (I), the distance for cation I, Cg1···Cg1(-x, -y + 2, -z), is 3.943 (3) Å, while for cation II, Cg1···Cg1(1 - x, 1 - y, 1 - z) = 3.760 (3) Å. The corresponding values for (II) are 3.922 (3) and 3.733 (3) Å. These separation distances are in accordance with those of calculated and experimentally observed stacked (offset face-to-face) interaction modes (Gould et al., 1985; Hunter & Sanders, 1990; Hunter et al., 1990; Hunter, 1994; Singh & Thornton, 1990). The stability of this type of structure is evident from the crystallization of these two isostructural compounds.

Experimental top

For the preparation of (I) and (II), 2,6-diaminopyridine (98%; 2 mmol) was dissolved in EtOH (95%; 25 ml) with heating and stirring. Another flask was prepared containing the corresponding metal salt, CdBr2 or Mn(OAc)2 (1 mmol), dissolved in EtOH (95%; 10 ml). The two solutions were mixed together and acidified with HBr (48%, 2–3 ml). Then Br2 (liquid, 2–3 ml) was added and the mixture heated (363 K) with stirring for 3 h. The solution was left to evaporate at room temperature, yielding colourless crystal plates (Cd compound) or colourless crystal chips (Mn compound) in 2 d.

In the vial used to prepare (II), some brown crystals were found and these proved to be [3,5-DB-2,6-DAPH]Br, one of two polymorphs of the compound (Haddad et al., 2009).

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH and NH2) and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

There are some 16 and 21 missing reflections, respectively, in the two reported structures as processed. Both samples were small crystals (thicknesses 0.04 and 0.06 mm) and poorly diffracting. Redundant data were collected for both crystals and long collection times (20 s) exposures were used.

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: XS in SHELXTL (Version 6.10; Sheldrick, 2008); program(s) used to refine structure: XL in SHELXTL (Version 6.10; Sheldrick, 2008); molecular graphics: XP in SHELXTL (Version 6.10; Sheldrick, 2008); software used to prepare material for publication: XCIF in SHELXTL (Version 6.10; Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The isomorphous structure (II) is labelled in an exactly analogous fashion.
[Figure 2] Fig. 2. A representative packing diagram of the title isomorphous salts. Hydrogen bonds and Br···Br interactions are shown as dashed lines. Metal and Br atoms are shown as balls, and all other atoms as sticks.
[Figure 3] Fig. 3. Part of the cell contents of (I), showing some short N(amine, pyridine)—H···Br and Br···Br intermolecular interactions (dashed lines) for one [MBr4]2- anion. The isomorphous structure (II) is labelled in an exactly analogous fashion. [Symmetry codes: (i) -x, -y + 1, -z; (iv) -x + 1, -y + 1, -z + 1; (v) - x, -y + 1, -z + 1; (vi) 1 + x, -1 + y, z; (vii) x, y - 1, z; (viii) -1 + x, y, z.]
(I) bis(2,6-diamino-3,5-dibromopyridinium) tetrabromidocadmate(II) top
Crystal data top
(C5H6Br2N3)2[CdBr4]Z = 2
Mr = 967.87F(000) = 884
Triclinic, P1Dx = 2.751 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8759 (18) ÅCell parameters from 5431 reflections
b = 10.720 (2) Åθ = 2.2–26.9°
c = 14.137 (3) ŵ = 14.62 mm1
α = 73.07 (3)°T = 293 K
β = 86.87 (3)°Plate, colourless
γ = 65.61 (3)°0.25 × 0.12 × 0.04 mm
V = 1168.7 (5) Å3
Data collection top
Bruker SMART APEX
diffractometer
4207 independent reflections
Radiation source: sealed tube3281 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 8.3 pixels mm-1θmax = 25.3°, θmin = 1.5°
ω scansh = 1010
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2001)
k = 1212
Tmin = 0.114, Tmax = 0.557l = 1616
11259 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0237P)2]
where P = (Fo2 + 2Fc2)/3
4207 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.90 e Å3
Crystal data top
(C5H6Br2N3)2[CdBr4]γ = 65.61 (3)°
Mr = 967.87V = 1168.7 (5) Å3
Triclinic, P1Z = 2
a = 8.8759 (18) ÅMo Kα radiation
b = 10.720 (2) ŵ = 14.62 mm1
c = 14.137 (3) ÅT = 293 K
α = 73.07 (3)°0.25 × 0.12 × 0.04 mm
β = 86.87 (3)°
Data collection top
Bruker SMART APEX
diffractometer
4207 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2001)
3281 reflections with I > 2σ(I)
Tmin = 0.114, Tmax = 0.557Rint = 0.037
11259 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.03Δρmax = 0.87 e Å3
4207 reflectionsΔρmin = 0.90 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.39492 (8)0.00615 (6)0.18038 (4)0.05238 (17)
C10.0916 (7)0.8311 (5)0.0564 (4)0.0422 (13)
Cd10.33902 (5)0.18867 (4)0.26763 (3)0.04692 (13)
N10.0183 (6)0.7709 (4)0.0152 (3)0.0434 (11)
H10.08010.75810.05300.052*
Br20.20919 (9)0.11228 (7)0.43096 (5)0.06144 (19)
C20.0091 (8)0.8500 (5)0.1174 (4)0.0464 (14)
N20.2531 (6)0.8650 (5)0.0628 (4)0.0643 (14)
H2A0.30620.84830.02230.077*
H2B0.30440.90350.10740.077*
Br30.13316 (8)0.41568 (6)0.13986 (4)0.05545 (18)
C30.1739 (7)0.8097 (5)0.1028 (4)0.0493 (15)
H30.24040.82370.14370.059*
N30.1973 (7)0.6715 (5)0.1069 (4)0.0616 (14)
H3A0.12870.66210.14200.074*
H3B0.29990.64390.11960.074*
Br40.60306 (8)0.20599 (7)0.31560 (5)0.05720 (18)
C40.2434 (7)0.7491 (6)0.0292 (4)0.0488 (14)
N40.4346 (6)0.7581 (5)0.4412 (3)0.0463 (11)
H40.42310.81850.47290.056*
Br50.09061 (10)0.94130 (7)0.21441 (5)0.0679 (2)
C50.1445 (7)0.7289 (5)0.0326 (4)0.0427 (13)
N50.6814 (6)0.7708 (5)0.3978 (4)0.0554 (13)
H5A0.66000.83290.42950.066*
H5B0.77190.74530.36850.066*
Br60.47031 (9)0.69350 (8)0.00801 (7)0.0813 (2)
C60.5749 (7)0.7146 (5)0.3940 (4)0.0429 (13)
N60.1801 (7)0.7689 (6)0.4931 (4)0.0689 (15)
H6A0.17680.82910.52300.083*
H6B0.09940.74360.49560.083*
Br70.78761 (9)0.55099 (7)0.27713 (5)0.06416 (19)
C70.5939 (7)0.6171 (5)0.3427 (4)0.0447 (13)
Br80.16425 (9)0.55148 (7)0.38951 (5)0.0676 (2)
C80.4706 (7)0.5712 (5)0.3418 (4)0.0457 (13)
H80.48290.50610.30740.055*
C90.3310 (7)0.6187 (5)0.3900 (4)0.0434 (13)
C100.3093 (7)0.7150 (5)0.4432 (4)0.0469 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0559 (4)0.0524 (3)0.0560 (3)0.0219 (3)0.0031 (3)0.0269 (3)
C10.039 (4)0.044 (3)0.036 (3)0.014 (3)0.003 (2)0.007 (2)
Cd10.0489 (3)0.0487 (2)0.0454 (2)0.0199 (2)0.00236 (19)0.01755 (19)
N10.039 (3)0.049 (3)0.045 (3)0.019 (2)0.000 (2)0.016 (2)
Br20.0739 (5)0.0616 (4)0.0569 (4)0.0317 (3)0.0239 (3)0.0272 (3)
C20.057 (4)0.035 (3)0.043 (3)0.016 (3)0.003 (3)0.011 (2)
N20.046 (4)0.081 (4)0.063 (3)0.020 (3)0.006 (3)0.027 (3)
Br30.0535 (4)0.0472 (3)0.0587 (4)0.0170 (3)0.0041 (3)0.0102 (3)
C30.049 (4)0.042 (3)0.060 (4)0.023 (3)0.006 (3)0.011 (3)
N30.058 (4)0.071 (3)0.070 (3)0.032 (3)0.015 (3)0.036 (3)
Br40.0537 (4)0.0707 (4)0.0605 (4)0.0293 (3)0.0045 (3)0.0332 (3)
C40.043 (4)0.044 (3)0.066 (4)0.022 (3)0.009 (3)0.020 (3)
N40.054 (3)0.049 (3)0.049 (3)0.025 (2)0.010 (2)0.027 (2)
Br50.0945 (6)0.0596 (4)0.0547 (4)0.0319 (4)0.0178 (3)0.0262 (3)
C50.047 (4)0.039 (3)0.043 (3)0.020 (3)0.010 (3)0.010 (2)
N50.050 (3)0.066 (3)0.069 (3)0.034 (3)0.011 (2)0.033 (3)
Br60.0433 (4)0.0805 (5)0.1327 (7)0.0290 (4)0.0120 (4)0.0457 (5)
C60.048 (4)0.042 (3)0.040 (3)0.022 (3)0.002 (3)0.010 (2)
N60.057 (4)0.087 (4)0.082 (4)0.037 (3)0.032 (3)0.047 (3)
Br70.0558 (4)0.0737 (4)0.0734 (4)0.0278 (3)0.0215 (3)0.0382 (3)
C70.048 (4)0.043 (3)0.046 (3)0.019 (3)0.007 (3)0.018 (2)
Br80.0554 (4)0.0666 (4)0.0915 (5)0.0355 (3)0.0024 (4)0.0218 (4)
C80.046 (4)0.043 (3)0.049 (3)0.015 (3)0.002 (3)0.019 (3)
C90.043 (4)0.039 (3)0.049 (3)0.019 (3)0.000 (3)0.011 (2)
C100.049 (4)0.041 (3)0.048 (3)0.017 (3)0.001 (3)0.011 (3)
Geometric parameters (Å, º) top
Cd1—Br12.5896 (10)C4—C51.390 (8)
C1—N21.331 (7)C4—Br61.883 (6)
C1—N11.352 (7)N4—C61.350 (7)
C1—C21.384 (8)N4—C101.365 (7)
Cd1—Br22.5917 (11)N4—H40.8600
Cd1—Br32.5791 (16)N5—C61.324 (7)
Cd1—Br42.5678 (9)N5—H5A0.8600
N1—C51.357 (7)N5—H5B0.8600
N1—H10.8600C6—C71.389 (7)
C2—C31.366 (8)N6—C101.322 (7)
C2—Br51.886 (6)N6—H6A0.8600
N2—H2A0.8600N6—H6B0.8600
N2—H2B0.8600Br7—C71.876 (6)
C3—C41.371 (8)C7—C81.376 (7)
C3—H30.9300Br8—C91.896 (5)
N3—C51.335 (7)C8—C91.359 (8)
N3—H3A0.8600C8—H80.9300
N3—H3B0.8600C9—C101.393 (8)
N2—C1—N1117.1 (5)C6—N4—C10126.0 (5)
N2—C1—C2126.0 (6)C6—N4—H4117.0
N1—C1—C2116.9 (5)C10—N4—H4117.0
Br1—Cd1—Br2106.03 (3)N3—C5—N1118.0 (5)
Br1—Cd1—Br3101.99 (3)N3—C5—C4125.2 (6)
Br1—Cd1—Br4113.61 (4)N1—C5—C4116.8 (5)
Br2—Cd1—Br3113.34 (4)C6—N5—H5A120.0
Br2—Cd1—Br4107.05 (3)C6—N5—H5B120.0
Br3—Cd1—Br4114.59 (4)H5A—N5—H5B120.0
C1—N1—C5125.4 (5)N5—C6—N4117.8 (5)
C1—N1—H1117.3N5—C6—C7125.0 (6)
C5—N1—H1117.3N4—C6—C7117.2 (5)
C3—C2—C1119.9 (5)C10—N6—H6A120.0
C3—C2—Br5121.9 (4)C10—N6—H6B120.0
C1—C2—Br5118.1 (5)H6A—N6—H6B120.0
C1—N2—H2A120.0C8—C7—C6119.1 (5)
C1—N2—H2B120.0C8—C7—Br7121.8 (4)
H2A—N2—H2B120.0C6—C7—Br7119.1 (4)
C2—C3—C4121.3 (5)C9—C8—C7121.6 (5)
C2—C3—H3119.3C9—C8—H8119.2
C4—C3—H3119.3C7—C8—H8119.2
C5—N3—H3A120.0C8—C9—C10120.7 (5)
C5—N3—H3B120.0C8—C9—Br8120.8 (4)
H3A—N3—H3B120.0C10—C9—Br8118.5 (5)
C3—C4—C5119.6 (6)N6—C10—N4118.0 (5)
C3—C4—Br6121.8 (5)N6—C10—C9126.5 (6)
C5—C4—Br6118.6 (5)N4—C10—C9115.5 (5)
N2—C1—N1—C5179.7 (5)C10—N4—C6—N5178.2 (5)
C2—C1—N1—C50.6 (7)C10—N4—C6—C70.0 (8)
N2—C1—C2—C3179.7 (5)N5—C6—C7—C8177.5 (5)
N1—C1—C2—C30.6 (7)N4—C6—C7—C80.5 (7)
N2—C1—C2—Br53.6 (7)N5—C6—C7—Br72.8 (7)
N1—C1—C2—Br5177.3 (3)N4—C6—C7—Br7179.2 (4)
C1—C2—C3—C40.6 (8)C6—C7—C8—C90.2 (8)
Br5—C2—C3—C4177.1 (4)Br7—C7—C8—C9179.5 (4)
C2—C3—C4—C50.5 (8)C7—C8—C9—C100.7 (8)
C2—C3—C4—Br6179.8 (4)C7—C8—C9—Br8179.0 (4)
C1—N1—C5—N3179.7 (5)C6—N4—C10—N6179.9 (5)
C1—N1—C5—C40.4 (7)C6—N4—C10—C90.8 (7)
C3—C4—C5—N3179.8 (5)C8—C9—C10—N6179.9 (5)
Br6—C4—C5—N30.5 (7)Br8—C9—C10—N61.5 (8)
C3—C4—C5—N10.4 (7)C8—C9—C10—N41.1 (7)
Br6—C4—C5—N1179.7 (3)Br8—C9—C10—N4179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br3i0.862.713.474 (4)150
N2—H2A···Br1i0.862.833.400 (5)125
N2—H2B···Br1ii0.862.703.411 (6)141
N3—H3A···Br3i0.862.773.516 (5)146
N4—H4···Br2iii0.862.823.446 (5)131
N4—H4···Br4iv0.862.933.553 (4)131
N5—H5A···Br2iv0.862.663.377 (5)142
N6—H6A···Br4iv0.862.923.537 (6)130
C8—H8···Br40.932.913.720 (5)147
C3—H3···Br1iii0.932.863.693 (6)150
N6—H6B···Br2v0.862.843.387 (6)123
Symmetry codes: (i) x, y+1, z; (ii) x1, y+1, z; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x, y+1, z+1.
(II) bis(2,6-diamino-3,5-dibromopyridinium) tetrabromidomanganate(II) top
Crystal data top
(C5H6Br2N3)2[MnBr4]Z = 2
Mr = 910.40F(000) = 838
Triclinic, P1Dx = 2.615 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8776 (19) ÅCell parameters from 4301 reflections
b = 10.705 (2) Åθ = 2.3–27.2°
c = 13.962 (3) ŵ = 14.40 mm1
α = 72.757 (4)°T = 296 K
β = 86.692 (4)°Chip, colourless
γ = 66.159 (4)°0.17 × 0.12 × 0.06 mm
V = 1156.2 (4) Å3
Data collection top
Bruker SMART APEX
diffractometer
4154 independent reflections
Radiation source: sealed tube3124 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 8.3 pixels mm-1θmax = 25.3°, θmin = 1.5°
ω scansh = 1010
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2001)
k = 1212
Tmin = 0.135, Tmax = 0.421l = 1616
10998 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.0548P]
where P = (Fo2 + 2Fc2)/3
4154 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
(C5H6Br2N3)2[MnBr4]γ = 66.159 (4)°
Mr = 910.40V = 1156.2 (4) Å3
Triclinic, P1Z = 2
a = 8.8776 (19) ÅMo Kα radiation
b = 10.705 (2) ŵ = 14.40 mm1
c = 13.962 (3) ÅT = 296 K
α = 72.757 (4)°0.17 × 0.12 × 0.06 mm
β = 86.692 (4)°
Data collection top
Bruker SMART APEX
diffractometer
4154 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2001)
3124 reflections with I > 2σ(I)
Tmin = 0.135, Tmax = 0.421Rint = 0.033
10998 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.05Δρmax = 0.85 e Å3
4154 reflectionsΔρmin = 0.61 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.39465 (7)0.00191 (6)0.18295 (4)0.05246 (17)
C10.0902 (7)0.8317 (5)0.0581 (4)0.0426 (12)
Mn10.33366 (10)0.18802 (9)0.26764 (6)0.0458 (2)
N10.0179 (5)0.7706 (4)0.0147 (3)0.0431 (10)
H10.07930.75770.05290.052*
Br20.20300 (9)0.11504 (7)0.42637 (5)0.0643 (2)
C20.0062 (7)0.8536 (5)0.1190 (4)0.0424 (12)
N20.2537 (6)0.8681 (6)0.0624 (4)0.0660 (14)
H2A0.30630.85240.02060.079*
H2B0.30570.90710.10700.079*
Br30.13889 (7)0.40914 (6)0.14204 (5)0.05476 (17)
C30.1727 (7)0.8117 (5)0.1062 (4)0.0500 (14)
H30.23930.82500.14790.060*
N30.1965 (6)0.6712 (5)0.1053 (4)0.0608 (13)
H3A0.12790.66180.14070.073*
H3B0.29890.64340.11810.073*
Br40.58857 (8)0.20637 (7)0.31527 (5)0.05810 (18)
C40.2406 (7)0.7501 (5)0.0314 (4)0.0460 (13)
N40.4376 (6)0.7572 (5)0.4429 (3)0.0485 (11)
H40.42730.81590.47610.058*
Br50.09296 (9)0.94506 (7)0.21676 (5)0.0676 (2)
C50.1443 (7)0.7291 (5)0.0308 (4)0.0429 (13)
N50.6878 (6)0.7678 (5)0.4002 (4)0.0600 (13)
H5A0.66910.82660.43460.072*
H5B0.77770.74330.37010.072*
Br60.46916 (8)0.69239 (8)0.01240 (7)0.0792 (2)
C60.5772 (7)0.7145 (5)0.3936 (4)0.0406 (12)
N60.1837 (7)0.7670 (6)0.4949 (4)0.0663 (14)
H6A0.18170.82600.52590.080*
H6B0.10240.74220.49710.080*
Br70.78962 (8)0.55023 (7)0.27634 (5)0.06401 (19)
C70.5938 (6)0.6171 (6)0.3424 (4)0.0419 (12)
Br80.16402 (8)0.55394 (7)0.38748 (6)0.0671 (2)
C80.4710 (7)0.5718 (5)0.3399 (4)0.0440 (13)
H80.48240.50830.30400.053*
C90.3311 (7)0.6189 (5)0.3896 (4)0.0435 (13)
C100.3130 (7)0.7137 (5)0.4433 (4)0.0457 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0557 (4)0.0523 (3)0.0559 (4)0.0216 (3)0.0021 (3)0.0255 (3)
C10.044 (3)0.038 (3)0.038 (3)0.014 (3)0.005 (3)0.005 (2)
Mn10.0472 (5)0.0470 (5)0.0453 (5)0.0187 (4)0.0004 (4)0.0169 (4)
N10.043 (3)0.050 (3)0.043 (3)0.023 (2)0.004 (2)0.018 (2)
Br20.0775 (5)0.0650 (4)0.0593 (4)0.0341 (4)0.0240 (4)0.0271 (3)
C20.047 (3)0.038 (3)0.041 (3)0.016 (3)0.004 (3)0.012 (2)
N20.048 (3)0.084 (4)0.063 (4)0.020 (3)0.009 (3)0.029 (3)
Br30.0528 (4)0.0462 (3)0.0584 (4)0.0161 (3)0.0061 (3)0.0099 (3)
C30.057 (4)0.044 (3)0.057 (4)0.028 (3)0.005 (3)0.015 (3)
N30.052 (3)0.069 (3)0.074 (4)0.026 (3)0.015 (3)0.039 (3)
Br40.0529 (4)0.0734 (4)0.0623 (4)0.0289 (3)0.0036 (3)0.0354 (3)
C40.037 (3)0.037 (3)0.061 (4)0.015 (2)0.004 (3)0.010 (3)
N40.058 (3)0.047 (3)0.050 (3)0.025 (2)0.006 (2)0.024 (2)
Br50.0945 (5)0.0588 (4)0.0532 (4)0.0306 (4)0.0186 (4)0.0251 (3)
C50.047 (3)0.038 (3)0.046 (3)0.019 (3)0.004 (3)0.015 (3)
N50.061 (3)0.068 (3)0.070 (4)0.039 (3)0.012 (3)0.030 (3)
Br60.0421 (4)0.0799 (5)0.1266 (7)0.0271 (4)0.0103 (4)0.0440 (5)
C60.043 (3)0.039 (3)0.040 (3)0.018 (3)0.000 (2)0.009 (2)
N60.062 (3)0.080 (4)0.074 (4)0.036 (3)0.023 (3)0.041 (3)
Br70.0563 (4)0.0741 (4)0.0711 (4)0.0276 (3)0.0189 (3)0.0361 (4)
C70.039 (3)0.047 (3)0.044 (3)0.019 (3)0.005 (2)0.018 (3)
Br80.0565 (4)0.0663 (4)0.0878 (5)0.0354 (3)0.0044 (3)0.0196 (4)
C80.053 (4)0.039 (3)0.040 (3)0.016 (3)0.003 (3)0.014 (2)
C90.041 (3)0.042 (3)0.049 (3)0.020 (3)0.001 (3)0.012 (3)
C100.043 (3)0.046 (3)0.047 (3)0.016 (3)0.006 (3)0.017 (3)
Geometric parameters (Å, º) top
Mn1—Br12.5073 (10)C4—C51.377 (8)
Mn1—Br22.5054 (11)C4—Br61.895 (5)
Mn1—Br32.4996 (11)N4—C61.359 (7)
Mn1—Br42.4925 (11)N4—C101.362 (6)
C1—N21.345 (7)N4—H40.8600
C1—N11.360 (6)N5—C61.339 (6)
C1—C21.370 (8)N5—H5A0.8600
N1—C51.351 (6)N5—H5B0.8600
N1—H10.8600C6—C71.388 (7)
C2—C31.378 (7)N6—C101.334 (7)
C2—Br51.885 (5)N6—H6A0.8600
N2—H2A0.8600N6—H6B0.8600
N2—H2B0.8600Br7—C71.894 (5)
C3—C41.379 (8)C7—C81.366 (7)
C3—H30.9300Br8—C91.881 (5)
N3—C51.332 (7)C8—C91.372 (7)
N3—H3A0.8600C8—H80.9300
N3—H3B0.8600C9—C101.387 (7)
N2—C1—N1116.1 (5)C6—N4—C10124.7 (4)
N2—C1—C2125.4 (5)C6—N4—H4117.7
N1—C1—C2118.4 (5)C10—N4—H4117.7
Br1—Mn1—Br2106.57 (4)N3—C5—N1117.1 (5)
Br1—Mn1—Br3103.34 (4)N3—C5—C4125.9 (5)
Br1—Mn1—Br4112.39 (4)N1—C5—C4117.0 (5)
Br2—Mn1—Br3112.89 (4)C6—N5—H5A120.0
Br2—Mn1—Br4107.63 (4)C6—N5—H5B120.0
Br3—Mn1—Br4113.83 (4)H5A—N5—H5B120.0
C5—N1—C1124.2 (5)N5—C6—N4117.3 (5)
C5—N1—H1117.9N5—C6—C7125.8 (5)
C1—N1—H1117.9N4—C6—C7116.9 (4)
C1—C2—C3119.5 (5)C10—N6—H6A120.0
C1—C2—Br5119.2 (4)C10—N6—H6B120.0
C3—C2—Br5121.3 (4)H6A—N6—H6B120.0
C1—N2—H2A120.0C8—C7—C6120.4 (5)
C1—N2—H2B120.0C8—C7—Br7121.4 (4)
H2A—N2—H2B120.0C6—C7—Br7118.2 (4)
C4—C3—C2120.0 (5)C7—C8—C9120.8 (5)
C4—C3—H3120.0C7—C8—H8119.6
C2—C3—H3120.0C9—C8—H8119.6
C5—N3—H3A120.0C8—C9—C10120.0 (5)
C5—N3—H3B120.0C8—C9—Br8120.6 (4)
H3A—N3—H3B120.0C10—C9—Br8119.4 (4)
C5—C4—C3120.9 (5)N6—C10—N4117.0 (5)
C5—C4—Br6118.6 (4)N6—C10—C9125.8 (5)
C3—C4—Br6120.5 (4)N4—C10—C9117.2 (5)
N2—C1—N1—C5179.1 (5)C10—N4—C6—N5179.7 (5)
C2—C1—N1—C50.3 (7)C10—N4—C6—C71.6 (8)
N2—C1—C2—C3179.6 (5)N5—C6—C7—C8179.1 (5)
N1—C1—C2—C31.0 (8)N4—C6—C7—C82.2 (8)
N2—C1—C2—Br51.2 (8)N5—C6—C7—Br70.6 (8)
N1—C1—C2—Br5177.5 (3)N4—C6—C7—Br7178.0 (4)
C1—C2—C3—C40.9 (8)C6—C7—C8—C91.5 (8)
Br5—C2—C3—C4177.5 (4)Br7—C7—C8—C9178.8 (4)
C2—C3—C4—C50.3 (8)C7—C8—C9—C100.0 (8)
C2—C3—C4—Br6179.8 (4)C7—C8—C9—Br8179.0 (4)
C1—N1—C5—N3179.8 (5)C6—N4—C10—N6179.4 (5)
C1—N1—C5—C40.3 (7)C6—N4—C10—C90.1 (8)
C3—C4—C5—N3179.8 (5)C8—C9—C10—N6179.8 (6)
Br6—C4—C5—N30.3 (8)Br8—C9—C10—N60.8 (8)
C3—C4—C5—N10.3 (8)C8—C9—C10—N40.7 (8)
Br6—C4—C5—N1179.6 (3)Br8—C9—C10—N4179.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br3i0.862.683.456 (4)151
N2—H2A···Br1i0.862.793.389 (6)128
N2—H2B···Br1ii0.862.713.433 (5)143
N3—H3A···Br3i0.862.773.518 (5)147
N4—H4···Br2iii0.862.903.485 (4)127
N4—H4···Br4iv0.862.853.496 (4)133
N5—H5A···Br2iv0.862.643.380 (5)144
N6—H6A···Br4iv0.862.953.567 (6)131
C8—H8···Br40.932.933.737 (5)145
C3—H3···Br1iii0.932.873.701 (5)149
N6—H6B···Br2v0.862.853.387 (5)122
Symmetry codes: (i) x, y+1, z; (ii) x1, y+1, z; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula(C5H6Br2N3)2[CdBr4](C5H6Br2N3)2[MnBr4]
Mr967.87910.40
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)293296
a, b, c (Å)8.8759 (18), 10.720 (2), 14.137 (3)8.8776 (19), 10.705 (2), 13.962 (3)
α, β, γ (°)73.07 (3), 86.87 (3), 65.61 (3)72.757 (4), 86.692 (4), 66.159 (4)
V3)1168.7 (5)1156.2 (4)
Z22
Radiation typeMo KαMo Kα
µ (mm1)14.6214.40
Crystal size (mm)0.25 × 0.12 × 0.040.17 × 0.12 × 0.06
Data collection
DiffractometerBruker SMART APEX
diffractometer
Bruker SMART APEX
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Bruker, 2001)
Empirical (using intensity measurements)
(SADABS; Bruker, 2001)
Tmin, Tmax0.114, 0.5570.135, 0.421
No. of measured, independent and
observed [I > 2σ(I)] reflections
11259, 4207, 3281 10998, 4154, 3124
Rint0.0370.033
(sin θ/λ)max1)0.6000.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.082, 1.03 0.036, 0.089, 1.05
No. of reflections42074154
No. of parameters226226
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.900.85, 0.61

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), XS in SHELXTL (Version 6.10; Sheldrick, 2008), XL in SHELXTL (Version 6.10; Sheldrick, 2008), XP in SHELXTL (Version 6.10; Sheldrick, 2008), XCIF in SHELXTL (Version 6.10; Sheldrick, 2008).

Selected geometric parameters (Å, º) for (I) top
Cd1—Br12.5896 (10)Cd1—Br32.5791 (16)
Cd1—Br22.5917 (11)Cd1—Br42.5678 (9)
Br1—Cd1—Br2106.03 (3)Br2—Cd1—Br3113.34 (4)
Br1—Cd1—Br3101.99 (3)Br2—Cd1—Br4107.05 (3)
Br1—Cd1—Br4113.61 (4)Br3—Cd1—Br4114.59 (4)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br3i0.862.713.474 (4)149.5
N2—H2A···Br1i0.862.833.400 (5)125.2
N2—H2B···Br1ii0.862.703.411 (6)141.4
N3—H3A···Br3i0.862.773.516 (5)145.9
N4—H4···Br2iii0.862.823.446 (5)130.7
N4—H4···Br4iv0.862.933.553 (4)130.9
N5—H5A···Br2iv0.862.663.377 (5)141.7
N6—H6A···Br4iv0.862.923.537 (6)130.0
C8—H8···Br40.932.913.720 (5)146.5
C3—H3···Br1iii0.932.863.693 (6)149.9
N6—H6B···Br2v0.862.843.387 (6)122.6
Symmetry codes: (i) x, y+1, z; (ii) x1, y+1, z; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x, y+1, z+1.
Selected geometric parameters (Å, º) for (II) top
Mn1—Br12.5073 (10)Mn1—Br32.4996 (11)
Mn1—Br22.5054 (11)Mn1—Br42.4925 (11)
Br1—Mn1—Br2106.57 (4)Br2—Mn1—Br3112.89 (4)
Br1—Mn1—Br3103.34 (4)Br2—Mn1—Br4107.63 (4)
Br1—Mn1—Br4112.39 (4)Br3—Mn1—Br4113.83 (4)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br3i0.862.683.456 (4)150.9
N2—H2A···Br1i0.862.793.389 (6)127.9
N2—H2B···Br1ii0.862.713.433 (5)142.6
N3—H3A···Br3i0.862.773.518 (5)146.9
N4—H4···Br2iii0.862.903.485 (4)127.3
N4—H4···Br4iv0.862.853.496 (4)133.2
N5—H5A···Br2iv0.862.643.380 (5)144.3
N6—H6A···Br4iv0.862.953.567 (6)130.5
C8—H8···Br40.932.933.737 (5)145.4
C3—H3···Br1iii0.932.873.701 (5)148.9
N6—H6B···Br2v0.862.853.387 (5)122.4
Symmetry codes: (i) x, y+1, z; (ii) x1, y+1, z; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x, y+1, z+1.
Comparative geometric parameters (Å,°) for halogen bonding in (I) and (II) top
Contacts(I)(II)
Br5···Br4ii3.6133 (17)3.6261 (10)
Br3···Br7vi3.5482 (16)3.5544 (10)
Angles
C—Br5···Br4ii157156
Br3···Br7vi—C175175
Symmetry codes: (ii) x - 1, y + 1, z; (vi) x - 1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds