Download citation
Download citation
link to html
The title cobalt coordination polymers, catena-poly[[[aqua­tripyridine­cobalt(II)]-μ-tetra­chloro­terephthalato] pyridine solvate], {[Co(C8Cl4O4)(C5H5N)3(H2O)]·C5H5N}n, (I), and catena-poly[[[diaqua­dipyridine­cobalt(II)]-μ-tetra­chloro­tereph­thalato] 1,4-dioxane trihydrate], {[Co(C8Cl4O4)(C5H5N)2(H2O)2]·C4H8O2·3H2O}n, (II), have been prepared with tetra­chloro­terephthalic acid (H2BDC-Cl4) under differ­ent solvent media. Both complexes form infinite cobalt(II)–tetra­chloro­terephthalate polymeric chains. In (I), two independent CoII ions are six-coordinated through N3O3 donor sets in slightly distorted octa­hedral geometries provided by two carboxyl­ate and three pyridine ligands, and one water mol­ecule. The structure of (II) contains two independent CoII atoms, each lying on a twofold axis, which adopt a tetra­gonally distorted N2O4 octa­hedral geometry via two carboxyl­ate groups, two pyridine ligands and two water mol­ecules. The different stoichiometry of coordinated and solvent guest mol­ecules leads to different two-dimensional supra­molecular networks, with (I) utilizing C—H...π and weak π–π inter­actions and (II) utilizing mainly conventional hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109000869/ga3116sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109000869/ga3116Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109000869/ga3116IIsup3.hkl
Contains datablock II

CCDC references: 724190; 724191

Comment top

The rapid development in crystal engineering of coordination polymers has afforded access to crystalline solid-state materials with potential applications in the desired areas of catalysis, magnetism, gas absorption, nonlinear optics and drug delivery (Férey, 2008; Wang et al., 2008). Currently, the aromatic bridging ligand 1,4-benzenedicarboxylate (BDC) has been widely utilized to fabricate coordination polymers based on paddle-wheel units with robust networks and attractive properties as conventional porous materials (Li et al., 1999; Serre et al., 2002; Xiao et al., 2005; Du et al., 2007). Derivatives of BDC with electron-donating or accepting substituents, such as 2,3,5,6-tetramethyl-1,4-benzenedicarboxylate (TBDC) and 2,3,5,6-tetrafluoro-1,4-benzenedicarboxylate (BDC-F4), have also received considerable attention in the design of porous materials with an efficient hydrogen-storage capacity (Kitaura et al., 2004; Chun et al., 2005). Few investigations of solvent effects have been carried out on crystalline compounds using substituted BDC building blocks (Chen et al., 2008). In the latter paper, solvent-regulated assemblies of manganese(II) coordination polymers with 2,3,5,6-tetrachloro-1,4-benzenedicarboxylic acid (H2BDC-Cl4) exhibit different binding modes and dimensionality in the final coordination networks with variable auxiliary solvent co-ligands. As part of our investigation of the coordination behavior of H2BDC-Cl4 and divalent transition metal ions, we report the solvent-directed assembly of two CoII coordination polymers, {[Co2(C8Cl4O4)2(C5H5N)6(H2O)2].2C5H5N}n, (I), and {[Co(C8Cl4O4)(C5H5N)2(H2O)2].C4H8O2.3H2O}n, (II).

The molecular unit of (I) contains two CoII atoms, two BDC-Cl4 ligands, six coordinated pyridine molecules and two water molecules, along with two pyridine molecules of crystallization (Fig. 1). The two CoII ions exhibit similar slightly distorted octahedral coordination geometries, with the N3O3 coordination environment made up from two BDC-Cl4 anions, one aqua ligand and three pyridine molecules. In the MnII–BDC-Cl4 polymer crystallized from similar pyridine–water media, the MnII ion is six-coordinated through two BDC-Cl4 anions, two aqua ligands and two pyridine molecules (Chen et al., 2008). Within the anionic unit, the rotation angles (ϕrot) of the tetrachlorinated phenyl ring relative to the carboxylate groups are 81.0 (2) and 86.2 (1)°, similar to the corresponding values of other polychlorinated carboxylate compounds (Maspoch et al., 2004). Each BDC-Cl4 ligand adopts a bis-monodentate coordination mode, bridging adjacent CoII centers into an infinite linear chain with pendent pyridine molecules, which runs along the [111] direction, as illustrated in Fig. 2.

There exist strong intramolecular O—H···O interactions (entries 2 and 3 in Table 2) between the carboxylate O atoms and the aqua ligands, which further stabilize the one-dimensional polymeric chain motif. Intermolecular O—H···N bonds (entries 1 and 4 in Table 2) join the uncoordinated pyridine molecules and the coordination chain together. Because there are a large number of coordinated and uncoordinated pyridine molecules in the structure, multiple weak ππ interactions are noted between the benzene and pyridine rings and between the pyridine rings (e.g. C10–C15, N7/C47–C51 and N8/C52–C56), with centroid-to-centroid distances in the range 3.508 (2)–3.641 (2) Å; these link the one-dimensional hydrogen-bonded chains into a two-dimensional supramolecular network (Fig. 2). The supramolecular architecture is further consolidated by multiple C—H···π interactions between CH groups and the centroids (Cg1 and Cg2, respectively) of the N3/C27–C31 pyridine and C2–C7 phenyl rings (Fig. 2 and Table 2).

The crystal structure of complex (II) also exhibits a one-dimensional coordination motif. In the asymmetric unit, two crystallographically independent centers, Co1 and Co2, lie on twofold rotation axes at (1/4, 1, y) and (3/4, 1/2, y), respectively. Each CoII center is coordinated by two carboxylate groups in a monodentate mode from two symmetry-related BDC-Cl4, two pyridine and two aqua ligands. The asymmetric unit also contains one dioxane and three water molecules as guests. The N2O4 coordination geometry, provided by two carboxylate O atoms, two pyridyl N atoms and two water molecules, can be described as an elongated octahedron with two pyridyl N atoms occupying the axial sites. Neighboring Co1 and Co2 atoms are bridged by the BDC-Cl4 dianion in a trans fashion (Fig. 3). Propagation of this arrangement generates a one-dimensional linear array, which is similar to that of complex (I) but with fewer coordinated pyridine molecules and more water molecules. Similarly to (I), the two carboxylate groups within each BDC-Cl4 group make ϕrot dihedral angles of 81.6 (1) and 87.7 (1)° with the central phenyl plane. Analogous intramolecular O—H···O bonds (entries 2 and 3 [or 1 and 2?] in Table 4) between uncoordinated carboxylate O atoms and aqua ligands consolidate the one-dimensional polymeric chain. Analysis of the crystal packing shows the existence of two main types of conventional hydrogen-bonding interactions (O—H···O and O—H···Cl; Table 4), which connect the polymeric chains, solvent water molecules and dioxane moelcules to form a two-dimensional network parallel to the ab plane (Fig. 4). Notably, one hydrogen-bonded pattern (entries 2–4, Table 4), denoted as R66(12) (Etter, 1990), is observed in this layer array. Additionally, the dioxane solvent has a C—H···π interaction with the phenyl ring (Cg1 denotes the centroid of the C2–C7 ring) of the BDC-Cl4 anion (Table 4). However, in contrast to (I), adjacent layers have no significant aromatic ring-based stacking interactions.

Related literature top

For related literature, see: Chen et al. (2008); Chun et al. (2005); Du et al. (2007); Etter (1990); Férey (2008); Kitaura et al. (2004); Li et al. (1999); Maspoch et al. (2004); Serre et al. (2002); Wang et al. (2008); Xiao et al. (2005).

Experimental top

To a solution of CoCl2.6H2O (23.8 mg, 0.1 mmol) in a mixture of pyridine and water (v/v 1:1, 10 ml) was added a solution of H2BDC-Cl4 (30.4 mg, 0.1 mmol) in water (5 ml). After stirring for 30 min, the reaction mixture was filtered and left to stand at room temperature. After 3 d, pink block-shaped crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of the filtrate in a yield of 78% (54.2 mg, based on H2BDC-Cl4). Analysis found: C 48.42, H 3.18, N 8.13%; calculated for C56H44Cl8Co2N8O10: C 48.37, H 3.19, N 8.06%. For the preparation of (II), an aqueous solution (5 ml) of CoCl2.6H2O (23.8 mg, 0.1 mmol) was added to a dioxane and water solution (v/v 1:1, 10 ml) of H2BDC-Cl4 (30.4 mg, 0.1 mmol) with stirring for 30 min. Pyridine (0.5 ml) was then added and allowed to diffuse into the mixture at room temperature. After 7 d, pink block-shaped crystals of (II) suitable for X-ray diffraction were collected by slow evaporation of the filtrate in a yield of 67% (46.4 mg, based on H2BDC-Cl4). Analysis found: C 37.73, H 3.94, N 4.09%; calculated for C22H28Cl4CoN2O11: C 37.90, H 4.05, N 4.02%.

Refinement top

H atoms bonded to C atoms were positioned geometrically (C—H = 0.93 and 0.97 Å for pyridine and dioxane H atoms, respectively) and included in the refinement in the riding-model approximation. All of the water H atoms were located in difference maps and refined as riding. Uiso(H) values for all H atoms were set at 1.2Ueq(C,O). The electron density trough in (II) (-0.62 e.Å-3) is 0.66 Å from atom Co1.

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2003); cell refinement: APEX2 (Bruker, 2003) and SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), with displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (i) x - 1, y - 1, z + 1.]
[Figure 2] Fig. 2. A partial view of the two-dimensional supramolecular network of (I), approximately normal to the bc plane. Hydrogen bonds and aromatic interactions are shown as dashed lines. [Symmetry codes: (i) x - 1, y - 1, z + 1; (ii) -x + 1, -y, -z + 1.]
[Figure 3] Fig. 3. The structure of (II), with displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) -x + 1/2, -y + 2, z; (ii) -x + 3/2, -y + 1, z.]
[Figure 4] Fig. 4. A partial view of the two-dimensional hydrogen-bonding network in (II), approximately normal to the ab plane. O—H···O and C—H···π interactions are shown as dashed lines. [Symmetry codes: (i) -x + 3/2, -y + 1, z; (ii) -x + 1/2, -y + 2, z; (iii) x, y + 1, z; (iv) x, y - 1, z.]
(I) catena-poly[[[aquatripyridinecobalt(II)]-µ-tetrachloroterephthalato] pyridine solvate] top
Crystal data top
[Co(C8Cl4O4)(C5H5N)3(H2O)]·C5H5NZ = 4
Mr = 695.23F(000) = 1412
Triclinic, P1Dx = 1.535 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7128 (10) ÅCell parameters from 9967 reflections
b = 17.8408 (17) Åθ = 2.4–27.7°
c = 21.227 (2) ŵ = 0.97 mm1
α = 67.879 (1)°T = 291 K
β = 79.839 (2)°Block, pink
γ = 84.962 (1)°0.30 × 0.26 × 0.24 mm
V = 3007.9 (5) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
11691 independent reflections
Radiation source: sealed tube8460 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
phi and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.76, Tmax = 0.79k = 2221
23660 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.050P)2 + 0.880P]
where P = (Fo2 + 2Fc2)/3
11691 reflections(Δ/σ)max < 0.001
757 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Co(C8Cl4O4)(C5H5N)3(H2O)]·C5H5Nγ = 84.962 (1)°
Mr = 695.23V = 3007.9 (5) Å3
Triclinic, P1Z = 4
a = 8.7128 (10) ÅMo Kα radiation
b = 17.8408 (17) ŵ = 0.97 mm1
c = 21.227 (2) ÅT = 291 K
α = 67.879 (1)°0.30 × 0.26 × 0.24 mm
β = 79.839 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
11691 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
8460 reflections with I > 2σ(I)
Tmin = 0.76, Tmax = 0.79Rint = 0.027
23660 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.01Δρmax = 0.27 e Å3
11691 reflectionsΔρmin = 0.62 e Å3
757 parameters
Special details top

Experimental. IR (KBr, υ, cm-1): 3133 (bs), 1650 (s), 1608 (vs), 1495 (m), 1413 (s), 1383 (m), 1340 (vs), 1250 (m), 1113 (m), 798 (m), 678 (s), 619 (s).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8462 (3)0.85114 (18)0.13517 (14)0.0313 (6)
C20.7901 (3)0.79935 (18)0.06148 (15)0.0348 (7)
C30.6318 (3)0.80117 (17)0.03282 (15)0.0329 (6)
C40.5781 (3)0.75106 (18)0.03454 (14)0.0310 (6)
C50.6781 (3)0.69760 (17)0.07618 (14)0.0325 (6)
C60.8360 (3)0.69622 (18)0.04746 (15)0.0335 (6)
C70.8899 (3)0.74689 (17)0.01986 (15)0.0325 (6)
C80.6203 (3)0.64243 (17)0.14873 (14)0.0298 (6)
C90.2889 (3)0.32289 (19)0.34797 (15)0.0349 (7)
C100.2516 (3)0.28377 (18)0.42552 (15)0.0342 (7)
C110.1137 (3)0.30136 (18)0.46246 (15)0.0348 (7)
C120.0791 (3)0.26337 (18)0.53421 (15)0.0363 (7)
C130.1830 (4)0.20799 (17)0.57205 (15)0.0361 (7)
C140.3194 (3)0.19136 (18)0.53514 (15)0.0366 (7)
C150.3540 (3)0.22823 (18)0.46375 (14)0.0334 (6)
C160.1483 (4)0.16751 (18)0.64926 (15)0.0367 (7)
C170.2447 (4)0.62283 (19)0.25021 (16)0.0392 (7)
H170.34040.64620.24360.047*
C180.1114 (4)0.6674 (2)0.25993 (17)0.0428 (8)
H180.11710.71890.26070.051*
C190.0318 (4)0.6332 (2)0.26853 (16)0.0425 (8)
H190.12440.66180.27410.051*
C200.0339 (3)0.55571 (19)0.26865 (15)0.0395 (7)
H200.12800.53090.27510.047*
C210.1057 (3)0.51591 (19)0.25903 (15)0.0353 (7)
H210.10340.46390.25900.042*
C220.3849 (4)0.3770 (2)0.15766 (16)0.0396 (7)
H220.41390.33490.19580.048*
C230.3544 (4)0.3598 (2)0.10299 (17)0.0433 (8)
H230.36140.30660.10510.052*
C240.3140 (4)0.4205 (2)0.04593 (18)0.0431 (8)
H240.29650.41000.00810.052*
C250.3001 (4)0.4977 (2)0.04630 (17)0.0420 (7)
H250.27030.54050.00880.050*
C260.3306 (3)0.51112 (19)0.10259 (15)0.0360 (7)
H260.32030.56360.10220.043*
C270.7562 (4)0.4231 (2)0.16352 (18)0.0440 (8)
H270.71660.45680.12420.053*
C280.9010 (4)0.38457 (19)0.15619 (17)0.0418 (8)
H280.95750.39350.11260.050*
C290.9588 (4)0.3336 (2)0.21347 (18)0.0426 (8)
H291.05390.30630.20960.051*
C300.8738 (4)0.32327 (19)0.27703 (17)0.0389 (7)
H300.91080.28900.31690.047*
C310.7327 (4)0.36443 (19)0.28104 (17)0.0407 (7)
H310.67720.35780.32440.049*
C320.2697 (4)0.12233 (19)0.71839 (16)0.0392 (7)
H320.21690.12470.67560.047*
C330.4071 (4)0.1660 (2)0.72113 (17)0.0435 (8)
H330.44490.19760.68070.052*
C340.4885 (4)0.1629 (2)0.78363 (18)0.0476 (8)
H340.58140.19220.78640.057*
C350.4284 (4)0.1149 (2)0.84212 (17)0.0418 (8)
H350.47990.11140.88540.050*
C360.2892 (4)0.07189 (19)0.83543 (17)0.0408 (7)
H360.25110.03840.87520.049*
C370.3631 (3)0.02126 (19)0.74271 (16)0.0367 (7)
H370.36140.03220.73970.044*
C380.5052 (4)0.0575 (2)0.73164 (16)0.0392 (7)
H380.59690.02950.72210.047*
C390.5095 (4)0.1363 (2)0.73494 (17)0.0423 (8)
H390.60360.16250.72690.051*
C400.3697 (4)0.1749 (2)0.75058 (16)0.0383 (7)
H400.36870.22850.75410.046*
C410.2324 (4)0.1345 (2)0.76095 (16)0.0406 (7)
H410.13930.16130.77080.049*
C420.1498 (4)0.0078 (2)0.89425 (15)0.0384 (7)
H420.16430.06050.89540.046*
C430.1872 (4)0.0086 (2)0.94846 (17)0.0410 (7)
H430.22620.03200.98490.049*
C440.1649 (4)0.0867 (2)0.94703 (17)0.0398 (7)
H440.18610.09970.98310.048*
C450.1105 (4)0.1455 (2)0.89090 (18)0.0457 (8)
H450.09610.19890.88810.055*
C460.0782 (4)0.12326 (19)0.83941 (18)0.0411 (7)
H460.04330.16320.80150.049*
C470.9492 (4)0.1167 (2)0.43452 (18)0.0450 (8)
H471.02370.15630.41210.054*
H480.94030.12550.52660.054*
C480.9004 (4)0.0982 (2)0.50350 (17)0.0406 (7)
C490.7908 (4)0.0394 (2)0.53715 (17)0.0431 (8)
H490.75860.02310.58440.052*
C500.7318 (4)0.00624 (19)0.49930 (16)0.0394 (7)
H500.65380.03170.52000.047*
C510.7861 (4)0.0283 (2)0.43077 (18)0.0448 (8)
H510.74340.00450.40580.054*
C520.4964 (4)0.4126 (2)0.47055 (18)0.0477 (8)
H520.59330.40150.44900.057*
C530.4510 (4)0.3639 (2)0.53794 (17)0.0413 (7)
H530.51310.32050.56080.050*
C540.3160 (4)0.3813 (2)0.56874 (17)0.0420 (8)
H540.28270.34990.61460.050*
C550.2251 (4)0.4430 (2)0.53591 (19)0.0505 (9)
H550.13010.45580.55790.061*
C560.2804 (4)0.4872 (2)0.46666 (17)0.0449 (8)
H560.21840.52940.44200.054*
Cl11.08649 (8)0.74542 (5)0.05327 (4)0.0433 (2)
Cl20.96200 (9)0.62941 (5)0.09719 (4)0.0445 (2)
Cl30.50547 (9)0.86625 (5)0.08360 (4)0.0488 (2)
Cl40.38215 (8)0.75212 (5)0.06803 (4)0.04241 (19)
Cl50.01658 (10)0.37221 (5)0.41810 (4)0.0505 (2)
Cl60.09346 (10)0.28776 (5)0.57784 (4)0.0513 (2)
Cl70.52658 (9)0.20347 (5)0.42020 (4)0.0495 (2)
Cl80.45660 (9)0.12642 (5)0.58018 (4)0.0450 (2)
Co10.45643 (4)0.47938 (2)0.23727 (2)0.03219 (11)
Co20.01039 (4)0.01012 (2)0.765790 (19)0.03243 (11)
N10.2451 (3)0.54853 (16)0.24963 (12)0.0351 (6)
N20.3743 (3)0.45198 (15)0.15768 (13)0.0362 (6)
N30.6719 (3)0.41329 (17)0.22562 (14)0.0416 (6)
N40.2082 (3)0.07630 (15)0.77496 (13)0.0380 (6)
N50.2269 (3)0.05772 (16)0.75754 (13)0.0379 (6)
N60.0941 (3)0.04765 (14)0.84056 (13)0.0340 (6)
N70.8963 (3)0.08156 (17)0.39802 (14)0.0446 (7)
N80.4161 (3)0.47188 (16)0.43500 (14)0.0396 (6)
O10.6363 (2)0.66500 (12)0.19639 (10)0.0340 (5)
O20.5589 (3)0.58016 (13)0.15312 (11)0.0433 (5)
O30.9125 (3)0.91503 (13)0.14355 (11)0.0419 (5)
O40.8250 (2)0.82567 (12)0.17965 (10)0.0357 (5)
O50.1862 (3)0.20301 (14)0.68327 (11)0.0436 (5)
O60.0863 (2)0.09859 (13)0.67153 (10)0.0409 (5)
O70.3689 (2)0.38528 (12)0.32531 (10)0.0363 (5)
O80.2373 (3)0.29009 (14)0.31466 (11)0.0442 (5)
O90.5608 (2)0.51868 (12)0.30226 (11)0.0392 (5)
H9A0.50590.51590.34030.047*
H9B0.58820.56710.27910.047*
O100.0886 (2)0.04343 (12)0.70756 (10)0.0358 (5)
H10B0.12660.08610.73930.043*
H10A0.01900.05610.67950.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0265 (14)0.0348 (16)0.0247 (14)0.0039 (12)0.0018 (11)0.0024 (12)
C20.0322 (15)0.0321 (16)0.0325 (15)0.0067 (12)0.0060 (12)0.0016 (12)
C30.0307 (14)0.0227 (14)0.0364 (16)0.0028 (11)0.0066 (12)0.0002 (12)
C40.0257 (13)0.0325 (15)0.0265 (14)0.0036 (11)0.0005 (11)0.0025 (12)
C50.0328 (15)0.0264 (15)0.0295 (15)0.0128 (12)0.0007 (12)0.0004 (12)
C60.0300 (14)0.0343 (16)0.0304 (15)0.0017 (12)0.0090 (12)0.0034 (12)
C70.0273 (14)0.0272 (15)0.0352 (15)0.0050 (11)0.0004 (11)0.0039 (12)
C80.0283 (14)0.0266 (15)0.0264 (14)0.0003 (11)0.0048 (11)0.0004 (12)
C90.0327 (15)0.0363 (17)0.0300 (15)0.0052 (13)0.0043 (12)0.0052 (13)
C100.0358 (15)0.0309 (16)0.0296 (15)0.0087 (12)0.0010 (12)0.0040 (12)
C110.0351 (15)0.0306 (16)0.0294 (15)0.0001 (12)0.0071 (12)0.0001 (12)
C120.0351 (15)0.0323 (16)0.0283 (15)0.0018 (12)0.0078 (12)0.0018 (12)
C130.0410 (16)0.0250 (15)0.0312 (15)0.0081 (12)0.0025 (12)0.0003 (12)
C140.0362 (16)0.0290 (16)0.0292 (15)0.0031 (12)0.0070 (12)0.0068 (12)
C150.0320 (15)0.0308 (15)0.0268 (14)0.0013 (12)0.0018 (11)0.0020 (12)
C160.0454 (17)0.0237 (15)0.0297 (15)0.0008 (13)0.0006 (13)0.0001 (12)
C170.0390 (17)0.0388 (18)0.0373 (17)0.0068 (14)0.0061 (13)0.0129 (14)
C180.0391 (17)0.0420 (19)0.0437 (18)0.0150 (14)0.0161 (14)0.0110 (15)
C190.0394 (17)0.0448 (19)0.0396 (17)0.0132 (14)0.0093 (14)0.0129 (15)
C200.0287 (15)0.0401 (18)0.0341 (16)0.0011 (13)0.0006 (12)0.0016 (13)
C210.0333 (15)0.0319 (16)0.0321 (15)0.0036 (12)0.0071 (12)0.0003 (13)
C220.0477 (18)0.0366 (17)0.0361 (16)0.0075 (14)0.0011 (14)0.0170 (14)
C230.0440 (18)0.0379 (18)0.0477 (19)0.0241 (14)0.0018 (15)0.0143 (15)
C240.0448 (18)0.0440 (19)0.0461 (19)0.0127 (15)0.0097 (15)0.0191 (16)
C250.0488 (19)0.0374 (18)0.0407 (17)0.0061 (14)0.0124 (14)0.0117 (14)
C260.0389 (16)0.0320 (16)0.0364 (16)0.0024 (13)0.0140 (13)0.0080 (13)
C270.0435 (18)0.0409 (19)0.0432 (18)0.0025 (14)0.0041 (14)0.0160 (15)
C280.0397 (17)0.0386 (18)0.0425 (18)0.0004 (14)0.0065 (14)0.0156 (15)
C290.0304 (15)0.0414 (18)0.054 (2)0.0091 (13)0.0083 (14)0.0162 (16)
C300.0439 (17)0.0349 (17)0.0407 (17)0.0080 (13)0.0146 (14)0.0153 (14)
C310.0411 (17)0.0317 (17)0.0451 (18)0.0025 (13)0.0147 (14)0.0066 (14)
C320.0399 (17)0.0350 (17)0.0377 (17)0.0003 (13)0.0012 (13)0.0111 (14)
C330.0426 (18)0.0425 (19)0.0441 (18)0.0084 (14)0.0162 (14)0.0124 (15)
C340.0427 (18)0.047 (2)0.055 (2)0.0111 (15)0.0078 (16)0.0231 (17)
C350.0383 (17)0.0410 (18)0.0394 (17)0.0038 (14)0.0084 (13)0.0148 (15)
C360.0462 (18)0.0291 (16)0.0436 (18)0.0040 (13)0.0120 (14)0.0083 (14)
C370.0382 (16)0.0308 (16)0.0413 (17)0.0073 (13)0.0175 (13)0.0103 (13)
C380.0302 (15)0.0461 (19)0.0374 (17)0.0050 (13)0.0047 (12)0.0103 (14)
C390.0413 (17)0.0351 (17)0.0467 (19)0.0108 (14)0.0148 (14)0.0096 (14)
C400.0404 (17)0.0362 (17)0.0394 (17)0.0132 (13)0.0187 (13)0.0130 (14)
C410.0353 (16)0.0425 (19)0.0398 (17)0.0004 (13)0.0083 (13)0.0093 (14)
C420.0433 (17)0.0387 (18)0.0327 (16)0.0038 (14)0.0066 (13)0.0132 (14)
C430.0403 (17)0.0400 (18)0.0440 (18)0.0037 (14)0.0183 (14)0.0109 (15)
C440.0425 (17)0.0432 (19)0.0424 (17)0.0089 (14)0.0142 (14)0.0205 (15)
C450.0469 (19)0.0409 (19)0.050 (2)0.0154 (15)0.0087 (15)0.0141 (16)
C460.0433 (17)0.0293 (16)0.0520 (19)0.0047 (13)0.0021 (14)0.0178 (15)
C470.0452 (18)0.0376 (18)0.052 (2)0.0089 (14)0.0122 (15)0.0163 (16)
C480.0424 (17)0.0408 (18)0.0440 (18)0.0160 (14)0.0165 (14)0.0212 (15)
C490.0439 (18)0.046 (2)0.0372 (17)0.0212 (15)0.0153 (14)0.0136 (15)
C500.0390 (17)0.0330 (17)0.0416 (17)0.0114 (13)0.0000 (13)0.0139 (14)
C510.0433 (18)0.0417 (19)0.0475 (19)0.0011 (15)0.0119 (15)0.0123 (16)
C520.0478 (19)0.0421 (19)0.048 (2)0.0111 (16)0.0037 (16)0.0134 (16)
C530.0461 (18)0.0361 (17)0.0427 (18)0.0164 (14)0.0125 (14)0.0098 (14)
C540.0469 (19)0.0354 (18)0.0440 (18)0.0190 (14)0.0116 (15)0.0090 (14)
C550.051 (2)0.045 (2)0.052 (2)0.0175 (16)0.0061 (16)0.0153 (17)
C560.0442 (18)0.0394 (19)0.0448 (19)0.0001 (14)0.0126 (15)0.0061 (15)
Cl10.0303 (4)0.0428 (4)0.0404 (4)0.0017 (3)0.0021 (3)0.0007 (3)
Cl20.0425 (4)0.0363 (4)0.0355 (4)0.0114 (3)0.0113 (3)0.0080 (3)
Cl30.0419 (4)0.0427 (5)0.0387 (4)0.0110 (3)0.0113 (3)0.0106 (3)
Cl40.0297 (4)0.0410 (4)0.0406 (4)0.0004 (3)0.0016 (3)0.0004 (3)
Cl50.0421 (4)0.0472 (5)0.0393 (4)0.0150 (4)0.0063 (3)0.0065 (4)
Cl60.0446 (4)0.0405 (4)0.0419 (4)0.0174 (4)0.0146 (3)0.0019 (3)
Cl70.0407 (4)0.0448 (5)0.0366 (4)0.0189 (3)0.0100 (3)0.0034 (3)
Cl80.0392 (4)0.0418 (4)0.0341 (4)0.0148 (3)0.0087 (3)0.0064 (3)
Co10.0286 (2)0.0313 (2)0.0278 (2)0.00365 (16)0.00186 (15)0.00133 (16)
Co20.0300 (2)0.0308 (2)0.0269 (2)0.00426 (16)0.00143 (15)0.00045 (16)
N10.0318 (13)0.0398 (15)0.0309 (13)0.0010 (11)0.0049 (10)0.0103 (11)
N20.0398 (14)0.0330 (14)0.0319 (13)0.0066 (11)0.0041 (11)0.0069 (11)
N30.0290 (13)0.0458 (16)0.0406 (15)0.0004 (11)0.0066 (11)0.0052 (12)
N40.0348 (13)0.0285 (13)0.0405 (14)0.0004 (10)0.0024 (11)0.0029 (11)
N50.0354 (14)0.0371 (15)0.0329 (13)0.0025 (11)0.0056 (10)0.0041 (11)
N60.0359 (13)0.0243 (12)0.0369 (14)0.0032 (10)0.0009 (10)0.0079 (10)
N70.0505 (17)0.0418 (16)0.0442 (16)0.0060 (13)0.0156 (13)0.0169 (13)
N80.0402 (14)0.0338 (15)0.0466 (15)0.0143 (12)0.0056 (12)0.0195 (13)
O10.0384 (11)0.0318 (11)0.0267 (10)0.0102 (9)0.0015 (8)0.0044 (9)
O20.0474 (13)0.0395 (13)0.0332 (11)0.0170 (10)0.0017 (10)0.0010 (10)
O30.0438 (12)0.0386 (13)0.0321 (11)0.0122 (10)0.0041 (9)0.0014 (9)
O40.0427 (12)0.0311 (11)0.0246 (10)0.0170 (9)0.0021 (9)0.0016 (8)
O50.0509 (13)0.0427 (13)0.0309 (11)0.0165 (10)0.0006 (10)0.0062 (10)
O60.0350 (11)0.0419 (13)0.0289 (11)0.0056 (9)0.0028 (9)0.0037 (9)
O70.0386 (11)0.0302 (11)0.0286 (10)0.0069 (9)0.0024 (9)0.0024 (9)
O80.0490 (13)0.0469 (14)0.0320 (11)0.0133 (11)0.0070 (10)0.0061 (10)
O90.0429 (12)0.0288 (11)0.0364 (11)0.0107 (9)0.0046 (9)0.0002 (9)
O100.0408 (11)0.0308 (11)0.0276 (10)0.0057 (9)0.0046 (9)0.0008 (8)
Geometric parameters (Å, º) top
C1—O41.237 (4)C33—H330.9300
C1—O31.261 (4)C34—C351.378 (5)
C1—C21.503 (4)C34—H340.9300
C2—C71.385 (4)C35—C361.392 (4)
C2—C31.409 (4)C35—H350.9300
C3—C41.392 (4)C36—N41.329 (4)
C3—Cl31.725 (3)C36—H360.9300
C4—C51.393 (4)C37—N51.334 (4)
C4—Cl41.731 (3)C37—C381.370 (4)
C5—C61.406 (4)C37—H370.9300
C5—C81.505 (4)C38—C391.379 (5)
C6—C71.395 (4)C38—H380.9300
C6—Cl21.724 (3)C39—C401.379 (5)
C7—Cl11.736 (3)C39—H390.9300
C8—O21.240 (4)C40—C411.370 (4)
C8—O11.254 (4)C40—H400.9300
C9—O81.231 (4)C41—N51.341 (4)
C9—O71.254 (4)C41—H410.9300
C9—C101.513 (4)C42—N61.332 (4)
C10—C151.390 (4)C42—C431.385 (4)
C10—C111.394 (4)C42—H420.9300
C11—C121.402 (4)C43—C441.380 (4)
C11—Cl51.733 (3)C43—H430.9300
C12—C131.394 (4)C44—C451.384 (5)
C12—Cl61.733 (3)C44—H440.9300
C13—C141.378 (4)C45—C461.373 (5)
C13—C161.507 (4)C45—H450.9300
C14—C151.394 (4)C46—N61.335 (4)
C14—Cl81.735 (3)C46—H460.9300
C15—Cl71.735 (3)C47—N71.323 (4)
C16—O51.223 (4)C47—C481.369 (5)
C16—O61.271 (4)C47—H470.9300
C17—N11.330 (4)C48—C491.376 (5)
C17—C181.379 (4)C48—H480.9318
C17—H170.9300C49—C501.348 (5)
C18—C191.391 (5)C49—H490.9300
C18—H180.9300C50—C511.362 (5)
C19—C201.383 (5)C50—H500.9300
C19—H190.9300C51—N71.317 (4)
C20—C211.376 (4)C51—H510.9300
C20—H200.9300C52—N81.278 (4)
C21—N11.343 (4)C52—C531.371 (5)
C21—H210.9300C52—H520.9300
C22—N21.332 (4)C53—C541.313 (5)
C22—C231.380 (5)C53—H530.9300
C22—H220.9300C54—C551.337 (5)
C23—C241.364 (5)C54—H540.9300
C23—H230.9300C55—C561.400 (5)
C24—C251.376 (5)C55—H550.9300
C24—H240.9300C56—N81.313 (4)
C25—C261.376 (4)C56—H560.9300
C25—H250.9300Co1—O72.0619 (19)
C26—N21.335 (4)Co1—O92.122 (2)
C26—H260.9300Co1—O22.126 (2)
C27—N31.347 (4)Co1—N32.155 (3)
C27—C281.395 (4)Co1—N12.158 (2)
C27—H270.9300Co1—N22.171 (3)
C28—C291.365 (5)Co2—O62.066 (2)
C28—H280.9300Co2—O3i2.127 (2)
C29—C301.374 (5)Co2—O102.144 (2)
C29—H290.9300Co2—N52.167 (3)
C30—C311.382 (4)Co2—N42.170 (2)
C30—H300.9300Co2—N62.190 (3)
C31—N31.338 (4)O3—Co2ii2.127 (2)
C31—H310.9300O9—H9A0.8497
C32—N41.345 (4)O9—H9B0.8493
C32—C331.375 (4)O10—H10B0.8498
C32—H320.9300O10—H10A0.8499
C33—C341.373 (5)
O4—C1—O3128.1 (3)C38—C39—C40117.9 (3)
O4—C1—C2116.9 (3)C38—C39—H39121.0
O3—C1—C2115.0 (3)C40—C39—H39121.0
C7—C2—C3117.5 (3)C41—C40—C39119.9 (3)
C7—C2—C1121.8 (3)C41—C40—H40120.0
C3—C2—C1120.7 (3)C39—C40—H40120.0
C4—C3—C2120.9 (3)N5—C41—C40122.6 (3)
C4—C3—Cl3120.7 (2)N5—C41—H41118.7
C2—C3—Cl3118.3 (2)C40—C41—H41118.7
C3—C4—C5121.6 (3)N6—C42—C43123.8 (3)
C3—C4—Cl4120.2 (2)N6—C42—H42118.1
C5—C4—Cl4118.2 (2)C43—C42—H42118.1
C4—C5—C6117.3 (2)C44—C43—C42118.2 (3)
C4—C5—C8121.8 (2)C44—C43—H43120.9
C6—C5—C8120.9 (3)C42—C43—H43120.9
C7—C6—C5121.1 (3)C43—C44—C45118.8 (3)
C7—C6—Cl2120.5 (2)C43—C44—H44120.6
C5—C6—Cl2118.4 (2)C45—C44—H44120.6
C2—C7—C6121.6 (3)C46—C45—C44118.5 (3)
C2—C7—Cl1118.4 (2)C46—C45—H45120.7
C6—C7—Cl1120.0 (2)C44—C45—H45120.7
O2—C8—O1128.3 (3)N6—C46—C45123.9 (3)
O2—C8—C5114.3 (3)N6—C46—H46118.1
O1—C8—C5117.4 (3)C45—C46—H46118.1
O8—C9—O7127.7 (3)N7—C47—C48123.7 (3)
O8—C9—C10116.6 (3)N7—C47—H47118.1
O7—C9—C10115.7 (3)C48—C47—H47118.1
C15—C10—C11116.4 (3)C47—C48—C49118.5 (3)
C15—C10—C9121.4 (3)C47—C48—H48120.2
C11—C10—C9122.1 (3)C49—C48—H48121.3
C10—C11—C12121.6 (3)C50—C49—C48117.8 (3)
C10—C11—Cl5118.8 (2)C50—C49—H49121.1
C12—C11—Cl5119.7 (2)C48—C49—H49121.1
C13—C12—C11121.5 (3)C49—C50—C51120.1 (3)
C13—C12—Cl6118.7 (2)C49—C50—H50120.0
C11—C12—Cl6119.8 (2)C51—C50—H50120.0
C14—C13—C12116.5 (3)N7—C51—C50123.3 (3)
C14—C13—C16121.3 (3)N7—C51—H51118.4
C12—C13—C16122.1 (3)C50—C51—H51118.4
C13—C14—C15122.3 (3)N8—C52—C53125.2 (3)
C13—C14—Cl8118.3 (2)N8—C52—H52117.4
C15—C14—Cl8119.3 (2)C53—C52—H52117.4
C10—C15—C14121.6 (3)C54—C53—C52117.1 (3)
C10—C15—Cl7118.3 (2)C54—C53—H53121.4
C14—C15—Cl7120.0 (2)C52—C53—H53121.4
O5—C16—O6127.4 (3)C53—C54—C55121.8 (3)
O5—C16—C13117.1 (3)C53—C54—H54119.1
O6—C16—C13115.5 (3)C55—C54—H54119.1
N1—C17—C18124.2 (3)C54—C55—C56116.4 (3)
N1—C17—H17117.9C54—C55—H55121.8
C18—C17—H17117.9C56—C55—H55121.8
C17—C18—C19118.0 (3)N8—C56—C55123.0 (3)
C17—C18—H18121.0N8—C56—H56118.5
C19—C18—H18121.0C55—C56—H56118.5
C20—C19—C18118.7 (3)O7—Co1—O986.56 (8)
C20—C19—H19120.7O7—Co1—O2174.01 (9)
C18—C19—H19120.7O9—Co1—O287.46 (8)
C21—C20—C19118.9 (3)O7—Co1—N391.71 (9)
C21—C20—H20120.6O9—Co1—N386.25 (10)
C19—C20—H20120.6O2—Co1—N387.54 (10)
N1—C21—C20123.2 (3)O7—Co1—N189.07 (9)
N1—C21—H21118.4O9—Co1—N191.97 (9)
C20—C21—H21118.4O2—Co1—N191.49 (9)
N2—C22—C23122.3 (3)N3—Co1—N1178.00 (11)
N2—C22—H22118.9O7—Co1—N2102.09 (9)
C23—C22—H22118.9O9—Co1—N2171.04 (8)
C24—C23—C22120.2 (3)O2—Co1—N283.87 (9)
C24—C23—H23119.9N3—Co1—N291.08 (10)
C22—C23—H23119.9N1—Co1—N290.55 (10)
C23—C24—C25117.7 (3)O6—Co2—O3i172.82 (9)
C23—C24—H24121.2O6—Co2—O1085.27 (9)
C25—C24—H24121.2O3i—Co2—O1087.88 (8)
C24—C25—C26119.5 (3)O6—Co2—N590.00 (9)
C24—C25—H25120.3O3i—Co2—N592.26 (9)
C26—C25—H25120.3O10—Co2—N590.98 (9)
N2—C26—C25122.8 (3)O6—Co2—N490.76 (9)
N2—C26—H26118.6O3i—Co2—N486.93 (9)
C25—C26—H26118.6O10—Co2—N488.63 (9)
N3—C27—C28122.3 (3)N5—Co2—N4179.11 (10)
N3—C27—H27118.9O6—Co2—N6104.47 (9)
C28—C27—H27118.9O3i—Co2—N682.39 (9)
C29—C28—C27119.4 (3)O10—Co2—N6170.26 (8)
C29—C28—H28120.3N5—Co2—N689.28 (10)
C27—C28—H28120.3N4—Co2—N690.96 (10)
C28—C29—C30118.7 (3)C17—N1—C21117.0 (3)
C28—C29—H29120.7C17—N1—Co1123.0 (2)
C30—C29—H29120.7C21—N1—Co1120.0 (2)
C29—C30—C31119.2 (3)C22—N2—C26117.5 (3)
C29—C30—H30120.4C22—N2—Co1121.0 (2)
C31—C30—H30120.4C26—N2—Co1120.9 (2)
N3—C31—C30123.2 (3)C31—N3—C27117.2 (3)
N3—C31—H31118.4C31—N3—Co1120.4 (2)
C30—C31—H31118.4C27—N3—Co1122.3 (2)
N4—C32—C33122.8 (3)C36—N4—C32117.1 (3)
N4—C32—H32118.6C36—N4—Co2122.5 (2)
C33—C32—H32118.6C32—N4—Co2120.3 (2)
C34—C33—C32119.9 (3)C37—N5—C41116.7 (3)
C34—C33—H33120.0C37—N5—Co2120.0 (2)
C32—C33—H33120.0C41—N5—Co2123.0 (2)
C33—C34—C35118.0 (3)C42—N6—C46116.8 (3)
C33—C34—H34121.0C42—N6—Co2119.7 (2)
C35—C34—H34121.0C46—N6—Co2123.2 (2)
C34—C35—C36119.0 (3)C51—N7—C47116.6 (3)
C34—C35—H35120.5C52—N8—C56116.4 (3)
C36—C35—H35120.5C8—O2—Co1133.6 (2)
N4—C36—C35123.2 (3)C1—O3—Co2ii131.5 (2)
N4—C36—H36118.4C16—O6—Co2137.5 (2)
C35—C36—H36118.4C9—O7—Co1144.1 (2)
N5—C37—C38124.2 (3)Co1—O9—H9A116.8
N5—C37—H37117.9Co1—O9—H9B107.0
C38—C37—H37117.9H9A—O9—H9B109.8
C37—C38—C39118.6 (3)Co2—O10—H10B101.0
C37—C38—H38120.7Co2—O10—H10A111.6
C39—C38—H38120.7H10B—O10—H10A109.7
O4—C1—C2—C797.7 (4)C18—C17—N1—C210.2 (5)
O3—C1—C2—C781.0 (4)C18—C17—N1—Co1178.1 (2)
O4—C1—C2—C380.7 (4)C20—C21—N1—C170.3 (4)
O3—C1—C2—C3100.7 (3)C20—C21—N1—Co1178.7 (2)
C7—C2—C3—C41.0 (5)O7—Co1—N1—C17127.2 (2)
C1—C2—C3—C4177.5 (3)O9—Co1—N1—C1740.7 (2)
C7—C2—C3—Cl3179.8 (2)O2—Co1—N1—C1746.8 (2)
C1—C2—C3—Cl31.8 (4)N2—Co1—N1—C17130.7 (2)
C2—C3—C4—C50.2 (5)O7—Co1—N1—C2151.1 (2)
Cl3—C3—C4—C5179.4 (2)O9—Co1—N1—C21137.6 (2)
C2—C3—C4—Cl4178.1 (2)O2—Co1—N1—C21134.9 (2)
Cl3—C3—C4—Cl41.1 (4)N2—Co1—N1—C2151.0 (2)
C3—C4—C5—C60.0 (5)C23—C22—N2—C260.8 (5)
Cl4—C4—C5—C6178.4 (2)C23—C22—N2—Co1170.7 (2)
C3—C4—C5—C8179.1 (3)C25—C26—N2—C221.4 (5)
Cl4—C4—C5—C80.7 (4)C25—C26—N2—Co1170.0 (2)
C4—C5—C6—C70.4 (5)O7—Co1—N2—C2244.7 (2)
C8—C5—C6—C7179.6 (3)O2—Co1—N2—C22134.7 (2)
C4—C5—C6—Cl2178.9 (2)N3—Co1—N2—C2247.3 (2)
C8—C5—C6—Cl20.3 (4)N1—Co1—N2—C22133.9 (2)
C3—C2—C7—C61.5 (5)O7—Co1—N2—C26144.1 (2)
C1—C2—C7—C6177.0 (3)O2—Co1—N2—C2636.5 (2)
C3—C2—C7—Cl1178.3 (2)N3—Co1—N2—C26123.9 (2)
C1—C2—C7—Cl13.3 (4)N1—Co1—N2—C2654.9 (2)
C5—C6—C7—C21.2 (5)C30—C31—N3—C271.4 (5)
Cl2—C6—C7—C2178.1 (3)C30—C31—N3—Co1177.0 (3)
C5—C6—C7—Cl1178.6 (2)C28—C27—N3—C310.1 (5)
Cl2—C6—C7—Cl12.1 (4)C28—C27—N3—Co1175.5 (3)
C4—C5—C8—O280.9 (4)O7—Co1—N3—C3135.4 (3)
C6—C5—C8—O298.2 (3)O9—Co1—N3—C3151.0 (2)
C4—C5—C8—O197.6 (4)O2—Co1—N3—C31138.7 (3)
C6—C5—C8—O183.2 (4)N2—Co1—N3—C31137.5 (3)
O8—C9—C10—C1594.1 (4)O7—Co1—N3—C27149.3 (3)
O7—C9—C10—C1586.0 (4)O9—Co1—N3—C27124.2 (3)
O8—C9—C10—C1186.0 (4)O2—Co1—N3—C2736.6 (3)
O7—C9—C10—C1193.9 (4)N2—Co1—N3—C2747.2 (3)
C15—C10—C11—C121.5 (5)C35—C36—N4—C322.9 (5)
C9—C10—C11—C12178.6 (3)C35—C36—N4—Co2179.0 (3)
C15—C10—C11—Cl5178.3 (2)C33—C32—N4—C362.3 (5)
C9—C10—C11—Cl51.6 (4)C33—C32—N4—Co2179.5 (3)
C10—C11—C12—C131.9 (5)O6—Co2—N4—C36150.8 (3)
Cl5—C11—C12—C13177.9 (3)O3i—Co2—N4—C3636.0 (3)
C10—C11—C12—Cl6179.6 (3)O10—Co2—N4—C36123.9 (3)
Cl5—C11—C12—Cl60.1 (4)N6—Co2—N4—C3646.3 (3)
C11—C12—C13—C141.4 (5)O6—Co2—N4—C3231.1 (2)
Cl6—C12—C13—C14179.2 (3)O3i—Co2—N4—C32142.1 (2)
C11—C12—C13—C16179.2 (3)O10—Co2—N4—C3254.1 (2)
Cl6—C12—C13—C161.4 (4)N6—Co2—N4—C32135.6 (2)
C12—C13—C14—C150.7 (5)C38—C37—N5—C410.6 (5)
C16—C13—C14—C15179.8 (3)C38—C37—N5—Co2175.2 (2)
C12—C13—C14—Cl8177.1 (2)C40—C41—N5—C370.6 (5)
C16—C13—C14—Cl83.5 (4)C40—C41—N5—Co2175.0 (2)
C11—C10—C15—C140.8 (5)O6—Co2—N5—C3750.7 (2)
C9—C10—C15—C14179.3 (3)O3i—Co2—N5—C37136.1 (2)
C11—C10—C15—Cl7179.4 (2)O10—Co2—N5—C37136.0 (2)
C9—C10—C15—Cl70.7 (4)N6—Co2—N5—C3753.7 (2)
C13—C14—C15—C100.5 (5)O6—Co2—N5—C41123.5 (2)
Cl8—C14—C15—C10176.8 (2)O3i—Co2—N5—C4149.7 (2)
C13—C14—C15—Cl7179.0 (3)O10—Co2—N5—C4138.2 (2)
Cl8—C14—C15—Cl74.7 (4)N6—Co2—N5—C41132.1 (2)
C14—C13—C16—O592.9 (4)C43—C42—N6—C461.7 (5)
C12—C13—C16—O587.6 (4)C43—C42—N6—Co2171.7 (2)
C14—C13—C16—O685.2 (4)C45—C46—N6—C422.4 (5)
C12—C13—C16—O694.2 (4)C45—C46—N6—Co2170.8 (2)
N1—C17—C18—C191.2 (5)O6—Co2—N6—C42140.5 (2)
C17—C18—C19—C201.6 (5)O3i—Co2—N6—C4241.7 (2)
C18—C19—C20—C211.2 (5)N5—Co2—N6—C4250.7 (2)
C19—C20—C21—N10.2 (5)N4—Co2—N6—C42128.5 (2)
N2—C22—C23—C241.0 (5)O6—Co2—N6—C4646.5 (2)
C22—C23—C24—C252.2 (5)O3i—Co2—N6—C46131.3 (2)
C23—C24—C25—C261.5 (5)N5—Co2—N6—C46136.4 (2)
C24—C25—C26—N20.3 (5)N4—Co2—N6—C4644.5 (2)
N3—C27—C28—C291.4 (5)C50—C51—N7—C473.0 (5)
C27—C28—C29—C301.5 (5)C48—C47—N7—C512.7 (5)
C28—C29—C30—C310.2 (5)C53—C52—N8—C560.9 (5)
C29—C30—C31—N31.3 (5)C55—C56—N8—C521.1 (5)
N4—C32—C33—C340.8 (5)O1—C8—O2—Co11.8 (5)
C32—C33—C34—C350.3 (5)C5—C8—O2—Co1179.8 (2)
C33—C34—C35—C360.2 (5)O9—Co1—O2—C814.1 (3)
C34—C35—C36—N41.9 (5)N3—Co1—O2—C8100.5 (3)
N5—C37—C38—C391.0 (5)N1—Co1—O2—C877.8 (3)
C37—C38—C39—C401.2 (5)N2—Co1—O2—C8168.2 (3)
C38—C39—C40—C411.2 (5)O4—C1—O3—Co2ii2.5 (5)
C39—C40—C41—N51.0 (5)C2—C1—O3—Co2ii179.06 (19)
N6—C42—C43—C440.3 (5)O5—C16—O6—Co21.5 (5)
C42—C43—C44—C451.7 (5)C13—C16—O6—Co2179.4 (2)
C43—C44—C45—C461.1 (5)O10—Co2—O6—C16170.4 (3)
C44—C45—C46—N61.0 (5)N5—Co2—O6—C1698.6 (3)
N7—C47—C48—C490.4 (5)N4—Co2—O6—C1681.8 (3)
C47—C48—C49—C503.3 (4)N6—Co2—O6—C169.3 (3)
C48—C49—C50—C513.2 (4)O8—C9—O7—Co17.2 (6)
C49—C50—C51—N70.1 (5)C10—C9—O7—Co1172.6 (2)
N8—C52—C53—C542.0 (5)O9—Co1—O7—C9179.1 (3)
C52—C53—C54—C550.9 (5)N3—Co1—O7—C993.0 (3)
C53—C54—C55—C560.9 (5)N1—Co1—O7—C988.9 (3)
C54—C55—C56—N82.0 (5)N2—Co1—O7—C91.5 (4)
Symmetry codes: (i) x1, y1, z+1; (ii) x+1, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···N80.851.912.718 (3)159
O9—H9B···O10.851.972.768 (3)157
O10—H10B···O4i0.851.852.686 (3)166
O10—H10A···N7iii0.851.982.814 (3)167
C40—H40···Cg1iii0.932.993.813 (4)149
C44—H44···Cg2iv0.932.943.638 (4)133
Symmetry codes: (i) x1, y1, z+1; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1.
(II) catena-poly[[[diaquadipyridinecobalt(II)]-µ-tetrachloroterephthalato] 1,4-dioxane trihydrate] top
Crystal data top
[Co(C8Cl4O4)(C5H5N)2(H2O)2]·C4H8O2·3H2OF(000) = 2856
Mr = 697.19Dx = 1.489 Mg m3
Orthorhombic, PccaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2a 2acCell parameters from 9681 reflections
a = 21.4257 (19) Åθ = 2.4–27.5°
b = 8.6567 (8) ŵ = 0.95 mm1
c = 33.537 (3) ÅT = 291 K
V = 6220.3 (10) Å3Block, pink
Z = 80.28 × 0.24 × 0.22 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
6133 independent reflections
Radiation source: sealed tube4296 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
phi and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2526
Tmin = 0.77, Tmax = 0.81k = 1010
46466 measured reflectionsl = 4141
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.03P)2]
where P = (Fo2 + 2Fc2)/3
6133 reflections(Δ/σ)max < 0.001
366 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Co(C8Cl4O4)(C5H5N)2(H2O)2]·C4H8O2·3H2OV = 6220.3 (10) Å3
Mr = 697.19Z = 8
Orthorhombic, PccaMo Kα radiation
a = 21.4257 (19) ŵ = 0.95 mm1
b = 8.6567 (8) ÅT = 291 K
c = 33.537 (3) Å0.28 × 0.24 × 0.22 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
6133 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4296 reflections with I > 2σ(I)
Tmin = 0.77, Tmax = 0.81Rint = 0.066
46466 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.02Δρmax = 0.48 e Å3
6133 reflectionsΔρmin = 0.42 e Å3
366 parameters
Special details top

Experimental. IR (KBr, υ, cm-1): 3391 (s), 3082 (m), 2964 (m), 2928 (m), 1643 (s), 1605 (versus), 1499 (m), 1417 (s), 1378 (m), 1316 (versus), 1248 (m), 1115 (m), 1050 (m), 874 (m), 699 (m), 632 (s).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.63102 (12)0.6993 (3)0.13145 (8)0.0387 (6)
C20.56117 (12)0.7107 (3)0.12591 (7)0.0364 (5)
C30.52189 (12)0.7346 (3)0.15828 (8)0.0400 (6)
C40.45812 (12)0.7532 (3)0.15319 (7)0.0383 (6)
C50.43093 (12)0.7521 (3)0.11557 (8)0.0375 (6)
C60.47023 (12)0.7270 (3)0.08318 (7)0.0352 (5)
C70.53431 (12)0.7054 (3)0.08827 (7)0.0348 (5)
C80.36151 (12)0.7757 (3)0.11034 (8)0.0393 (6)
C90.71463 (12)0.4034 (3)0.04717 (8)0.0408 (6)
H90.68920.33460.06100.049*
C100.71399 (13)0.4005 (3)0.00584 (8)0.0464 (6)
H100.68880.33000.00750.056*
C110.75000.50000.01501 (12)0.0422 (9)
H110.75000.50000.04270.051*
C120.69701 (13)0.4854 (3)0.21836 (8)0.0433 (6)
H120.65970.47300.20460.052*
C130.69560 (13)0.4881 (3)0.25938 (8)0.0426 (6)
H130.65760.48190.27270.051*
C140.75000.50000.28065 (12)0.0477 (9)
H140.75000.50000.30840.057*
C150.29491 (13)1.0678 (3)0.18747 (8)0.0444 (6)
H150.32711.11510.17340.053*
C160.29575 (13)1.0711 (3)0.22906 (8)0.0468 (7)
H160.32781.12210.24240.056*
C170.25001.00000.25012 (11)0.0427 (9)
H170.25001.00000.27790.051*
C180.30259 (13)1.0242 (3)0.01827 (8)0.0423 (6)
H180.33961.04070.03210.051*
C190.30376 (13)1.0253 (3)0.02284 (8)0.0431 (6)
H190.34101.04330.03630.052*
C200.25001.00000.04379 (12)0.0434 (9)
H200.25001.00000.07150.052*
C210.47215 (12)0.1269 (3)0.04907 (8)0.0411 (6)
H21A0.44600.06810.06720.049*
H21B0.45920.10350.02200.049*
C220.46389 (12)0.2956 (3)0.05690 (8)0.0431 (6)
H22A0.48780.35460.03760.052*
H22B0.42020.32300.05390.052*
C230.54786 (13)0.2896 (3)0.10159 (8)0.0459 (6)
H23A0.56110.31240.12860.055*
H23B0.57400.34830.08340.055*
C240.55548 (14)0.1196 (3)0.09346 (8)0.0461 (6)
H24A0.59900.09100.09660.055*
H24B0.53120.06090.11260.055*
Cl10.55413 (3)0.74018 (7)0.205766 (18)0.04123 (15)
Cl20.40961 (3)0.77913 (7)0.193944 (18)0.03949 (14)
Cl30.58195 (3)0.67111 (7)0.047696 (18)0.03850 (14)
Cl40.43824 (3)0.72156 (7)0.036001 (18)0.04005 (15)
Co10.25001.00000.103012 (14)0.03502 (12)
Co20.75000.50000.132603 (15)0.03916 (13)
N10.75000.50000.06784 (9)0.0376 (7)
N20.75000.50000.19752 (9)0.0441 (7)
N30.25001.00000.16773 (9)0.0430 (7)
N40.25001.00000.03903 (9)0.0357 (6)
O10.65428 (8)0.56641 (18)0.13157 (5)0.0413 (4)
O20.65952 (8)0.82454 (18)0.13507 (5)0.0428 (4)
O30.32825 (8)0.65701 (19)0.11257 (5)0.0445 (4)
O40.34350 (8)0.91098 (18)0.10431 (5)0.0420 (4)
O50.72222 (9)0.26689 (17)0.13148 (5)0.0408 (4)
H5A0.68750.25550.14340.049*
H5B0.75090.21760.14350.049*
O60.28590 (8)1.22506 (17)0.09998 (5)0.0407 (4)
H6B0.29281.25220.12390.049*
H6A0.26791.30150.08890.049*
O70.48434 (9)0.3339 (2)0.09657 (6)0.0516 (5)
O80.53549 (8)0.08335 (19)0.05435 (5)0.0444 (4)
O90.37596 (8)0.36886 (18)0.13815 (5)0.0425 (4)
H9A0.37870.46130.12980.051*
H9B0.41030.32210.13430.051*
O100.65448 (9)0.02484 (19)0.18134 (5)0.0458 (4)
H10A0.64670.05010.19690.055*
H10B0.68630.00350.16730.055*
O110.55676 (9)0.20707 (19)0.23599 (5)0.0464 (4)
H11A0.58710.17510.22190.056*
H11B0.52680.23320.22080.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0371 (14)0.0381 (14)0.0408 (14)0.0041 (11)0.0036 (11)0.0011 (10)
C20.0394 (14)0.0306 (11)0.0392 (14)0.0046 (11)0.0028 (11)0.0058 (10)
C30.0455 (16)0.0407 (14)0.0336 (14)0.0061 (11)0.0054 (11)0.0071 (11)
C40.0412 (15)0.0418 (13)0.0319 (14)0.0056 (10)0.0036 (11)0.0046 (10)
C50.0433 (15)0.0320 (11)0.0372 (14)0.0041 (10)0.0004 (11)0.0023 (9)
C60.0459 (15)0.0302 (12)0.0294 (13)0.0043 (10)0.0037 (10)0.0011 (9)
C70.0411 (14)0.0322 (11)0.0313 (13)0.0052 (11)0.0051 (10)0.0034 (10)
C80.0387 (14)0.0405 (14)0.0388 (14)0.0041 (11)0.0014 (11)0.0009 (11)
C90.0432 (15)0.0385 (13)0.0406 (15)0.0007 (11)0.0087 (12)0.0023 (10)
C100.0468 (17)0.0468 (13)0.0455 (16)0.0067 (12)0.0010 (13)0.0128 (12)
C110.044 (2)0.0417 (19)0.041 (2)0.0119 (16)0.0000.000
C120.0432 (15)0.0397 (13)0.0470 (16)0.0081 (11)0.0083 (13)0.0030 (11)
C130.0447 (16)0.0424 (14)0.0406 (14)0.0005 (11)0.0137 (13)0.0042 (10)
C140.052 (3)0.046 (2)0.045 (2)0.0134 (17)0.0000.000
C150.0428 (16)0.0452 (14)0.0451 (16)0.0105 (12)0.0117 (12)0.0011 (11)
C160.0445 (16)0.0453 (14)0.0506 (17)0.0182 (12)0.0094 (13)0.0003 (12)
C170.050 (2)0.0414 (19)0.037 (2)0.0100 (15)0.0000.000
C180.0393 (15)0.0445 (14)0.0430 (15)0.0063 (11)0.0062 (11)0.0005 (11)
C190.0416 (15)0.0470 (15)0.0406 (15)0.0114 (12)0.0104 (12)0.0003 (11)
C200.051 (2)0.0370 (18)0.042 (2)0.0097 (16)0.0000.000
C210.0431 (15)0.0373 (14)0.0431 (16)0.0062 (11)0.0071 (12)0.0027 (11)
C220.0399 (15)0.0411 (13)0.0484 (16)0.0100 (11)0.0058 (12)0.0052 (12)
C230.0488 (16)0.0465 (14)0.0425 (16)0.0005 (12)0.0085 (12)0.0032 (12)
C240.0453 (17)0.0484 (14)0.0446 (16)0.0153 (12)0.0094 (13)0.0013 (12)
Cl10.0393 (3)0.0491 (3)0.0352 (3)0.0107 (3)0.0098 (3)0.0023 (3)
Cl20.0344 (3)0.0458 (3)0.0383 (3)0.0120 (2)0.0085 (3)0.0016 (3)
Cl30.0305 (3)0.0462 (3)0.0388 (3)0.0127 (2)0.0078 (2)0.0034 (2)
Cl40.0357 (3)0.0461 (3)0.0384 (3)0.0147 (3)0.0108 (3)0.0071 (3)
Co10.0376 (3)0.0313 (2)0.0361 (3)0.00368 (18)0.0000.000
Co20.0464 (3)0.0321 (2)0.0390 (3)0.00450 (19)0.0000.000
N10.0318 (17)0.0395 (15)0.0415 (17)0.0071 (12)0.0000.000
N20.0378 (18)0.0543 (18)0.0403 (18)0.0113 (14)0.0000.000
N30.044 (2)0.0448 (17)0.0405 (17)0.0049 (13)0.0000.000
N40.0293 (15)0.0391 (15)0.0385 (16)0.0003 (11)0.0000.000
O10.0424 (11)0.0351 (9)0.0464 (10)0.0043 (8)0.0048 (8)0.0019 (7)
O20.0432 (11)0.0372 (9)0.0481 (10)0.0026 (8)0.0073 (8)0.0042 (8)
O30.0424 (10)0.0408 (9)0.0504 (11)0.0004 (8)0.0059 (8)0.0060 (8)
O40.0412 (10)0.0366 (9)0.0484 (11)0.0073 (8)0.0030 (8)0.0031 (8)
O50.0470 (11)0.0344 (8)0.0411 (9)0.0005 (7)0.0044 (8)0.0063 (7)
O60.0457 (10)0.0353 (8)0.0410 (9)0.0008 (8)0.0023 (8)0.0017 (7)
O70.0519 (12)0.0552 (11)0.0477 (12)0.0120 (9)0.0003 (9)0.0107 (9)
O80.0482 (11)0.0437 (9)0.0413 (11)0.0127 (8)0.0075 (8)0.0091 (8)
O90.0404 (10)0.0372 (9)0.0500 (11)0.0055 (7)0.0028 (8)0.0016 (8)
O100.0444 (11)0.0420 (9)0.0510 (11)0.0019 (8)0.0016 (9)0.0006 (8)
O110.0464 (11)0.0402 (9)0.0526 (11)0.0089 (8)0.0003 (9)0.0037 (8)
Geometric parameters (Å, º) top
C1—O21.250 (3)C20—C19ii1.367 (3)
C1—O11.254 (3)C20—H200.9300
C1—C21.511 (3)C21—O81.420 (3)
C2—C71.388 (3)C21—C221.495 (3)
C2—C31.389 (4)C21—H21A0.9700
C3—C41.386 (4)C21—H21B0.9700
C3—Cl11.737 (3)C22—O71.440 (3)
C4—C51.390 (3)C22—H22A0.9700
C4—Cl21.732 (2)C22—H22B0.9700
C5—C61.391 (4)C23—O71.424 (3)
C5—C81.512 (4)C23—C241.506 (3)
C6—C71.396 (4)C23—H23A0.9700
C6—Cl41.725 (2)C23—H23B0.9700
C7—Cl31.727 (2)C24—O81.415 (3)
C8—O41.250 (3)C24—H24A0.9700
C8—O31.252 (3)C24—H24B0.9700
C9—N11.325 (3)Co1—O6ii2.0971 (15)
C9—C101.387 (4)Co1—O62.0971 (15)
C9—H90.9300Co1—N42.146 (3)
C10—C111.352 (3)Co1—O4ii2.1469 (17)
C10—H100.9300Co1—O42.1469 (17)
C11—C10i1.352 (3)Co1—N32.171 (3)
C11—H110.9300Co2—O5i2.1043 (15)
C12—N21.339 (3)Co2—O52.1043 (15)
C12—C131.376 (4)Co2—O1i2.1302 (17)
C12—H120.9300Co2—O12.1302 (17)
C13—C141.370 (3)Co2—N12.172 (3)
C13—H130.9300Co2—N22.177 (3)
C14—C13i1.370 (3)N1—C9i1.325 (3)
C14—H140.9300N2—C12i1.339 (3)
C15—N31.307 (3)N3—C15ii1.307 (3)
C15—C161.395 (4)N4—C18ii1.341 (3)
C15—H150.9300O5—H5A0.8500
C16—C171.356 (3)O5—H5B0.8500
C16—H160.9300O6—H6B0.8500
C17—C16ii1.356 (3)O6—H6A0.8501
C17—H170.9300O9—H9A0.8499
C18—N41.341 (3)O9—H9B0.8500
C18—C191.379 (4)O10—H10A0.8500
C18—H180.9300O10—H10B0.8501
C19—C201.367 (3)O11—H11A0.8501
C19—H190.9300O11—H11B0.8501
O2—C1—O1127.0 (2)C21—C22—H22B109.5
O2—C1—C2116.0 (2)H22A—C22—H22B108.1
O1—C1—C2117.0 (2)O7—C23—C24110.2 (2)
C7—C2—C3117.7 (2)O7—C23—H23A109.6
C7—C2—C1121.4 (2)C24—C23—H23A109.6
C3—C2—C1120.9 (2)O7—C23—H23B109.6
C4—C3—C2121.2 (2)C24—C23—H23B109.6
C4—C3—Cl1120.1 (2)H23A—C23—H23B108.1
C2—C3—Cl1118.68 (19)O8—C24—C23110.6 (2)
C3—C4—C5121.6 (2)O8—C24—H24A109.5
C3—C4—Cl2120.62 (19)C23—C24—H24A109.5
C5—C4—Cl2117.8 (2)O8—C24—H24B109.5
C4—C5—C6117.1 (2)C23—C24—H24B109.5
C4—C5—C8121.1 (2)H24A—C24—H24B108.1
C6—C5—C8121.7 (2)O6ii—Co1—O6174.44 (9)
C5—C6—C7121.4 (2)O6ii—Co1—N487.22 (5)
C5—C6—Cl4118.7 (2)O6—Co1—N487.22 (5)
C7—C6—Cl4119.96 (19)O6ii—Co1—O4ii89.55 (6)
C2—C7—C6121.0 (2)O6—Co1—O4ii90.56 (6)
C2—C7—Cl3118.49 (19)N4—Co1—O4ii91.16 (5)
C6—C7—Cl3120.52 (19)O6ii—Co1—O490.56 (6)
O4—C8—O3127.1 (2)O6—Co1—O489.55 (6)
O4—C8—C5116.7 (2)N4—Co1—O491.16 (5)
O3—C8—C5116.3 (2)O4ii—Co1—O4177.68 (10)
N1—C9—C10122.7 (2)O6ii—Co1—N392.78 (5)
N1—C9—H9118.6O6—Co1—N392.78 (5)
C10—C9—H9118.6N4—Co1—N3180.0
C11—C10—C9120.0 (3)O4ii—Co1—N388.84 (5)
C11—C10—H10120.0O4—Co1—N388.84 (5)
C9—C10—H10120.0O5i—Co2—O5177.94 (9)
C10i—C11—C10117.7 (4)O5i—Co2—O1i89.21 (7)
C10i—C11—H11121.1O5—Co2—O1i90.75 (7)
C10—C11—H11121.1O5i—Co2—O190.75 (7)
N2—C12—C13122.6 (3)O5—Co2—O189.21 (7)
N2—C12—H12118.7O1i—Co2—O1178.13 (10)
C13—C12—H12118.7O5i—Co2—N188.97 (5)
C14—C13—C12120.2 (3)O5—Co2—N188.97 (5)
C14—C13—H13119.9O1i—Co2—N189.06 (5)
C12—C13—H13119.9O1—Co2—N189.06 (5)
C13—C14—C13i117.3 (4)O5i—Co2—N291.03 (5)
C13—C14—H14121.4O5—Co2—N291.03 (5)
C13i—C14—H14121.4O1i—Co2—N290.94 (5)
N3—C15—C16121.7 (2)O1—Co2—N290.94 (5)
N3—C15—H15119.2N1—Co2—N2180.000 (1)
C16—C15—H15119.2C9—N1—C9i116.9 (3)
C17—C16—C15120.2 (3)C9—N1—Co2121.55 (15)
C17—C16—H16119.9C9i—N1—Co2121.55 (15)
C15—C16—H16119.9C12i—N2—C12117.1 (3)
C16—C17—C16ii117.2 (3)C12i—N2—Co2121.45 (17)
C16—C17—H17121.4C12—N2—Co2121.45 (17)
C16ii—C17—H17121.4C15ii—N3—C15119.1 (3)
N4—C18—C19122.4 (3)C15ii—N3—Co1120.43 (16)
N4—C18—H18118.8C15—N3—Co1120.43 (16)
C19—C18—H18118.8C18—N4—C18ii117.4 (3)
C20—C19—C18119.8 (3)C18—N4—Co1121.29 (16)
C20—C19—H19120.1C18ii—N4—Co1121.29 (16)
C18—C19—H19120.1C1—O1—Co2129.08 (16)
C19ii—C20—C19118.1 (4)C8—O4—Co1128.88 (16)
C19ii—C20—H20120.9Co2—O5—H5A110.5
C19—C20—H20120.9Co2—O5—H5B105.6
O8—C21—C22110.5 (2)H5A—O5—H5B110.6
O8—C21—H21A109.5Co1—O6—H6B106.0
C22—C21—H21A109.5Co1—O6—H6A125.3
O8—C21—H21B109.5H6B—O6—H6A106.0
C22—C21—H21B109.5C23—O7—C22109.79 (19)
H21A—C21—H21B108.1C24—O8—C21110.26 (19)
O7—C22—C21110.6 (2)H9A—O9—H9B109.8
O7—C22—H22A109.5H10A—O10—H10B109.5
C21—C22—H22A109.5H11A—O11—H11B109.5
O7—C22—H22B109.5
O2—C1—C2—C796.8 (3)O5—Co2—N1—C9i154.24 (13)
O1—C1—C2—C782.5 (3)O1i—Co2—N1—C9i63.48 (13)
O2—C1—C2—C380.0 (3)O1—Co2—N1—C9i116.52 (13)
O1—C1—C2—C3100.7 (3)C13—C12—N2—C12i1.29 (16)
C7—C2—C3—C40.2 (4)C13—C12—N2—Co2178.71 (16)
C1—C2—C3—C4176.6 (2)O5i—Co2—N2—C12i67.27 (12)
C7—C2—C3—Cl1179.45 (17)O5—Co2—N2—C12i112.73 (12)
C1—C2—C3—Cl13.7 (3)O1i—Co2—N2—C12i21.97 (12)
C2—C3—C4—C51.5 (4)O1—Co2—N2—C12i158.03 (12)
Cl1—C3—C4—C5178.86 (19)O5i—Co2—N2—C12112.73 (12)
C2—C3—C4—Cl2178.69 (19)O5—Co2—N2—C1267.27 (12)
Cl1—C3—C4—Cl21.0 (3)O1i—Co2—N2—C12158.03 (12)
C3—C4—C5—C61.9 (4)O1—Co2—N2—C1221.97 (12)
Cl2—C4—C5—C6178.27 (17)C16—C15—N3—C15ii0.71 (19)
C3—C4—C5—C8178.8 (2)C16—C15—N3—Co1179.29 (19)
Cl2—C4—C5—C81.1 (3)O6—Co1—N3—C1537.09 (14)
C4—C5—C6—C70.7 (3)O6ii—Co1—N3—C15142.91 (14)
C8—C5—C6—C7180.0 (2)O4ii—Co1—N3—C15127.59 (14)
C4—C5—C6—Cl4178.97 (17)O4—Co1—N3—C1552.41 (14)
C8—C5—C6—Cl40.4 (3)O6—Co1—N3—C15ii142.91 (14)
C3—C2—C7—C61.4 (3)O6ii—Co1—N3—C15ii37.09 (14)
C1—C2—C7—C6175.4 (2)O4ii—Co1—N3—C15ii52.41 (14)
C3—C2—C7—Cl3178.50 (17)O4—Co1—N3—C15ii127.59 (14)
C1—C2—C7—Cl34.6 (3)C19—C18—N4—C18ii0.26 (18)
C5—C6—C7—C21.0 (3)C19—C18—N4—Co1179.74 (18)
Cl4—C6—C7—C2179.37 (18)O6—Co1—N4—C1857.96 (13)
C5—C6—C7—Cl3178.93 (18)O6ii—Co1—N4—C18122.04 (13)
Cl4—C6—C7—Cl30.7 (3)O4ii—Co1—N4—C18148.46 (13)
C4—C5—C8—O492.8 (3)O4—Co1—N4—C1831.55 (13)
C6—C5—C8—O487.8 (3)O6—Co1—N4—C18ii122.04 (13)
C4—C5—C8—O387.1 (3)O6ii—Co1—N4—C18ii57.96 (13)
C6—C5—C8—O392.3 (3)O4ii—Co1—N4—C18ii31.54 (13)
N1—C9—C10—C110.6 (4)O4—Co1—N4—C18ii148.45 (13)
C9—C10—C11—C10i0.30 (17)O2—C1—O1—Co26.0 (4)
N2—C12—C13—C142.6 (3)C2—C1—O1—Co2173.14 (15)
C12—C13—C14—C13i1.23 (15)O5i—Co2—O1—C11.5 (2)
N3—C15—C16—C171.5 (4)O5—Co2—O1—C1179.5 (2)
C15—C16—C17—C16ii0.68 (18)N1—Co2—O1—C190.5 (2)
N4—C18—C19—C200.5 (4)N2—Co2—O1—C189.5 (2)
C18—C19—C20—C19ii0.25 (17)O3—C8—O4—Co18.8 (4)
O8—C21—C22—O757.7 (3)C5—C8—O4—Co1171.12 (15)
O7—C23—C24—O858.4 (3)O6—Co1—O4—C8171.8 (2)
C10—C9—N1—C9i0.32 (18)O6ii—Co1—O4—C813.8 (2)
C10—C9—N1—Co2179.68 (18)N4—Co1—O4—C8101.0 (2)
O5i—Co2—N1—C9154.24 (13)N3—Co1—O4—C879.0 (2)
O5—Co2—N1—C925.76 (13)C24—C23—O7—C2257.5 (3)
O1i—Co2—N1—C9116.52 (13)C21—C22—O7—C2357.5 (3)
O1—Co2—N1—C963.48 (13)C23—C24—O8—C2158.3 (3)
O5i—Co2—N1—C9i25.76 (13)C22—C21—O8—C2458.0 (3)
Symmetry codes: (i) x+3/2, y+1, z; (ii) x+1/2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O2i0.851.972.657 (3)137
O6—H6A···O3ii0.852.242.684 (2)113
O6—H6B···O9iii0.852.102.629 (2)120
O9—H9A···O30.852.092.829 (2)145
O9—H9B···O70.852.032.726 (3)138
O10—H10A···Cl1iv0.852.713.3714 (19)136
O11—H11A···O100.852.373.199 (3)164
C24—H24B···Cg1iv0.972.973.715 (3)135
Symmetry codes: (i) x+3/2, y+1, z; (ii) x+1/2, y+2, z; (iii) x, y+1, z; (iv) x, y1, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Co(C8Cl4O4)(C5H5N)3(H2O)]·C5H5N[Co(C8Cl4O4)(C5H5N)2(H2O)2]·C4H8O2·3H2O
Mr695.23697.19
Crystal system, space groupTriclinic, P1Orthorhombic, Pcca
Temperature (K)291291
a, b, c (Å)8.7128 (10), 17.8408 (17), 21.227 (2)21.4257 (19), 8.6567 (8), 33.537 (3)
α, β, γ (°)67.879 (1), 79.839 (2), 84.962 (1)90, 90, 90
V3)3007.9 (5)6220.3 (10)
Z48
Radiation typeMo KαMo Kα
µ (mm1)0.970.95
Crystal size (mm)0.30 × 0.26 × 0.240.28 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Bruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.76, 0.790.77, 0.81
No. of measured, independent and
observed [I > 2σ(I)] reflections
23660, 11691, 8460 46466, 6133, 4296
Rint0.0270.066
(sin θ/λ)max1)0.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.109, 1.01 0.043, 0.077, 1.02
No. of reflections116916133
No. of parameters757366
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.620.48, 0.42

Computer programs: , APEX2 (Bruker, 2003) and SAINT (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005).

Selected bond lengths (Å) for (I) top
Co1—O72.0619 (19)Co2—O62.066 (2)
Co1—O92.122 (2)Co2—O3i2.127 (2)
Co1—O22.126 (2)Co2—O102.144 (2)
Co1—N32.155 (3)Co2—N52.167 (3)
Co1—N12.158 (2)Co2—N42.170 (2)
Co1—N22.171 (3)Co2—N62.190 (3)
Symmetry code: (i) x1, y1, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···N80.851.912.718 (3)159.4
O9—H9B···O10.851.972.768 (3)157.0
O10—H10B···O4i0.851.852.686 (3)165.9
O10—H10A···N7ii0.851.982.814 (3)166.9
C40—H40···Cg1ii0.932.993.813 (4)149
C44—H44···Cg2iii0.932.943.638 (4)133
Symmetry codes: (i) x1, y1, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1.
Selected bond lengths (Å) for (II) top
Co1—O6i2.0971 (15)Co2—O5ii2.1043 (15)
Co1—O62.0971 (15)Co2—O52.1043 (15)
Co1—N42.146 (3)Co2—O1ii2.1302 (17)
Co1—O4i2.1469 (17)Co2—O12.1302 (17)
Co1—O42.1469 (17)Co2—N12.172 (3)
Co1—N32.171 (3)Co2—N22.177 (3)
Symmetry codes: (i) x+1/2, y+2, z; (ii) x+3/2, y+1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O2ii0.851.972.657 (3)136.8
O6—H6A···O3i0.852.242.684 (2)112.8
O6—H6B···O9iii0.852.102.629 (2)119.7
O9—H9A···O30.852.092.829 (2)145.0
O9—H9B···O70.852.032.726 (3)138.4
O10—H10A···Cl1iv0.852.713.3714 (19)136.3
O11—H11A···O100.852.373.199 (3)164.3
C24—H24B···Cg1iv0.972.973.715 (3)135
Symmetry codes: (i) x+1/2, y+2, z; (ii) x+3/2, y+1, z; (iii) x, y+1, z; (iv) x, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds