Download citation
Download citation
link to html
The title compounds, rac-(1′R,2R)-tert-butyl 2-(1′-hydroxy­ethyl)-3-(2-nitro­phen­yl)-5-oxo-2,5-dihydro-1H-pyrrole-1-car­box­yl­ate, C17H20N2O6, (I), rac-(1′S,2R)-tert-butyl 2-[1′-hy­droxy-3′-(methoxy­carbon­yl)prop­yl]-3-(2-nitro­phen­yl)-5-oxo-2,5-di­hydro-1H-pyrrole-1-carboxyl­ate, C20H24N2O8, (II), and rac-(1′S,2R)-tert-butyl 2-(4′-bromo-1′-hydroxy­butyl)-5-oxo-2,5-di­hydro-1H-pyrrole-1-carboxyl­ate, C13H20BrNO4, (III), are 5-hy­droxy­alkyl derivatives of tert-butyl 2-oxo-2,5-dihydro­pyrrole-1-carboxyl­ate. In all three compounds, the tert-butoxy­carbonyl (Boc) unit is orientated in the same manner with respect to the mean plane through the 2-oxo-2,5-dihydro-1H-pyrrole ring. The hydroxyl substituent at one of the newly created chiral centres, which have relative R,R stereochemistry, is trans with respect to the oxo group of the pyrrole ring in (I), synthesized using acetaldehyde. When a larger aldehyde was used, as in compounds (II) and (III), the hydroxyl substituent was found to be cis with respect to the oxo group of the pyrrole ring. Here, the relative stereochemistry of the newly created chiral centres is R,S. In compound (I), O—H...O hydrogen bonding leads to an inter­esting hexa­gonal arrangement of symmetry-related mol­ecules. In (II) and (III), the hydroxyl groups are involved in bifurcated O—H...O hydrogen bonds, and centrosymmetric hydrogen-bonded dimers are formed. The Mukaiyama crossed-aldol-type reaction was successful when using the 2-nitro­phenyl-substituted hydroxy­pyrrole, or the unsubstituted hydroxy­pyrrole, and boron trifluoride diethyl ether as catalyst. The synthetic procedure leads to a syn configuration of the two newly created chiral centres in all three compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109008877/ga3120sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109008877/ga3120Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109008877/ga3120IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109008877/ga3120IIIsup4.hkl
Contains datablock III

CCDC references: 730109; 730110; 730111

Comment top

The natural product (-)-rhazinilam was first isolated by Linde in 1965 from Melodinus australis (Baudoin et al., 2004). The tetracyclic structure was determined by a combination of X-ray analysis and chemical studies 7 years later (De Silva et al., 1972). Screening experiments have shown that (-)-rhazinilam has interesting pharmacological properties, due to its interference in the tubuline–microtubule equilibrium during mitosis. It has also been shown to have significant in vitro cytotoxicity, but no activity in vivo (Baudoin et al., 2004). Several groups have reported their studies on the synthesis of this natural product and its analogues (Decor et al., 2006; Baudoin et al., 2002; Ghosez et al., 2001; Rubio et al., 2001; Dupont et al., 2000; Alazard et al., 1996). Our synthetic strategy was to replace the pyrrole ring by a corresponding pyrrol-2(5H)-one ring or its protected 2-hydroxypyrrole tautomer (Vallat et al., 2009).

In order to introduce the missing side chain needed for the formation of ring B of rhazinilam, we tested the known Mukaiyama crossed-aldol-type reaction (Mukaiyama et al., 1974) of the protected 2-hydroxypyrrole with different aldehydes. This reaction was successful when using the 2-nitrophenyl-substituted hydroxypyrrole (1), or the unsubstituted hydroxypyrrole (2), and boron trifluoride diethyl ether as catalyst. The relative configuration at the two newly formed chiral centres could not be determined unequivocally using NMR methods. A literature search showed that the Boc-protected (Boc is tert-butoxycarbonyl) TBS-silyloxy-pyrrole (2) had been used in a series of very elegant natural product syntheses (Battistini et al., 2004; Rassu et al., 2002, 2003; Barnes et al., 2002; Casiraghi et al., 1992; DeGoey et al., 2002). The diastereoselectivity of the reaction with a series of chiral aldehydes and imines has been carefully studied and was shown, for most of the reported processes, to be syn. However, the reaction using the imine has been reported to be anti selective (Barnes et al., 2002; DeGoey et al., 2002). The diastereoselectivity of the crossed-aldol-type reaction using a phenyl-substituted pyrrole has not been reported previously, to our knowledge. We report here the crystal structures of tert-butyl 2-(1-hydroxyethyl)-3-(2-nitrophenyl)-5-oxo-2,5-dihydro-1H-pyrrole-1-carboxylate, (I), tert-butyl 2-[1-hydroxy-3-(methoxycarbonyl)propyl]-3-(2-nitrophenyl)-5-oxo-2,5-dihydro-1H-pyrrole-1-carboxylate, (II), and tert-butyl 2-(4-bromo-1-hydroxybutyl)-5-oxo-2,5-dihydro-1H-pyrrole-1-carboxylate, (III), which were studied to determine the diastereoselectivity of the Mukaiyama crossed-aldol-type reaction.

The molecular structures of compounds (I), (II) and (III) are illustrated in Figs. 1, 3 and 5, respectively. The crystal packing in compounds (I), (II) and (III), also showing the hydrogen bonding, are illustrated in Figs. 2, 4 and 6, respectively. The bond lengths and angles in all three compounds are in normal ranges (Allen et al., 1987). Details of the hydrogen bonding are given in Tables 1, 2 and 3, respectively.

All three compounds contain a 2-oxo-2,5-dihydro-1H-pyrrole-1-carboxylate unit that has a very similar geometry. In compounds (I) and (II), the 2-nitrophenyl substituent at C3 is inclined to the best plane through the 2,5-dihydro-1H-pyrrole ring by 52.47 (6) and 71.25 (11)°, respectively. The orientation of the hydroxyl substituent at C10 in compound (I) (Fig. 1) is different to that in compounds (II) (Fig. 3) and (III) (Fig. 5). In (I), it lies trans with respect to the 2,5-dihydro-1H-pyrrole ring, and the C10—O4 bond makes an angle of 1.16 (9)° with the mean plane of the pyrrole ring. In compounds (II) and (III), however, it is cis with respect to the pyrrole ring, and here the C10—O4 bond is inclined to the pyrrole ring mean plane by 55.22 (11)° in (II), and 56.08 (11)° in (III).

In all three compounds, O—H···O hydrogen bonds play an important role. In the crystal structure of compound (I), a hexagonal arrangement of symmetry-related molecules is formed (Fig. 2 and Table 1). In compounds (II) and (III), the hydroxyl group is involved in bifurcated O—H···O hydrogen bonds, and in both crystal structures centrosymmetric hydrogen-bonded dimers are formed (Figs. 4 and 6, and Tables 2 and 3, respectively).

The relative stereochemistry of the newly created chiral centres in compound (I), at C4 and C10, is R,R. When a larger aldehyde was used, as in the case of compounds (II) and (III), the relative stereochemistry of the newly created chiral centres is R,S. The synthetic procedure used led to a syn configuration of the two newly created chiral centres in all three compounds, in close analogy to reports in the literature (Battistini et al., 2004; Rassu et al., 2002, 2003; Casiraghi et al., 1992). Changing the Lewis acid, that is using BF3 instead of SnCl4, and introducing an aryl substituent at the carbon next to the nucleophilic centre, does not influence the diastereoselectivity of the process. An extended transition state respecting the Bürgi–Dunitz angle (Bürgi & Dunitz, 1974) is compatible with these results.

Related literature top

For related literature, see: Alazard et al. (1996); Allen et al. (1987); Bürgi & Dunitz (1974); Barnes et al. (2002); Battistini et al. (2004); Baudoin et al. (2004); Casiraghi et al. (1992); De Silva, Ratcliffe, Smith & Smith (1972); DeGoey, Chen, Flosi, Grampovnik, Yeung, Klein & Kempf (2002); Decor et al. (2006); Dupont et al. (2000); Ghosez et al. (2001); Mukaiyama et al. (1974); Rassu et al. (2002, 2003); Rubio & Bornmann (2001).

Experimental top

For the preparation of compound (I), acetaldehyde (0.18 ml, 3.20 mmol) and BF3.OEt2 (0.47 ml, 3.78 mmol) were added dropwise to a solution of tert-butyl 2-(tert-butyldimethylsilyloxy)-4-(2-nitrophenyl)-1H-pyrrole-1-carboxylate (1.22 g, 2.91 mmol) in dry CH2Cl2 (30 ml) at 195 K under argon. The colour of the solution changed from yellow to light yellow. The mixture was stirred at 195 K for 1 h. The reaction mixture was quenched at 195 K with a saturated aqueous solution of NaHCO3 (20 ml) and the aqueous layer was extracted with CH2Cl2. The combined organic layers were washed with brine, dried over MgSO4 and concentrated. Purification of the residue by flash chromatography (silica gel, ethyl acetate–dichloromethane 4:6 v/v) afforded the aldol product (3) as a white solid (yield 0.53 g, 52%). Crystals suitable for X-ray analysis were otained by slow evaporation of an ether–hexane (1:1) solution.

For the preparation of compound (II), methyl 4-oxobutanoate (348 mg, 3.0 mmol) and BF3.OEt2 (0.38 ml, 2.3 mmol) were added dropwise to a solution of tert-butyl 2-(tert-butyldimethylsilyloxy)-4-(2-nitrophenyl)-1H-pyrrole-1-carboxylate (966 mg, 2.3 mmol) in dry CH2Cl2 (20 ml) at 195 K under argon. The colour of the solution changed from yellow to light yellow. The mixture was stirred at 195 K for 1 h. The reaction mixture was quenched at 195 K with a saturated aqueous solution of NaHCO3 (15 ml) and the aqueous layer was extracted with CH2Cl2. The combined organic layers were washed with brine, dried over MgSO4 and concentrated. Purification of the residue by flash chromatography (silica gel, ethyl acetate–diethyl ether 3:7 v/v) afforded the aldol product (4) as a white solid (yield 815 mg, 93%). Crystals suitable for X-ray analysis were otained by slow evaporation of an ether–hexane (1:1) solution.

For the preparation of compound (III), 4-bromobutanal (0.35 g, 2.31 mmol) and BF3.OEt2 (0.29 ml, 2.31 mmol) were added dropwise to a solution of tert-butyl 2-(tert-butyldimethylsilyloxy)-1H-pyrrole-1-carboxylate (0.68 g, 2.31 mmol) in dry CH2Cl2 (20 ml) at 195 K under argon. The colour of the solution changed from yellow to light yellow. The mixture was stirred at 195 K for 1 h. The reaction mixture was quenched at 195 K with a saturated aqueous solution of NaHCO3 (15 ml) and the aqueous layer was extracted with CH2Cl2. The combined organic layers were washed with brine, dried over MgSO4 and concentrated. Purification of the residue by flash chromatography (silica gel, ethyl acetate–dichloromethane 3:7 v/v) afforded the aldol product (5) as a white solid (yield 0.30 g, 39%). Crystals suitable for X-ray analysis were otained by slow evaporation of an ether–hexane (1:1) solution.

Refinement top

In compound (I), the hydroxyl H atom was located from a difference Fourier map and freely refined [O—H = 0.852 (18) Å]. For compounds (II) and (III), the hydroxyl H atoms were included in calculated positions and treated as riding [O—H = 0.84 Å and Uiso(H) = 1.5Ueq(O)]. The C-bound H atoms in all three compounds were included in calculated positions and treated as riding atoms [C—H = 0.95–1.00Å and Uiso(H) = 1.2 or 1.5Ueq(C)]. A small cusp of data is missing for structure (II): this problem is related to the image-plate diffractometer using only one azimuthal scan. A fraction of the reciprocal lattice points never intersect the Ewald sphere and so a small cusp of data is missing. This has a small effect on the precision of the structure analysis, which can be seen when comparing the s.u. values of structure (II) with those of structures (I) and (III); for example, on average, the bond distances differ by 5 s.u., whereas for structures (I) and (III) they differ by only 2 s.u.

Computing details top

For all compounds, data collection: X-AREA (Stoe & Cie, 2006); cell refinement: X-AREA (Stoe & Cie, 2006); data reduction: X-RED32 (Stoe & Cie, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A partial cell view along the c axis of the crystal packing of compound (I), showing the formation of the hexagonal arrangement of symmetry-related hydrogen-bonded molecules (see Table 1 for details). Hydrogen bonds are shown as dotted lines and H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. The molecular structure of compound (II), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 4] Fig. 4. A view along the a axis of the crystal packing of compound (II), showing the bifurcated hydrogen bonds and the formation of the centrosymmetric hydrogen-bonded dimers (see Table 2 for details). Hydrogen bonds are shown as dotted lines and H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 5] Fig. 5. The molecular structure of compound (III), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 6] Fig. 6. A cell view along the a axis of compound (III), showing the bifurcated hydrogen bonds and the formation of the centrosymmetric hydrogen-bonded dimers (see Table 3 for details). Hydrogen bonds are shown as dotted lines and H atoms not involved in hydrogen bonding have been omitted for clarity.
(I) tert-butyl 2-(1-hydroxyethyl)-3-(2-nitrophenyl)-5-oxo-2,5-dihydro- 1H-pyrrole-1-carboxylate top
Crystal data top
C17H20N2O6Dx = 1.327 Mg m3
Mr = 348.35Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 37232 reflections
Hall symbol: -R 3θ = 1.9–29.6°
a = 21.1117 (8) ŵ = 0.10 mm1
c = 20.3244 (9) ÅT = 173 K
V = 7845.0 (5) Å3Block, pale violet
Z = 180.45 × 0.45 × 0.45 mm
F(000) = 3312
Data collection top
Stoe IPDS-2
diffractometer
4041 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.089
Graphite monochromatorθmax = 29.3°, θmin = 1.9°
ϕ and ω scansh = 2829
39673 measured reflectionsk = 2828
4718 independent reflectionsl = 2527
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0345P)2 + 5.9651P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4718 reflectionsΔρmax = 0.27 e Å3
235 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00059 (14)
Crystal data top
C17H20N2O6Z = 18
Mr = 348.35Mo Kα radiation
Trigonal, R3µ = 0.10 mm1
a = 21.1117 (8) ÅT = 173 K
c = 20.3244 (9) Å0.45 × 0.45 × 0.45 mm
V = 7845.0 (5) Å3
Data collection top
Stoe IPDS-2
diffractometer
4041 reflections with I > 2σ(I)
39673 measured reflectionsRint = 0.089
4718 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.27 e Å3
4718 reflectionsΔρmin = 0.17 e Å3
235 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29424 (5)0.41562 (5)0.00122 (5)0.0391 (3)
O20.21212 (5)0.28894 (5)0.07457 (5)0.0480 (3)
O30.25771 (5)0.21244 (4)0.06812 (4)0.0371 (3)
O40.41816 (5)0.23954 (4)0.06199 (5)0.0372 (3)
O50.50360 (5)0.38580 (5)0.09835 (4)0.0417 (3)
O60.56788 (6)0.33232 (5)0.09317 (5)0.0447 (3)
N10.31770 (5)0.32006 (5)0.01879 (5)0.0294 (3)
N20.54177 (5)0.36699 (5)0.06844 (4)0.0295 (2)
C10.33427 (6)0.39007 (6)0.00134 (5)0.0287 (3)
C20.40944 (6)0.42536 (5)0.02579 (5)0.0278 (3)
C30.43615 (5)0.38024 (5)0.02026 (5)0.0244 (2)
C40.37748 (5)0.30600 (5)0.00296 (6)0.0270 (3)
C50.25675 (6)0.27380 (6)0.05644 (6)0.0320 (3)
C60.20133 (6)0.15371 (6)0.10954 (6)0.0353 (3)
C70.20589 (10)0.18259 (9)0.17826 (7)0.0559 (5)
C80.12653 (8)0.12481 (9)0.07984 (9)0.0595 (5)
C90.22464 (9)0.09680 (8)0.10738 (8)0.0513 (5)
C100.35612 (6)0.24733 (6)0.05118 (6)0.0342 (3)
C110.33351 (8)0.26656 (8)0.11510 (8)0.0489 (4)
C120.51070 (5)0.39876 (5)0.03979 (5)0.0234 (3)
C130.53620 (6)0.42848 (5)0.10190 (5)0.0273 (3)
C140.60600 (6)0.44736 (6)0.12258 (5)0.0305 (3)
C150.65207 (6)0.43617 (6)0.08213 (6)0.0322 (3)
C160.62888 (6)0.40740 (6)0.02006 (5)0.0286 (3)
C170.55966 (5)0.39000 (5)0.00005 (5)0.0243 (3)
H20.435500.473600.043100.0330*
H40.393900.291400.043500.0320*
H4O0.4094 (9)0.1984 (10)0.0466 (8)0.050 (4)*
H7A0.190700.219500.177800.0840*
H7B0.256300.204700.194200.0840*
H7C0.173500.142300.207400.0840*
H8A0.127400.111700.033700.0890*
H8B0.112500.162500.082200.0890*
H8C0.091000.081400.104200.0890*
H9A0.224700.082000.061700.0770*
H9B0.273900.117300.125800.0770*
H9C0.190400.054100.133200.0770*
H100.315000.199800.034700.0410*
H11A0.375500.309700.134400.0730*
H11B0.316300.225300.145700.0730*
H11C0.294000.277200.106800.0730*
H130.505100.436000.130700.0330*
H140.622300.468200.165000.0370*
H150.699500.448200.097000.0390*
H160.660100.399700.008400.0340*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0436 (5)0.0381 (4)0.0497 (5)0.0309 (4)0.0099 (4)0.0058 (4)
O20.0417 (5)0.0501 (5)0.0662 (6)0.0334 (5)0.0241 (4)0.0187 (5)
O30.0361 (4)0.0315 (4)0.0479 (5)0.0200 (3)0.0182 (4)0.0127 (3)
O40.0361 (4)0.0246 (4)0.0577 (5)0.0203 (3)0.0199 (4)0.0106 (4)
O50.0480 (5)0.0603 (6)0.0284 (4)0.0358 (5)0.0067 (3)0.0001 (4)
O60.0559 (6)0.0532 (5)0.0383 (5)0.0373 (5)0.0082 (4)0.0166 (4)
N10.0285 (4)0.0258 (4)0.0390 (5)0.0174 (4)0.0083 (4)0.0037 (4)
N20.0314 (4)0.0307 (4)0.0272 (4)0.0162 (4)0.0024 (3)0.0024 (3)
C10.0328 (5)0.0266 (5)0.0321 (5)0.0190 (4)0.0024 (4)0.0009 (4)
C20.0307 (5)0.0217 (4)0.0323 (5)0.0140 (4)0.0007 (4)0.0005 (4)
C30.0256 (4)0.0212 (4)0.0262 (4)0.0115 (4)0.0001 (4)0.0016 (3)
C40.0238 (4)0.0229 (4)0.0370 (5)0.0138 (4)0.0064 (4)0.0030 (4)
C50.0299 (5)0.0327 (5)0.0377 (6)0.0189 (4)0.0068 (4)0.0047 (4)
C60.0348 (6)0.0319 (5)0.0363 (6)0.0144 (5)0.0112 (4)0.0085 (4)
C70.0747 (11)0.0519 (8)0.0388 (7)0.0299 (8)0.0134 (7)0.0043 (6)
C80.0397 (7)0.0500 (8)0.0744 (11)0.0117 (6)0.0006 (7)0.0060 (7)
C90.0609 (9)0.0384 (7)0.0585 (9)0.0278 (6)0.0215 (7)0.0177 (6)
C100.0249 (5)0.0208 (5)0.0546 (7)0.0098 (4)0.0100 (4)0.0040 (4)
C110.0381 (6)0.0556 (8)0.0576 (8)0.0269 (6)0.0162 (6)0.0285 (7)
C120.0242 (4)0.0170 (4)0.0269 (5)0.0088 (3)0.0010 (3)0.0014 (3)
C130.0293 (5)0.0218 (4)0.0263 (5)0.0095 (4)0.0017 (4)0.0001 (4)
C140.0314 (5)0.0245 (5)0.0266 (5)0.0072 (4)0.0046 (4)0.0009 (4)
C150.0248 (5)0.0310 (5)0.0344 (5)0.0091 (4)0.0061 (4)0.0006 (4)
C160.0257 (5)0.0272 (5)0.0320 (5)0.0126 (4)0.0007 (4)0.0002 (4)
C170.0265 (5)0.0204 (4)0.0249 (4)0.0109 (4)0.0024 (3)0.0003 (3)
Geometric parameters (Å, º) top
O1—C11.2098 (18)C13—C141.3855 (19)
O2—C51.1945 (18)C14—C151.3811 (19)
O3—C51.3271 (15)C15—C161.3794 (16)
O3—C61.4788 (15)C16—C171.3781 (18)
O4—C101.4164 (18)C2—H20.9500
O5—N21.2234 (15)C4—H41.0000
O6—N21.2230 (16)C7—H7A0.9800
O4—H4O0.852 (18)C7—H7B0.9800
N1—C11.3990 (15)C7—H7C0.9800
N1—C51.3923 (16)C8—H8A0.9800
N1—C41.4694 (17)C8—H8B0.9800
N2—C171.4604 (13)C8—H8C0.9800
C1—C21.4622 (18)C9—H9A0.9800
C2—C31.3323 (16)C9—H9B0.9800
C3—C121.4738 (16)C9—H9C0.9800
C3—C41.5074 (14)C10—H101.0000
C4—C101.5459 (16)C11—H11A0.9800
C6—C81.506 (2)C11—H11B0.9800
C6—C91.510 (2)C11—H11C0.9800
C6—C71.5077 (19)C13—H130.9500
C10—C111.508 (2)C14—H140.9500
C12—C171.3950 (16)C15—H150.9500
C12—C131.3926 (14)C16—H160.9500
C5—O3—C6121.44 (11)C1—C2—H2125.00
C10—O4—H4O108.6 (14)C3—C2—H2125.00
C1—N1—C5123.85 (11)N1—C4—H4110.00
C4—N1—C5124.37 (10)C3—C4—H4110.00
C1—N1—C4111.29 (10)C10—C4—H4110.00
O5—N2—O6123.86 (10)C6—C7—H7A109.00
O6—N2—C17118.15 (10)C6—C7—H7B109.00
O5—N2—C17117.93 (10)C6—C7—H7C109.00
O1—C1—N1126.66 (12)H7A—C7—H7B110.00
N1—C1—C2105.79 (11)H7A—C7—H7C109.00
O1—C1—C2127.56 (10)H7B—C7—H7C110.00
C1—C2—C3110.28 (9)C6—C8—H8A110.00
C2—C3—C12124.42 (9)C6—C8—H8B109.00
C4—C3—C12124.99 (9)C6—C8—H8C109.00
C2—C3—C4110.39 (10)H8A—C8—H8B109.00
N1—C4—C10112.45 (10)H8A—C8—H8C109.00
C3—C4—C10111.66 (10)H8B—C8—H8C110.00
N1—C4—C3101.58 (8)C6—C9—H9A110.00
O2—C5—N1123.91 (11)C6—C9—H9B110.00
O3—C5—N1108.86 (11)C6—C9—H9C109.00
O2—C5—O3127.24 (12)H9A—C9—H9B109.00
O3—C6—C7109.05 (10)H9A—C9—H9C109.00
O3—C6—C9101.81 (11)H9B—C9—H9C110.00
C7—C6—C8112.16 (14)O4—C10—H10109.00
O3—C6—C8110.67 (11)C4—C10—H10109.00
C8—C6—C9111.04 (12)C11—C10—H10109.00
C7—C6—C9111.62 (13)C10—C11—H11A109.00
O4—C10—C11109.46 (11)C10—C11—H11B110.00
C4—C10—C11113.72 (10)C10—C11—H11C109.00
O4—C10—C4106.69 (10)H11A—C11—H11B109.00
C3—C12—C17124.93 (9)H11A—C11—H11C109.00
C13—C12—C17116.07 (11)H11B—C11—H11C109.00
C3—C12—C13118.99 (10)C12—C13—H13119.00
C12—C13—C14121.37 (11)C14—C13—H13119.00
C13—C14—C15120.59 (10)C13—C14—H14120.00
C14—C15—C16119.64 (13)C15—C14—H14120.00
C15—C16—C17118.87 (12)C14—C15—H15120.00
N2—C17—C16115.68 (10)C16—C15—H15120.00
C12—C17—C16123.44 (10)C15—C16—H16121.00
N2—C17—C12120.69 (10)C17—C16—H16121.00
C6—O3—C5—O22.40 (19)C1—C2—C3—C12179.43 (9)
C6—O3—C5—N1177.35 (10)C2—C3—C4—N18.07 (12)
C5—O3—C6—C762.67 (16)C2—C3—C4—C10111.98 (11)
C5—O3—C6—C861.16 (14)C12—C3—C4—N1176.97 (10)
C5—O3—C6—C9179.26 (11)C12—C3—C4—C1062.99 (14)
C4—N1—C1—O1175.08 (11)C2—C3—C12—C1349.77 (14)
C4—N1—C1—C24.97 (12)C2—C3—C12—C17129.10 (11)
C5—N1—C1—O112.66 (19)C4—C3—C12—C13124.51 (11)
C5—N1—C1—C2167.29 (10)C4—C3—C12—C1756.63 (15)
C1—N1—C4—C37.80 (12)N1—C4—C10—O4179.54 (9)
C1—N1—C4—C10111.70 (10)N1—C4—C10—C1158.76 (14)
C5—N1—C4—C3164.42 (10)C3—C4—C10—O466.10 (12)
C5—N1—C4—C1076.09 (14)C3—C4—C10—C1154.68 (15)
C1—N1—C5—O20.98 (19)C3—C12—C13—C14179.54 (9)
C1—N1—C5—O3178.78 (10)C17—C12—C13—C140.57 (14)
C4—N1—C5—O2172.23 (12)C3—C12—C17—N25.69 (14)
C4—N1—C5—O37.52 (16)C3—C12—C17—C16179.51 (10)
O5—N2—C17—C1231.70 (14)C13—C12—C17—N2173.20 (9)
O5—N2—C17—C16143.49 (11)C13—C12—C17—C161.60 (14)
O6—N2—C17—C12150.83 (10)C12—C13—C14—C150.89 (16)
O6—N2—C17—C1633.99 (14)C13—C14—C15—C161.41 (17)
O1—C1—C2—C3179.47 (11)C14—C15—C16—C170.42 (16)
N1—C1—C2—C30.48 (12)C15—C16—C17—N2173.92 (9)
C1—C2—C3—C45.58 (12)C15—C16—C17—C121.12 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O1i0.852 (18)1.930 (19)2.7600 (15)164.3 (19)
Symmetry code: (i) y, x+y, z.
(II) tert-butyl 2-[1-hydroxy-3-(methoxycarbonyl)propyl]-3-(2-nitrophenyl)-5-oxo-2,5-dihydro- 1H-pyrrole-1-carboxylate top
Crystal data top
C20H24N2O8F(000) = 1776
Mr = 420.41Dx = 1.365 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 14223 reflections
a = 9.1439 (7) Åθ = 1.4–26.0°
b = 20.7113 (18) ŵ = 0.11 mm1
c = 21.598 (2) ÅT = 153 K
V = 4090.3 (6) Å3Plate, colourless
Z = 80.50 × 0.45 × 0.10 mm
Data collection top
Stoe IPDS-2
diffractometer
2605 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.078
Graphite monochromatorθmax = 26.0°, θmin = 1.9°
rotation method scansh = 811
16666 measured reflectionsk = 1725
3856 independent reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0615P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.001
3856 reflectionsΔρmax = 0.18 e Å3
277 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0048 (6)
Crystal data top
C20H24N2O8V = 4090.3 (6) Å3
Mr = 420.41Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.1439 (7) ŵ = 0.11 mm1
b = 20.7113 (18) ÅT = 153 K
c = 21.598 (2) Å0.50 × 0.45 × 0.10 mm
Data collection top
Stoe IPDS-2
diffractometer
2605 reflections with I > 2σ(I)
16666 measured reflectionsRint = 0.078
3856 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 0.95Δρmax = 0.18 e Å3
3856 reflectionsΔρmin = 0.22 e Å3
277 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.82338 (16)1.04916 (7)1.03743 (5)0.0398 (4)
O20.98587 (16)1.10030 (7)0.94111 (5)0.0377 (4)
O30.95859 (15)1.04336 (7)0.85188 (5)0.0355 (4)
O40.94241 (16)0.86269 (7)0.92957 (5)0.0381 (4)
O51.0951 (2)0.73288 (9)0.85235 (9)0.0652 (7)
O60.85174 (18)0.72804 (8)0.85811 (7)0.0503 (5)
O70.46800 (17)0.97641 (8)0.87432 (6)0.0426 (5)
O80.3128 (2)0.91739 (10)0.82448 (6)0.0618 (7)
N10.84959 (18)1.00760 (8)0.93705 (6)0.0314 (5)
N20.40953 (19)0.92421 (10)0.86356 (7)0.0405 (6)
C10.7897 (2)1.01036 (10)0.99720 (7)0.0330 (6)
C20.6820 (2)0.95899 (10)1.00009 (7)0.0345 (6)
C30.6746 (2)0.92758 (10)0.94629 (7)0.0321 (6)
C40.7851 (2)0.95408 (9)0.90103 (7)0.0309 (5)
C50.9383 (2)1.05520 (10)0.91219 (7)0.0308 (6)
C61.0587 (2)1.08406 (10)0.81389 (7)0.0354 (6)
C70.9866 (3)1.14807 (11)0.80216 (9)0.0455 (7)
C81.2068 (2)1.08975 (12)0.84463 (9)0.0428 (7)
C91.0704 (3)1.04371 (12)0.75502 (8)0.0459 (7)
C100.9001 (2)0.90391 (10)0.88007 (7)0.0343 (6)
C110.8398 (3)0.86263 (11)0.82758 (8)0.0404 (7)
C120.9515 (3)0.81462 (11)0.80205 (9)0.0460 (7)
C130.9772 (3)0.75551 (12)0.84067 (10)0.0459 (7)
C140.8654 (3)0.67016 (13)0.89480 (11)0.0604 (9)
C150.5813 (2)0.87049 (10)0.93627 (7)0.0347 (6)
C160.6175 (3)0.81437 (11)0.96806 (9)0.0439 (7)
C170.5335 (3)0.75894 (12)0.96383 (10)0.0541 (8)
C180.4101 (3)0.75838 (13)0.92703 (10)0.0546 (8)
C190.3711 (3)0.81283 (12)0.89444 (9)0.0483 (7)
C200.4561 (2)0.86762 (10)0.89889 (8)0.0367 (6)
H20.624500.949101.035500.0410*
H40.733300.971800.864000.0370*
H4O1.001800.882200.952600.0570*
H7A0.890701.141100.783000.0680*
H7B1.047901.173800.774300.0680*
H7C0.974201.171100.841500.0680*
H8A1.197701.115400.882500.0640*
H8B1.275401.110900.816300.0640*
H8C1.243201.046600.855000.0640*
H9A1.116001.002100.764700.0690*
H9B1.130201.066700.724500.0690*
H9C0.972401.036400.738000.0690*
H100.988600.927400.864800.0410*
H11A0.807000.891300.793600.0480*
H11B0.753400.838600.842800.0480*
H12A0.918800.800700.760400.0550*
H12B1.046000.837300.796800.0550*
H14A0.916000.636900.870700.0910*
H14B0.767900.654600.906300.0910*
H14C0.921700.679600.932300.0910*
H160.702400.814000.993400.0530*
H170.560800.721300.986200.0650*
H180.352100.720400.924200.0650*
H190.286200.812700.869100.0580*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0431 (8)0.0422 (8)0.0341 (6)0.0070 (8)0.0024 (5)0.0091 (6)
O20.0461 (8)0.0322 (8)0.0348 (6)0.0067 (7)0.0004 (5)0.0041 (5)
O30.0435 (8)0.0348 (8)0.0283 (5)0.0078 (7)0.0027 (5)0.0013 (5)
O40.0429 (9)0.0323 (8)0.0390 (6)0.0015 (7)0.0080 (5)0.0012 (5)
O50.0419 (10)0.0490 (12)0.1047 (13)0.0032 (9)0.0081 (9)0.0138 (9)
O60.0428 (9)0.0463 (10)0.0618 (9)0.0045 (8)0.0055 (7)0.0016 (7)
O70.0392 (9)0.0437 (10)0.0448 (7)0.0001 (8)0.0008 (6)0.0071 (6)
O80.0570 (11)0.0812 (14)0.0473 (8)0.0047 (10)0.0222 (7)0.0111 (8)
N10.0341 (9)0.0306 (9)0.0295 (7)0.0022 (8)0.0010 (6)0.0024 (6)
N20.0369 (10)0.0516 (12)0.0330 (7)0.0008 (10)0.0002 (7)0.0043 (7)
C10.0338 (11)0.0356 (11)0.0295 (8)0.0016 (9)0.0003 (7)0.0011 (7)
C20.0376 (11)0.0352 (11)0.0307 (8)0.0043 (10)0.0017 (7)0.0001 (7)
C30.0339 (11)0.0298 (11)0.0325 (8)0.0007 (9)0.0026 (7)0.0024 (7)
C40.0360 (11)0.0273 (10)0.0294 (7)0.0012 (9)0.0018 (7)0.0014 (7)
C50.0318 (10)0.0298 (11)0.0309 (8)0.0002 (9)0.0009 (7)0.0004 (7)
C60.0401 (12)0.0348 (12)0.0314 (8)0.0047 (10)0.0033 (7)0.0026 (7)
C70.0577 (14)0.0386 (13)0.0402 (9)0.0028 (11)0.0070 (9)0.0063 (8)
C80.0375 (12)0.0491 (14)0.0419 (9)0.0042 (11)0.0032 (8)0.0002 (9)
C90.0576 (14)0.0474 (14)0.0327 (8)0.0067 (12)0.0063 (9)0.0035 (8)
C100.0366 (11)0.0326 (11)0.0336 (8)0.0006 (10)0.0007 (7)0.0004 (7)
C110.0462 (13)0.0401 (13)0.0348 (8)0.0002 (11)0.0010 (8)0.0077 (8)
C120.0509 (14)0.0398 (13)0.0474 (10)0.0016 (11)0.0075 (9)0.0140 (9)
C130.0433 (13)0.0411 (13)0.0534 (11)0.0016 (12)0.0026 (9)0.0195 (9)
C140.0652 (18)0.0479 (16)0.0682 (14)0.0051 (14)0.0135 (12)0.0034 (11)
C150.0385 (11)0.0339 (11)0.0317 (8)0.0052 (10)0.0045 (7)0.0005 (7)
C160.0511 (13)0.0362 (12)0.0445 (10)0.0023 (11)0.0026 (9)0.0039 (8)
C170.0759 (18)0.0324 (12)0.0540 (11)0.0052 (13)0.0191 (12)0.0040 (9)
C180.0618 (16)0.0425 (14)0.0594 (12)0.0201 (13)0.0246 (12)0.0144 (11)
C190.0454 (13)0.0522 (15)0.0473 (10)0.0157 (12)0.0101 (9)0.0156 (10)
C200.0408 (12)0.0350 (12)0.0342 (8)0.0029 (10)0.0039 (8)0.0051 (8)
Geometric parameters (Å, º) top
O1—C11.223 (2)C16—C171.384 (4)
O2—C51.205 (2)C17—C181.380 (4)
O3—C51.3384 (19)C18—C191.376 (3)
O3—C61.491 (2)C19—C201.379 (3)
O4—C101.422 (2)C2—H20.9500
O5—C131.202 (3)C4—H41.0000
O6—C131.335 (3)C7—H7A0.9800
O6—C141.442 (3)C7—H7B0.9800
O7—N21.228 (3)C7—H7C0.9800
O8—N21.231 (2)C8—H8A0.9800
O4—H4O0.8400C8—H8B0.9800
N1—C41.477 (2)C8—H8C0.9800
N1—C51.385 (3)C9—H9A0.9800
N1—C11.411 (2)C9—H9B0.9800
N2—C201.462 (3)C9—H9C0.9800
C1—C21.451 (3)C10—H101.0000
C2—C31.333 (2)C11—H11A0.9900
C3—C151.474 (3)C11—H11B0.9900
C3—C41.509 (2)C12—H12A0.9900
C4—C101.546 (3)C12—H12B0.9900
C6—C71.502 (3)C14—H14A0.9800
C6—C81.513 (3)C14—H14B0.9800
C6—C91.525 (3)C14—H14C0.9800
C10—C111.523 (3)C16—H160.9500
C11—C121.528 (3)C17—H170.9500
C12—C131.500 (3)C18—H180.9500
C15—C201.402 (2)C19—H190.9500
C15—C161.390 (3)
C5—O3—C6121.15 (14)N1—C4—H4110.00
C13—O6—C14115.78 (19)C3—C4—H4110.00
C10—O4—H4O109.00C10—C4—H4110.00
C1—N1—C4111.13 (15)C6—C7—H7A110.00
C1—N1—C5123.74 (16)C6—C7—H7B109.00
C4—N1—C5124.32 (13)C6—C7—H7C109.00
O7—N2—O8122.9 (2)H7A—C7—H7B109.00
O7—N2—C20118.69 (16)H7A—C7—H7C110.00
O8—N2—C20118.38 (19)H7B—C7—H7C109.00
O1—C1—C2128.47 (15)C6—C8—H8A109.00
N1—C1—C2105.86 (15)C6—C8—H8B110.00
O1—C1—N1125.67 (17)C6—C8—H8C109.00
C1—C2—C3110.77 (15)H8A—C8—H8B109.00
C2—C3—C4110.67 (17)H8A—C8—H8C109.00
C2—C3—C15123.28 (16)H8B—C8—H8C109.00
C4—C3—C15125.74 (14)C6—C9—H9A110.00
N1—C4—C10112.77 (15)C6—C9—H9B109.00
C3—C4—C10113.62 (15)C6—C9—H9C109.00
N1—C4—C3101.48 (13)H9A—C9—H9B109.00
O2—C5—O3126.62 (17)H9A—C9—H9C109.00
O2—C5—N1124.21 (15)H9B—C9—H9C109.00
O3—C5—N1109.15 (16)O4—C10—H10109.00
O3—C6—C7108.81 (16)C4—C10—H10109.00
O3—C6—C8110.62 (14)C11—C10—H10109.00
C7—C6—C8113.46 (19)C10—C11—H11A109.00
C7—C6—C9111.95 (15)C10—C11—H11B109.00
C8—C6—C9110.23 (17)C12—C11—H11A109.00
O3—C6—C9101.08 (16)C12—C11—H11B109.00
O4—C10—C11108.73 (16)H11A—C11—H11B108.00
C4—C10—C11110.42 (16)C11—C12—H12A108.00
O4—C10—C4111.62 (13)C11—C12—H12B108.00
C10—C11—C12113.1 (2)C13—C12—H12A108.00
C11—C12—C13115.79 (18)C13—C12—H12B108.00
O5—C13—C12125.1 (2)H12A—C12—H12B107.00
O6—C13—C12111.7 (2)O6—C14—H14A109.00
O5—C13—O6123.0 (2)O6—C14—H14B109.00
C3—C15—C20126.24 (18)O6—C14—H14C110.00
C16—C15—C20116.32 (19)H14A—C14—H14B109.00
C3—C15—C16117.42 (17)H14A—C14—H14C109.00
C15—C16—C17121.9 (2)H14B—C14—H14C110.00
C16—C17—C18119.9 (2)C15—C16—H16119.00
C17—C18—C19120.0 (2)C17—C16—H16119.00
C18—C19—C20119.5 (2)C16—C17—H17120.00
N2—C20—C19117.34 (17)C18—C17—H17120.00
C15—C20—C19122.36 (19)C17—C18—H18120.00
N2—C20—C15120.29 (18)C19—C18—H18120.00
C1—C2—H2125.00C18—C19—H19120.00
C3—C2—H2125.00C20—C19—H19120.00
C6—O3—C5—O25.9 (3)C2—C3—C4—C10118.35 (18)
C6—O3—C5—N1175.48 (15)C15—C3—C4—N1176.71 (17)
C5—O3—C6—C773.9 (2)C15—C3—C4—C1055.4 (2)
C5—O3—C6—C851.4 (2)C2—C3—C15—C1667.2 (3)
C5—O3—C6—C9168.17 (17)C2—C3—C15—C20110.8 (2)
C14—O6—C13—O52.7 (3)C4—C3—C15—C16105.8 (2)
C14—O6—C13—C12179.15 (18)C4—C3—C15—C2076.2 (3)
C4—N1—C1—O1179.15 (18)N1—C4—C10—O476.74 (18)
C4—N1—C1—C21.4 (2)N1—C4—C10—C11162.19 (15)
C5—N1—C1—O110.8 (3)C3—C4—C10—O438.0 (2)
C5—N1—C1—C2168.65 (17)C3—C4—C10—C1183.03 (18)
C1—N1—C4—C32.58 (19)O4—C10—C11—C1260.7 (2)
C1—N1—C4—C10119.33 (16)C4—C10—C11—C12176.57 (16)
C5—N1—C4—C3167.39 (17)C10—C11—C12—C1377.2 (3)
C5—N1—C4—C1070.7 (2)C11—C12—C13—O5135.7 (3)
C1—N1—C5—O28.1 (3)C11—C12—C13—O648.0 (3)
C1—N1—C5—O3170.64 (16)C3—C15—C16—C17177.31 (19)
C4—N1—C5—O2176.79 (18)C20—C15—C16—C170.9 (3)
C4—N1—C5—O31.9 (2)C3—C15—C20—N22.1 (3)
O7—N2—C20—C1510.9 (3)C3—C15—C20—C19176.86 (18)
O7—N2—C20—C19168.10 (18)C16—C15—C20—N2179.86 (17)
O8—N2—C20—C15169.43 (17)C16—C15—C20—C191.2 (3)
O8—N2—C20—C1911.6 (3)C15—C16—C17—C180.2 (3)
O1—C1—C2—C3178.8 (2)C16—C17—C18—C190.2 (4)
N1—C1—C2—C30.6 (2)C17—C18—C19—C200.0 (3)
C1—C2—C3—C42.3 (2)C18—C19—C20—N2179.74 (19)
C1—C2—C3—C15176.26 (17)C18—C19—C20—C150.8 (3)
C2—C3—C4—N13.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O1i0.842.152.903 (2)149
O4—H4O···O2i0.842.332.9696 (16)134
Symmetry code: (i) x+2, y+2, z+2.
(III) tert-butyl 2-(4-bromo-1-hydroxybutyl)-5-oxo-2,5-dihydro-1H-pyrrole-1-carboxylate top
Crystal data top
C13H20BrNO4Z = 2
Mr = 334.21F(000) = 344
Triclinic, P1Dx = 1.543 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8340 (9) ÅCell parameters from 12982 reflections
b = 9.0750 (9) Åθ = 2.2–29.7°
c = 10.7283 (10) ŵ = 2.87 mm1
α = 104.176 (7)°T = 173 K
β = 113.759 (7)°Block, colourless
γ = 101.367 (8)°0.50 × 0.50 × 0.50 mm
V = 719.57 (12) Å3
Data collection top
Stoe IPDS-2
diffractometer
3862 independent reflections
Radiation source: fine-focus sealed tube3587 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 0.81Å pixels mm-1θmax = 29.2°, θmin = 2.2°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
k = 1012
Tmin = 0.307, Tmax = 0.472l = 1414
9956 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0236P)2 + 0.4857P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
3862 reflectionsΔρmax = 0.43 e Å3
177 parametersΔρmin = 0.78 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (2)
Crystal data top
C13H20BrNO4γ = 101.367 (8)°
Mr = 334.21V = 719.57 (12) Å3
Triclinic, P1Z = 2
a = 8.8340 (9) ÅMo Kα radiation
b = 9.0750 (9) ŵ = 2.87 mm1
c = 10.7283 (10) ÅT = 173 K
α = 104.176 (7)°0.50 × 0.50 × 0.50 mm
β = 113.759 (7)°
Data collection top
Stoe IPDS-2
diffractometer
3862 independent reflections
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
3587 reflections with I > 2σ(I)
Tmin = 0.307, Tmax = 0.472Rint = 0.031
9956 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.05Δρmax = 0.43 e Å3
3862 reflectionsΔρmin = 0.78 e Å3
177 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.47778 (2)0.30287 (2)1.13729 (2)0.0329 (1)
O10.31030 (14)0.11093 (15)0.53882 (12)0.0262 (3)
O20.52777 (14)0.25263 (14)0.45870 (12)0.0245 (3)
O30.80224 (14)0.16522 (13)0.64932 (12)0.0231 (3)
O40.82532 (15)0.30771 (13)0.76664 (12)0.0245 (3)
N10.61400 (16)0.04621 (15)0.67145 (13)0.0192 (3)
C10.44905 (19)0.03668 (18)0.64902 (16)0.0211 (4)
C20.4806 (2)0.0789 (2)0.78665 (18)0.0247 (4)
C30.6499 (2)0.13381 (19)0.88148 (17)0.0236 (4)
C40.75282 (19)0.06297 (18)0.81779 (15)0.0201 (3)
C50.63877 (19)0.16534 (17)0.58003 (16)0.0200 (3)
C60.8667 (2)0.28116 (19)0.57988 (17)0.0230 (4)
C70.7644 (3)0.4500 (2)0.5536 (2)0.0342 (5)
C80.8571 (3)0.2594 (2)0.4414 (2)0.0336 (5)
C91.0554 (2)0.2308 (3)0.6973 (2)0.0385 (6)
C100.89225 (19)0.19009 (18)0.81204 (16)0.0200 (3)
C111.05272 (19)0.27493 (19)0.96104 (16)0.0229 (4)
C121.1980 (2)0.39234 (19)0.95675 (17)0.0240 (4)
C131.3675 (2)0.46521 (19)1.09855 (17)0.0244 (4)
H40.810300.000800.874300.0240*
H20.392700.109700.805000.0300*
H30.699700.209100.978100.0280*
H4O0.754200.267500.676900.0370*
H7A0.767000.455000.644600.0510*
H7B0.642600.478700.478800.0510*
H7C0.817200.525800.520200.0510*
H8A0.911900.145200.462200.0500*
H8B0.734000.296000.366600.0500*
H8C0.919100.322900.406100.0500*
H9A1.057700.240100.787100.0580*
H9B1.116900.118800.716400.0580*
H9C1.113500.301000.664200.0580*
H100.928100.134800.741200.0240*
H11A1.097300.193500.996900.0270*
H11B1.019000.334301.030600.0270*
H12A1.220700.335300.878300.0290*
H12B1.157100.480300.931600.0290*
H13A1.343800.511901.179600.0290*
H13B1.448700.553301.093700.0290*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0263 (1)0.0349 (1)0.0359 (1)0.0131 (1)0.0108 (1)0.0149 (1)
O10.0180 (5)0.0296 (6)0.0238 (5)0.0047 (4)0.0064 (4)0.0070 (4)
O20.0204 (5)0.0215 (5)0.0212 (5)0.0046 (4)0.0046 (4)0.0024 (4)
O30.0186 (5)0.0209 (5)0.0226 (5)0.0066 (4)0.0059 (4)0.0032 (4)
O40.0232 (5)0.0194 (5)0.0223 (5)0.0052 (4)0.0036 (4)0.0080 (4)
N10.0166 (5)0.0175 (6)0.0187 (5)0.0038 (4)0.0058 (5)0.0049 (4)
C10.0195 (6)0.0202 (7)0.0233 (7)0.0056 (5)0.0095 (6)0.0096 (5)
C20.0230 (7)0.0248 (7)0.0267 (7)0.0071 (6)0.0130 (6)0.0086 (6)
C30.0248 (7)0.0225 (7)0.0211 (7)0.0061 (6)0.0104 (6)0.0062 (6)
C40.0186 (6)0.0184 (6)0.0174 (6)0.0037 (5)0.0050 (5)0.0050 (5)
C50.0196 (6)0.0166 (6)0.0220 (6)0.0047 (5)0.0088 (5)0.0073 (5)
C60.0227 (7)0.0252 (7)0.0238 (7)0.0106 (6)0.0122 (6)0.0091 (6)
C70.0444 (10)0.0237 (8)0.0413 (10)0.0149 (7)0.0235 (8)0.0141 (7)
C80.0353 (9)0.0419 (10)0.0295 (8)0.0121 (8)0.0191 (7)0.0164 (7)
C90.0250 (8)0.0576 (13)0.0313 (9)0.0190 (8)0.0114 (7)0.0128 (8)
C100.0192 (6)0.0176 (6)0.0195 (6)0.0044 (5)0.0069 (5)0.0060 (5)
C110.0185 (6)0.0232 (7)0.0209 (7)0.0033 (5)0.0057 (5)0.0076 (6)
C120.0198 (7)0.0222 (7)0.0244 (7)0.0035 (6)0.0067 (6)0.0087 (6)
C130.0207 (7)0.0193 (7)0.0265 (7)0.0053 (5)0.0081 (6)0.0042 (6)
Geometric parameters (Å, º) top
Br1—C131.9575 (19)C2—H20.9500
O1—C11.213 (2)C3—H30.9500
O2—C51.2015 (19)C4—H41.0000
O3—C51.331 (2)C7—H7A0.9800
O3—C61.477 (2)C7—H7B0.9800
O4—C101.413 (2)C7—H7C0.9800
O4—H4O0.8400C8—H8A0.9800
N1—C41.4691 (19)C8—H8B0.9800
N1—C51.388 (2)C8—H8C0.9800
N1—C11.402 (2)C9—H9A0.9800
C1—C21.467 (2)C9—H9B0.9800
C2—C31.324 (3)C9—H9C0.9800
C3—C41.491 (3)C10—H101.0000
C4—C101.545 (2)C11—H11A0.9900
C6—C81.517 (3)C11—H11B0.9900
C6—C91.517 (3)C12—H12A0.9900
C6—C71.510 (3)C12—H12B0.9900
C10—C111.516 (2)C13—H13A0.9900
C11—C121.522 (3)C13—H13B0.9900
C12—C131.508 (2)
C5—O3—C6121.31 (12)C6—C7—H7B109.00
C10—O4—H4O109.00C6—C7—H7C109.00
C1—N1—C4111.34 (13)H7A—C7—H7B110.00
C4—N1—C5123.47 (14)H7A—C7—H7C109.00
C1—N1—C5124.00 (13)H7B—C7—H7C109.00
O1—C1—N1126.53 (15)C6—C8—H8A109.00
N1—C1—C2105.51 (14)C6—C8—H8B109.00
O1—C1—C2127.96 (17)C6—C8—H8C109.00
C1—C2—C3109.86 (17)H8A—C8—H8B109.00
C2—C3—C4111.62 (15)H8A—C8—H8C110.00
N1—C4—C10112.27 (12)H8B—C8—H8C110.00
C3—C4—C10113.40 (14)C6—C9—H9A109.00
N1—C4—C3101.63 (14)C6—C9—H9B109.00
O2—C5—N1124.16 (17)C6—C9—H9C109.00
O3—C5—N1108.81 (13)H9A—C9—H9B109.00
O2—C5—O3127.03 (16)H9A—C9—H9C109.00
O3—C6—C7109.20 (16)H9B—C9—H9C109.00
O3—C6—C8110.36 (15)O4—C10—H10109.00
C7—C6—C8112.91 (14)C4—C10—H10109.00
C7—C6—C9111.11 (17)C11—C10—H10109.00
O3—C6—C9101.43 (14)C10—C11—H11A109.00
C8—C6—C9111.24 (18)C10—C11—H11B109.00
O4—C10—C11108.24 (13)C12—C11—H11A109.00
C4—C10—C11110.71 (13)C12—C11—H11B109.00
O4—C10—C4111.18 (15)H11A—C11—H11B108.00
C10—C11—C12112.01 (13)C11—C12—H12A109.00
C11—C12—C13113.79 (14)C11—C12—H12B109.00
Br1—C13—C12111.00 (12)C13—C12—H12A109.00
C1—C2—H2125.00C13—C12—H12B109.00
C3—C2—H2125.00H12A—C12—H12B108.00
C2—C3—H3124.00Br1—C13—H13A109.00
C4—C3—H3124.00Br1—C13—H13B109.00
N1—C4—H4110.00C12—C13—H13A109.00
C3—C4—H4110.00C12—C13—H13B109.00
C10—C4—H4110.00H13A—C13—H13B108.00
C6—C7—H7A109.00
C6—O3—C5—O20.7 (3)C4—N1—C5—O2177.97 (16)
C6—O3—C5—N1179.11 (13)C4—N1—C5—O32.2 (2)
C5—O3—C6—C764.05 (19)O1—C1—C2—C3179.65 (18)
C5—O3—C6—C860.6 (2)N1—C1—C2—C30.5 (2)
C5—O3—C6—C9178.60 (16)C1—C2—C3—C40.8 (2)
C4—N1—C1—O1179.21 (17)C2—C3—C4—N11.68 (19)
C4—N1—C1—C21.66 (18)C2—C3—C4—C10119.01 (16)
C5—N1—C1—O112.9 (3)N1—C4—C10—O472.57 (17)
C5—N1—C1—C2166.25 (15)N1—C4—C10—C11167.08 (14)
C1—N1—C4—C32.02 (17)C3—C4—C10—O441.91 (17)
C1—N1—C4—C10119.46 (16)C3—C4—C10—C1178.44 (17)
C5—N1—C4—C3165.97 (15)O4—C10—C11—C1262.07 (19)
C5—N1—C4—C1072.6 (2)C4—C10—C11—C12175.84 (14)
C1—N1—C5—O215.6 (3)C10—C11—C12—C13173.35 (15)
C1—N1—C5—O3164.30 (14)C11—C12—C13—Br168.73 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O1i0.842.172.9138 (16)148
O4—H4O···O2i0.842.282.9225 (18)134
Symmetry code: (i) x+1, y, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC17H20N2O6C20H24N2O8C13H20BrNO4
Mr348.35420.41334.21
Crystal system, space groupTrigonal, R3Orthorhombic, PbcaTriclinic, P1
Temperature (K)173153173
a, b, c (Å)21.1117 (8), 21.1117 (8), 20.3244 (9)9.1439 (7), 20.7113 (18), 21.598 (2)8.8340 (9), 9.0750 (9), 10.7283 (10)
α, β, γ (°)90, 90, 12090, 90, 90104.176 (7), 113.759 (7), 101.367 (8)
V3)7845.0 (5)4090.3 (6)719.57 (12)
Z1882
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.100.112.87
Crystal size (mm)0.45 × 0.45 × 0.450.50 × 0.45 × 0.100.50 × 0.50 × 0.50
Data collection
DiffractometerStoe IPDS2
diffractometer
Stoe IPDS2
diffractometer
Stoe IPDS2
diffractometer
Absorption correctionMulti-scan
(MULscanABS in PLATON; Spek, 2009)
Tmin, Tmax0.307, 0.472
No. of measured, independent and
observed [I > 2σ(I)] reflections
39673, 4718, 4041 16666, 3856, 2605 9956, 3862, 3587
Rint0.0890.0780.031
(sin θ/λ)max1)0.6880.6160.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.098, 1.05 0.044, 0.110, 0.95 0.027, 0.066, 1.05
No. of reflections471838563862
No. of parameters235277177
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.170.18, 0.220.43, 0.78

Computer programs: X-AREA (Stoe & Cie, 2006), X-RED32 (Stoe & Cie, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O1i0.852 (18)1.930 (19)2.7600 (15)164.3 (19)
Symmetry code: (i) y, x+y, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O1i0.842.152.903 (2)149
O4—H4O···O2i0.842.332.9696 (16)134
Symmetry code: (i) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O1i0.842.172.9138 (16)148.00
O4—H4O···O2i0.842.282.9225 (18)134.00
Symmetry code: (i) x+1, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds