Download citation
Download citation
link to html
The complexes [2-(1H-imidazol-4-yl-κN3)ethyl­amine-κN]bis­(tri-tert-butoxy­silanethiol­ato-κS)cobalt(II), [Co(C12H27O3SSi)2(C5H9N3)], and [2-(1H-imidazol-4-yl-κN3)ethyl­amine-κN]bis­(tri-tert-butoxy­silanethiol­ato-κS)zinc(II), [Zn(C12H27O3SSi)2(C5H9N3)], are isomorphous. The central ZnII/CoII ions are surrounded by two S atoms from the tri-tert-butoxy­silanethiol­ate ligand and by two N atoms from the chelating histamine ligand in a distorted tetra­hedral geometry, with two intra­molecular N—H...O hydrogen-bonding inter­actions between the histamine NH2 groups and tert-but­oxy O atoms. Mol­ecules of the complexes are joined into dimers via two inter­molecular bifurcated N—H...(S,O) hydrogen bonds. The ZnII atom in [(1H-imidazol-4-yl-κN3)methanol]bis(tri-tert-butoxy­silanethiol­ato-κ2O,S)zinc(II), [Zn(C12H27O3SSi)2(C4H6N2O)], is five-coordinated by two O and two S atoms from the O,S-chelating silanethiol­ate ligand and by one N atom from (1H-imidazol-4-yl)methanol; the hydr­oxy group forms an intra­molecular hydrogen bond with sulfur. Mol­ecules of this complex pack as zigzag chains linked by N—H...O hydrogen bonds. These structures provide reference details for cysteine- and histidine-ligated metal centers in proteins.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108017265/ga3092sup1.cif
Contains datablocks III, IV, V, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108017265/ga3092IIIsup2.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108017265/ga3092IVsup3.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108017265/ga3092Vsup4.hkl
Contains datablock V

CCDC references: 697564; 697565; 697566

Comment top

Structural and spectroscopic studies on heteroleptic, transition metal tri-tert-butoxysilanethiolates have been undertaken to provide a source of reference data for cysteine-ligated metal centers in proteins (Becker, Zalewska et al., 2001; Becker et al., 2002; Dołęga et al., 2004, 2007, 2008; Kropidłowska et al., 2007). Unfortunately, 113Cd NMR and UV–vis solution studies revealed low stability of these complexes; in solution N-containing ligands are discarded and homoleptic metal thiolates restored (Becker, Zalewska et al., 2001; Dołęga et al., 2007; Dołęga & Walewski, 2007). We have not noticed any correlation between ligand–metal bond lengths in solids and the stability of the obtained complexes in solution. Even complexes with short metal–nitrogen bonds in the solid state, such as imidazole derivatives, tend to dissociate (Dołęga et al., 2007). Since our aim is to obtain solution UV–vis and NMR spectroscopic parameters correlated with well defined metal coordination, we decided to use N-containing ligands with additional chelating OH and NH2 groups in order to stabilize the resulting species in solution (Barszcz, 2005). Histamine, (I), and 4(5)-hydroxymethylimidazole, (II), have been applied as potentially chelating ligands. The crystal structures of one CoII and two ZnII complexes have been determined.

The molecular structure of [2-(1H-imidazol-4-yl-κN3)ethylamine- κ2N]bis(tri-tert-butoxysilanethiolato-κS)cobalt(II), (III), is presented in Fig. 1. The zinc analogue, (IV), is isomorphic; geometrical parameters are compared in Table 4. As in some previously described complexes (eg. Wojtczak et al., 1990; Garnuszek et al., 2002), histamine acts as a bidentate ligand, forming a six-membered ring including the metal ion, the latter displaying a distorted tetrahedral geometry in (III0 and (IV). Complexation of the amine N atom with the metal ion is stabilized by hydrogen bonds with O atoms from the tri-tert-butoxysilanethiolate ligands. These additional intramolecular interactions influence the regularity of the crystal packing of molecular tri-tert-butoxysilanethiolates; bulky, alkoxy substituents of tri-tert-butoxysilanethiol often exhibit static disorder in crystals (Kloskowska et al., 2006). Sometimes it is not possible to find an appropriate model for the disordered groups – such results then remain unpublished. If intramolecular hydrogen bonds are formed between ligands and adjacent tert-butoxy groups, the possibility of rotation and disorder is significantly diminished (Becker, Dołęga et al., 2001, Dołęga et al., 2006, 2008). In (III) and (IV), the methyl groups at C21 exhibit disorder and so were refined over two positions. The refinement of (IV) was stable without additional constraints; in (III), atom pairs based on C23 and C24 were refined with isotropic displacement parameters.

Compounds (III) and (IV) are the first structurally characterized complexes of histamine with ZnII and CoII. The geometrical parameters of ZnII-bonded histamine are comparable to those of other N1,N3-chelating histidine ligands in complexes with zinc(II) (Harding & Cole, 1963; Dalosto et al., 2001). The bond lengths found in (III) are in the range typical for neutral, tetrahedral CoII complexes with imidazole-based and tri-tert-butoxysilanethiolate ligands (Becker, Zalewska et al., 2001; Dołęga et al., 2008). The Co—N bond lengths in a known complex of CoIII with histamine are certainly shorter than those in (III), but the chelating angles are close to those in (III) (Wojtczak et al., 1990). Our results confirm the structural similarity of tetrahedral ZnII and CoII complexes with the same ligands (Horrocks et al., 1982; Dołęga et al., 2008).

Centrosymmetrically related molecules of (III) and (IV) form hydrogen-bonded dimers (Table 1), which are shown in Fig. 2. The planes of the imidazole rings are parallel, but there are no stacking interactions because of the inter-ring distance.

2-Hydroxymethylimidazole does not act as a bidentate chelating ligand in [2-(1H-imidazol-4-yl-κN3)methanol]bis(tri-tert-butoxysilanethiolato-κ2O,S)zinc(II), (V), but rather is bonded to zinc only via an N atom of the imidazole ring (Fig. 3). Ignoring the assymetric conformation of the imidazole ring, (V) would exhibit an approximate twofold symmetry. The position of ligating atoms in (V) may be approximated to a distorted trigonal bipyramid, which is a coordination geometry often observed in mixed-ligand zinc tri-tert-butoxysilanethiolates (Becker et al., 1996; Dołęga et al., 2004). Atoms O1 and O4 occupy the apical positions of the bipyramid and the O1—Zn1—O4 angle is close to 180°. The deviations from the least-squares equatorial plane are -0.0152 (3) for Zn1, 0.0055 (5) for S1, 0.0052 (5) for S2 and 0.0045 (18) Å for N1, with O1 and O4 distances of -2.3833 (16) and 2.3894 (16) Å, respectively. The methyl groups bound to C21 exhibit disorder, and it was necessary to refine them over two positions.

Complex (V) possesses a typically large (> 120°) S—Zn—S angle, as is always found in five-coordinated zinc–tri-tert-butoxysilanethiolates with ZnNO2S2 kernels (Becker et al., 1996; Dołęga et al., 2004, 2005). This angle becomes much smaller when the Zn coordination geometry approaches tetrahedral in complexes with ZnN2S2 or ZnNOS2 coordination cores; indeed, it is this angle that shows the most pronounced difference among the greometric parameters of the title compounds (Becker, Dołęga et al., 2001; Dołęga et al., 2004, 2008; this work, Table 4).

We do not think that an additional, weak intramolecular O—H···S interaction between 2-hydroxymethylimidazole and tri-tert-butoxysilanethiolate observed here (Table 3) would enhance stability of (V) in solution. It is evident that the side chain must be extended to achieve chelation in the studied systems. The molecules in (V) pack in one-dimensional zigzag chains linked by N—H···O hydrogen bonds that are approximately parallel to the b axis (Fig. 4).

Related literature top

For related literature, see: Barszcz (2005); Becker et al. (1996, 2002); Becker, Dołęga, Konitz, Swinder & Wojnowski (2001); Becker, Zalewska, Konitz & Wojnowski (2001); Dalosto et al., 2001; Dołęga & Walewski (2007); Dołęga et al. (2004, 2005, 2006, 2008); Dołęga, Baranowska, Gajda, Kaźmierski & Potrzebowski (2007); Garnuszek et al. (2002); Harding & Cole (1963); Hassanein & Hewaidy (1970); Horrocks et al. (1982); Kloskowska et al. (2006); Kropidłowska et al. (2007); Piękoś & Wojnowski (1962); Wojtczak et al., (1990).

Experimental top

Commercial histamine dihydrochloride (98%+, Alfa Aesar) and 4(5)-hydroxymethylimidazole (97%, Aldrich) were used. The synthesis of tri-tert-butoxysilanethiol was as described by Piękoś & Wojnowski (1962) and the synthesis of zinc acetyloacetonate was as described by Hassanein & Hewaidy (1970).

For the preparation of (III), triethylamine (2 mmol, 0.28 ml) was added to a CoII chloride hexahydrate (0.5 mmol, 0.12 g) solution in 50 ml of water. Histamine dihydrochloride (2 mmol, 0.37 g) and neat tri-tert-butoxysilanethiol (1 mmol, 1.37 ml) were added to the resulting suspension. The reaction flask was closed with a rubber septum and the suspension was shaken vigorously for 20 min. A blue hydrophobic precipitate was collected, washed with water and dried in air. The dry solid was dissolved in methanol, the solution was filtered and the filtrate was left at 273–278 K. After a weekend, dark-blue crystals were collected [m.p. slow decomposition 403–423 K, black product melts at 456–458 K; yield 78% (crude product)].

Compound (IV) was synthesized in the same manner as (III). ZnII chloride hexahydrate (0.5 mmol, 0.12 g) was used instead of CoII chloride hexahydrate, and the resulting white, hydrophobic precipitate was recrystallized from methanol–acetonitrile mixture (80% v/v methanol) [m.p. 471–475 K with decomposition; yield 99% (crude product)].

For the preparation of (V), zinc acetyloacetonate (1 mmol, 0.27 g) and tri-tert-butoxysilanethiol (6 mmol, 0.9 ml) were suspended in 5 ml of methanol and warmed till dissolution. 4(5)-Hydroxyimidazole (1 mmol, 0.098 g) in 1 ml of methanol was added to the reaction mixture. Crystallization occurred immediately. Crystals were collected and recrystallized from a toluene/methanol mixture (50% v/v) (yield 87% of crude product).

Refinement top

The tBu groups attached to atom O6 are disordered over two orientations. In (III), the disordered atoms were set as isotropic. The site occupancies of the disordered groups are 0.641 (9) and 0.359 (9) in (III), 0.612 (17) and 0.388 (17) in (IV), and 0.65 (3) and 0.35 (3) in (V). H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–0.98 Å, N—H = 0.88–0.92 Å, O—H = 0.84 Å and Uiso(H) = 1.2Ueq(C,O,N), 1.3Ueq(C,N) [all methylene C and NH2 in (IV)] or 1.5Ueq(C) (all methyl C).

There were missing reflections reported by PLATON in (III) and (IV). An inspection of the structure factors has revealed that the missing reflections are located either below Θmin or above Θ = 19°. The calculated values of intensity for the missing reflections above Θ = 19° [13 for (III) and 19 for (IV)] indicate that their intensity is low or very low. Since the overall completeness of both measurements is above 99%, we assume that the missing reflections do not have a significant influence on the refinement results.

The most discrepant low-angle reflections (outliers) removed from the refinements were 100 for (III); 111 for (IV); and 111, 200, 110 and 112 for (V).

Computing details top

For all compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006). Program(s) used to solve structure: SHELXS86 (Sheldrick, 2008) for (III); SHELXS97 (Sheldrick, 2008) for (IV), (V). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. All tBu H atoms have been omitted for clarity. Only the major conformation for the disordered methyl groups on C21 is shown. Hydrogen bonds are indicated with dashed lines.
[Figure 2] Fig. 2. The packing of (III). Displacement ellipsoids are drawn at the 30% probability level. All tBu H atoms have been omitted. Only the major conformations for the disordered methyl groups on C21 are shown. Hydrogen bonds are indicated with dashed lines. [Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 1, -z + 1.] Don't match table
[Figure 3] Fig. 3. A view of the molecule of (V), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. All tBu H atoms have been omitted for clarity. Only the major conformations for the disordered methyl groups on C21 are shown. Hydrogen bonds are indicated with dashed lines.
[Figure 4] Fig. 4. A view of the one-dimensional chains of molecules of (V) linked by hydrogen bonds. Displacement ellipsoids are drawn at the 30% probability level. All tBu groups have been omitted for clarity. Only the major conformation for the disordered methyl groups on C21 is shown. Hydrogen bonds are indicated with dashed lines. [Symmetry codes: (i) -x, y + 1/2, -z + 1/2.]
(III) [2-(1H-imidazol-4-yl-κN3)ethylamine-κ2N]bis(tri- tert-butoxysilanethiolato-κS)cobalt(II) top
Crystal data top
[Co(C12H27O3SSi)2(C5H9N3)]Z = 2
Mr = 729.05F(000) = 786
Triclinic, P1Dx = 1.217 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2498 (4) ÅCell parameters from 12335 reflections
b = 14.3000 (9) Åθ = 2.3–32.5°
c = 16.0164 (11) ŵ = 0.64 mm1
α = 95.190 (5)°T = 120 K
β = 96.805 (4)°Prism, blue
γ = 107.336 (4)°0.16 × 0.10 × 0.06 mm
V = 1990.3 (2) Å3
Data collection top
Oxford Diffraction KM-4 CCD
diffractometer
7381 independent reflections
Graphite monochromator6248 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1Rint = 0.026
ω scans, 0.75 deg widthθmax = 25.5°, θmin = 2.4°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006) analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid [(1995). Acta Cryst. A51, 887-897]
h = 1111
Tmin = 0.842, Tmax = 0.93k = 1617
13851 measured reflectionsl = 1916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.061P)2 + 0.0814P]
where P = (Fo2 + 2Fc2)/3
7381 reflections(Δ/σ)max = 0.001
407 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Co(C12H27O3SSi)2(C5H9N3)]γ = 107.336 (4)°
Mr = 729.05V = 1990.3 (2) Å3
Triclinic, P1Z = 2
a = 9.2498 (4) ÅMo Kα radiation
b = 14.3000 (9) ŵ = 0.64 mm1
c = 16.0164 (11) ÅT = 120 K
α = 95.190 (5)°0.16 × 0.10 × 0.06 mm
β = 96.805 (4)°
Data collection top
Oxford Diffraction KM-4 CCD
diffractometer
7381 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006) analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid [(1995). Acta Cryst. A51, 887-897]
6248 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 0.93Rint = 0.026
13851 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.10Δρmax = 0.64 e Å3
7381 reflectionsΔρmin = 0.33 e Å3
407 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3788 (2)0.15877 (14)0.11437 (12)0.0265 (4)
C20.4409 (2)0.25794 (16)0.08301 (13)0.0314 (5)
H2A0.54610.26720.07240.047*
H2B0.44010.31090.12610.047*
H2C0.37650.25970.03030.047*
C30.4768 (2)0.15259 (15)0.19555 (13)0.0326 (5)
H3A0.43550.08760.21380.049*
H3B0.47590.20420.240.049*
H3C0.58220.1620.18520.049*
C40.3713 (3)0.07452 (18)0.04676 (15)0.0457 (6)
H4A0.33080.01120.0680.068*
H4B0.47430.08140.03340.068*
H4C0.30390.07680.00460.068*
C50.0738 (2)0.07958 (13)0.24616 (11)0.0219 (4)
C60.1115 (2)0.13698 (14)0.32097 (12)0.0292 (4)
H6A0.02030.19180.34660.044*
H6B0.14420.09290.36330.044*
H6C0.19420.16310.30120.044*
C70.0538 (2)0.03738 (15)0.27501 (14)0.0323 (5)
H7A0.07850.00260.22580.048*
H7B0.020.00890.31550.048*
H7C0.14490.09130.30230.048*
C80.2145 (2)0.00252 (14)0.20242 (13)0.0309 (4)
H8A0.29220.0260.17920.046*
H8B0.25570.04630.24350.046*
H8C0.18680.04040.15630.046*
C90.0014 (2)0.26009 (14)0.01681 (11)0.0238 (4)
C100.0164 (2)0.16796 (15)0.03108 (12)0.0308 (5)
H10A0.12330.17910.03910.046*
H10B0.04890.15270.08650.046*
H10C0.01560.11240.00140.046*
C110.0587 (3)0.34908 (16)0.02986 (13)0.0377 (5)
H11A0.04980.40810.00260.057*
H11B0.00320.33730.08610.057*
H11C0.16620.3590.0360.057*
C120.1652 (2)0.24452 (17)0.02788 (13)0.0339 (5)
H12A0.17460.30540.05680.051*
H12B0.19850.19060.06190.051*
H12C0.22960.22760.02790.051*
C130.4944 (2)0.63086 (14)0.18349 (11)0.0245 (4)
C140.3985 (3)0.57563 (17)0.09988 (13)0.0365 (5)
H14A0.33760.50940.10870.055*
H14B0.46630.57020.05830.055*
H14C0.330.61180.07880.055*
C150.5884 (2)0.57052 (16)0.22226 (13)0.0323 (5)
H15A0.64880.60660.27630.048*
H15B0.65740.5590.18340.048*
H15C0.51970.5070.23210.048*
C160.5967 (3)0.73176 (15)0.17099 (13)0.0350 (5)
H16A0.53360.76950.14630.053*
H16B0.66860.72370.13270.053*
H16C0.65410.76720.22590.053*
C170.6714 (2)0.78619 (14)0.45211 (12)0.0268 (4)
C180.7561 (2)0.71228 (17)0.47151 (14)0.0369 (5)
H18A0.68240.64940.4790.055*
H18B0.830.73830.52370.055*
H18C0.81040.70160.42440.055*
C190.7845 (3)0.88428 (16)0.44070 (14)0.0432 (6)
H19A0.83840.87430.39320.065*
H19B0.85890.91020.49270.065*
H19C0.72920.93150.42890.065*
C200.5800 (2)0.80003 (17)0.52218 (12)0.0337 (5)
H20A0.52580.84740.50870.051*
H20B0.64960.82520.5760.051*
H20C0.50550.73650.52720.051*
C210.2262 (2)0.79912 (14)0.33877 (14)0.0330 (5)
C220.0731 (3)0.76010 (17)0.28161 (16)0.0557 (8)
H22A0.08310.72080.23050.084*
H22B0.03940.81560.26550.084*
H22C0.00260.71860.31180.084*
C230.1935 (5)0.8467 (3)0.4253 (2)0.0251 (9)*0.641 (9)
H23A0.1130.79770.4470.038*0.641 (9)
H23B0.160.90410.41520.038*0.641 (9)
H23C0.28730.86760.46690.038*0.641 (9)
C240.3594 (5)0.8744 (3)0.3101 (3)0.0362 (12)*0.641 (9)
H24A0.44710.89590.35590.054*0.641 (9)
H24B0.32840.93160.2960.054*0.641 (9)
H24C0.38830.84420.25990.054*0.641 (9)
C23A0.2342 (10)0.8645 (6)0.4088 (5)0.039 (2)*0.359 (9)
H23D0.17810.82890.45050.059*0.359 (9)
H23E0.18840.91480.39180.059*0.359 (9)
H23F0.34160.89640.43390.059*0.359 (9)
C24A0.3136 (9)0.8484 (6)0.2677 (6)0.043 (2)*0.359 (9)
H24D0.28250.9060.25520.064*0.359 (9)
H24E0.28870.80050.21620.064*0.359 (9)
H24F0.42430.86930.28720.064*0.359 (9)
C250.0407 (2)0.39194 (14)0.45256 (12)0.0268 (4)
H250.03560.39340.49840.032*
C260.2614 (2)0.38520 (15)0.38122 (13)0.0326 (5)
H260.36580.38180.36750.039*
C270.1579 (2)0.39160 (13)0.32665 (12)0.0238 (4)
C280.1789 (2)0.39131 (14)0.23306 (12)0.0271 (4)
H28A0.28520.39020.21360.035*
H28B0.16580.330.20590.035*
C290.0685 (2)0.47959 (14)0.20329 (13)0.0264 (4)
H29A0.1050.48350.14350.034*
H29B0.0660.54110.23790.034*
N10.01775 (17)0.39683 (10)0.37253 (9)0.0211 (3)
N20.18577 (19)0.38466 (13)0.45961 (11)0.0332 (4)
H20.22590.38030.50680.04*
N30.08812 (17)0.47106 (11)0.21059 (9)0.0213 (3)
H3D0.15420.53170.20470.026*
H3E0.09030.42730.16530.026*
O10.22245 (14)0.14213 (9)0.12977 (8)0.0222 (3)
O20.03000 (14)0.14633 (9)0.18415 (8)0.0220 (3)
O30.09578 (14)0.28665 (9)0.09992 (7)0.0200 (3)
O40.38474 (14)0.64547 (9)0.23786 (7)0.0202 (3)
O50.57292 (15)0.75172 (9)0.37099 (8)0.0255 (3)
O60.26689 (16)0.71306 (10)0.36144 (9)0.0311 (3)
Si10.13711 (5)0.21651 (3)0.16951 (3)0.01754 (12)
S10.27562 (5)0.30659 (3)0.27643 (3)0.02047 (11)
S20.37744 (5)0.54534 (3)0.40429 (3)0.01957 (11)
Si20.40510 (6)0.66934 (3)0.34178 (3)0.01830 (12)
Co10.17535 (3)0.426332 (16)0.320022 (14)0.01759 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0191 (9)0.0297 (10)0.0308 (10)0.0106 (8)0.0040 (8)0.0062 (8)
C20.0212 (10)0.0430 (12)0.0301 (11)0.0097 (9)0.0062 (8)0.0027 (9)
C30.0262 (10)0.0325 (11)0.0411 (12)0.0154 (9)0.0004 (9)0.0007 (9)
C40.0324 (12)0.0532 (15)0.0498 (14)0.0203 (11)0.0047 (10)0.0232 (11)
C50.0234 (9)0.0183 (9)0.0232 (9)0.0042 (8)0.0039 (7)0.0055 (7)
C60.0368 (12)0.0245 (10)0.0256 (10)0.0063 (9)0.0093 (9)0.0044 (8)
C70.0315 (11)0.0288 (11)0.0392 (12)0.0118 (9)0.0029 (9)0.0123 (9)
C80.0309 (11)0.0220 (10)0.0347 (11)0.0017 (9)0.0035 (9)0.0019 (8)
C90.0250 (10)0.0285 (10)0.0163 (9)0.0070 (8)0.0009 (7)0.0025 (7)
C100.0305 (11)0.0332 (11)0.0253 (10)0.0096 (9)0.0024 (8)0.0041 (8)
C110.0503 (14)0.0360 (12)0.0210 (10)0.0060 (11)0.0009 (9)0.0051 (9)
C120.0262 (11)0.0510 (13)0.0264 (10)0.0169 (10)0.0007 (8)0.0029 (9)
C130.0258 (10)0.0256 (10)0.0211 (9)0.0048 (8)0.0102 (8)0.0009 (7)
C140.0386 (12)0.0415 (13)0.0245 (10)0.0060 (10)0.0090 (9)0.0050 (9)
C150.0309 (11)0.0381 (12)0.0334 (11)0.0156 (10)0.0153 (9)0.0030 (9)
C160.0401 (12)0.0307 (11)0.0312 (11)0.0014 (10)0.0182 (9)0.0043 (9)
C170.0259 (10)0.0253 (10)0.0230 (10)0.0003 (8)0.0024 (8)0.0017 (8)
C180.0285 (11)0.0399 (12)0.0387 (12)0.0093 (10)0.0001 (9)0.0018 (9)
C190.0430 (13)0.0342 (12)0.0351 (12)0.0104 (10)0.0016 (10)0.0019 (9)
C200.0330 (11)0.0431 (13)0.0221 (10)0.0105 (10)0.0002 (9)0.0011 (9)
C210.0353 (12)0.0205 (10)0.0516 (13)0.0170 (9)0.0146 (10)0.0085 (9)
C220.088 (2)0.0343 (13)0.0420 (14)0.0301 (14)0.0215 (14)0.0029 (10)
C250.0312 (11)0.0222 (10)0.0261 (10)0.0052 (8)0.0112 (8)0.0007 (8)
C260.0216 (10)0.0316 (11)0.0414 (12)0.0039 (9)0.0107 (9)0.0041 (9)
C270.0205 (9)0.0160 (9)0.0335 (10)0.0029 (7)0.0076 (8)0.0008 (7)
C280.0199 (9)0.0258 (10)0.0337 (11)0.0047 (8)0.0030 (8)0.0040 (8)
C290.0213 (10)0.0247 (10)0.0341 (11)0.0079 (8)0.0036 (8)0.0070 (8)
N10.0246 (8)0.0155 (7)0.0239 (8)0.0056 (6)0.0090 (6)0.0011 (6)
N20.0296 (9)0.0336 (10)0.0320 (9)0.0004 (8)0.0190 (8)0.0039 (7)
N30.0195 (8)0.0199 (8)0.0252 (8)0.0059 (6)0.0056 (6)0.0039 (6)
O10.0176 (6)0.0237 (7)0.0246 (7)0.0070 (5)0.0035 (5)0.0031 (5)
O20.0192 (6)0.0237 (7)0.0238 (6)0.0068 (5)0.0036 (5)0.0068 (5)
O30.0217 (6)0.0216 (6)0.0161 (6)0.0063 (5)0.0019 (5)0.0022 (5)
O40.0197 (6)0.0221 (6)0.0195 (6)0.0068 (5)0.0052 (5)0.0032 (5)
O50.0286 (7)0.0229 (7)0.0191 (6)0.0010 (6)0.0044 (5)0.0023 (5)
O60.0360 (8)0.0247 (7)0.0430 (8)0.0171 (6)0.0210 (7)0.0117 (6)
Si10.0172 (2)0.0182 (2)0.0177 (2)0.0066 (2)0.00305 (19)0.00090 (18)
S10.0211 (2)0.0213 (2)0.0194 (2)0.00957 (18)0.00054 (17)0.00205 (17)
S20.0218 (2)0.0182 (2)0.0187 (2)0.00543 (18)0.00431 (17)0.00317 (17)
Si20.0204 (3)0.0164 (2)0.0189 (2)0.0057 (2)0.00666 (19)0.00200 (18)
Co10.01831 (14)0.01689 (14)0.01882 (14)0.00631 (10)0.00581 (10)0.00205 (9)
Geometric parameters (Å, º) top
C1—O11.449 (2)C18—H18C0.98
C1—C21.518 (3)C19—H19A0.98
C1—C31.519 (3)C19—H19B0.98
C1—C41.525 (3)C19—H19C0.98
C2—H2A0.98C20—H20A0.98
C2—H2B0.98C20—H20B0.98
C2—H2C0.98C20—H20C0.98
C3—H3A0.98C21—C23A1.373 (8)
C3—H3B0.98C21—O61.453 (2)
C3—H3C0.98C21—C221.512 (3)
C4—H4A0.98C21—C241.523 (4)
C4—H4B0.98C21—C231.589 (4)
C4—H4C0.98C21—C24A1.572 (7)
C5—O21.449 (2)C22—H22A0.98
C5—C81.512 (3)C22—H22B0.98
C5—C71.522 (3)C22—H22C0.98
C5—C61.524 (3)C23—H23A0.98
C6—H6A0.98C23—H23B0.98
C6—H6B0.98C23—H23C0.98
C6—H6C0.98C24—H24A0.98
C7—H7A0.98C24—H24B0.98
C7—H7B0.98C24—H24C0.98
C7—H7C0.98C23A—H23D0.98
C8—H8A0.98C23A—H23E0.98
C8—H8B0.98C23A—H23F0.98
C8—H8C0.98C24A—H24D0.98
C9—O31.454 (2)C24A—H24E0.98
C9—C101.515 (3)C24A—H24F0.98
C9—C121.524 (3)C25—N11.328 (2)
C9—C111.524 (3)C25—N21.334 (3)
C10—H10A0.98C25—H250.95
C10—H10B0.98C26—C271.360 (3)
C10—H10C0.98C26—N21.365 (3)
C11—H11A0.98C26—H260.95
C11—H11B0.98C27—N11.390 (2)
C11—H11C0.98C27—C281.488 (3)
C12—H12A0.98C28—C291.523 (3)
C12—H12B0.98C28—H28A0.99
C12—H12C0.98C28—H28B0.99
C13—O41.461 (2)C29—N31.481 (2)
C13—C151.517 (3)C29—H29A0.99
C13—C161.517 (3)C29—H29B0.99
C13—C141.521 (3)N1—Co12.0116 (15)
C14—H14A0.98N2—H20.88
C14—H14B0.98N3—Co12.0754 (15)
C14—H14C0.98N3—H3D0.92
C15—H15A0.98N3—H3E0.92
C15—H15B0.98O1—Si11.6298 (13)
C15—H15C0.98O2—Si11.6295 (13)
C16—H16A0.98O3—Si11.6506 (12)
C16—H16B0.98O4—Si21.6453 (12)
C16—H16C0.98O5—Si21.6293 (13)
C17—O51.448 (2)O6—Si21.6310 (14)
C17—C201.516 (3)Si1—S12.0810 (7)
C17—C191.521 (3)S1—Co12.2724 (5)
C17—C181.524 (3)S2—Si22.0794 (6)
C18—H18A0.98S2—Co12.3028 (5)
C18—H18B0.98
O1—C1—C2110.90 (15)C17—C19—H19A109.5
O1—C1—C3109.00 (16)C17—C19—H19B109.5
C2—C1—C3111.12 (16)H19A—C19—H19B109.5
O1—C1—C4105.32 (15)C17—C19—H19C109.5
C2—C1—C4110.62 (18)H19A—C19—H19C109.5
C3—C1—C4109.70 (17)H19B—C19—H19C109.5
C1—C2—H2A109.5C17—C20—H20A109.5
C1—C2—H2B109.5C17—C20—H20B109.5
H2A—C2—H2B109.5H20A—C20—H20B109.5
C1—C2—H2C109.5C17—C20—H20C109.5
H2A—C2—H2C109.5H20A—C20—H20C109.5
H2B—C2—H2C109.5H20B—C20—H20C109.5
C1—C3—H3A109.5C23A—C21—O6112.2 (4)
C1—C3—H3B109.5C23A—C21—C22116.1 (4)
H3A—C3—H3B109.5O6—C21—C22106.32 (17)
C1—C3—H3C109.5C23A—C21—C2490.4 (4)
H3A—C3—H3C109.5O6—C21—C24111.66 (19)
H3B—C3—H3C109.5C22—C21—C24119.8 (3)
C1—C4—H4A109.5O6—C21—C23103.83 (19)
C1—C4—H4B109.5C22—C21—C23105.8 (2)
H4A—C4—H4B109.5C24—C21—C23108.2 (2)
C1—C4—H4C109.5C23A—C21—C24A113.8 (5)
H4A—C4—H4C109.5O6—C21—C24A113.0 (3)
H4B—C4—H4C109.5C22—C21—C24A94.0 (4)
O2—C5—C8106.03 (14)C23—C21—C24A130.9 (3)
O2—C5—C7111.20 (15)C21—C22—H22A109.5
C8—C5—C7110.13 (16)C21—C22—H22B109.5
O2—C5—C6107.83 (14)H22A—C22—H22B109.5
C8—C5—C6110.78 (16)C21—C22—H22C109.5
C7—C5—C6110.74 (16)H22A—C22—H22C109.5
C5—C6—H6A109.5H22B—C22—H22C109.5
C5—C6—H6B109.5C21—C23—H23A109.5
H6A—C6—H6B109.5C21—C23—H23B109.5
C5—C6—H6C109.5C21—C23—H23C109.5
H6A—C6—H6C109.5C21—C24—H24A109.5
H6B—C6—H6C109.5C21—C24—H24B109.5
C5—C7—H7A109.5C21—C24—H24C109.5
C5—C7—H7B109.5C21—C23A—H23D109.5
H7A—C7—H7B109.5C21—C23A—H23E109.5
C5—C7—H7C109.5H23D—C23A—H23E109.5
H7A—C7—H7C109.5C21—C23A—H23F109.5
H7B—C7—H7C109.5H23D—C23A—H23F109.5
C5—C8—H8A109.5H23E—C23A—H23F109.5
C5—C8—H8B109.5C21—C24A—H24D109.5
H8A—C8—H8B109.5C21—C24A—H24E109.5
C5—C8—H8C109.5H24D—C24A—H24E109.5
H8A—C8—H8C109.5C21—C24A—H24F109.5
H8B—C8—H8C109.5H24D—C24A—H24F109.5
O3—C9—C10112.16 (15)H24E—C24A—H24F109.5
O3—C9—C12108.85 (15)N1—C25—N2110.52 (18)
C10—C9—C12110.00 (17)N1—C25—H25124.7
O3—C9—C11105.01 (15)N2—C25—H25124.7
C10—C9—C11110.67 (16)C27—C26—N2106.45 (18)
C12—C9—C11110.04 (17)C27—C26—H26126.8
C9—C10—H10A109.5N2—C26—H26126.8
C9—C10—H10B109.5C26—C27—N1108.50 (17)
H10A—C10—H10B109.5C26—C27—C28129.68 (18)
C9—C10—H10C109.5N1—C27—C28121.81 (16)
H10A—C10—H10C109.5C27—C28—C29114.13 (16)
H10B—C10—H10C109.5C27—C28—H28A108.7
C9—C11—H11A109.5C29—C28—H28A108.7
C9—C11—H11B109.5C27—C28—H28B108.7
H11A—C11—H11B109.5C29—C28—H28B108.7
C9—C11—H11C109.5H28A—C28—H28B107.6
H11A—C11—H11C109.5N3—C29—C28111.08 (15)
H11B—C11—H11C109.5N3—C29—H29A109.4
C9—C12—H12A109.5C28—C29—H29A109.4
C9—C12—H12B109.5N3—C29—H29B109.4
H12A—C12—H12B109.5C28—C29—H29B109.4
C9—C12—H12C109.5H29A—C29—H29B108
H12A—C12—H12C109.5C25—N1—C27106.07 (16)
H12B—C12—H12C109.5C25—N1—Co1131.45 (14)
O4—C13—C15111.03 (14)C27—N1—Co1121.89 (12)
O4—C13—C16108.08 (15)C25—N2—C26108.44 (16)
C15—C13—C16110.94 (17)C25—N2—H2125.8
O4—C13—C14105.59 (15)C26—N2—H2125.8
C15—C13—C14110.32 (17)C29—N3—Co1118.59 (11)
C16—C13—C14110.74 (16)C29—N3—H3D107.7
C13—C14—H14A109.5Co1—N3—H3D107.7
C13—C14—H14B109.5C29—N3—H3E107.7
H14A—C14—H14B109.5Co1—N3—H3E107.7
C13—C14—H14C109.5H3D—N3—H3E107.1
H14A—C14—H14C109.5C1—O1—Si1131.67 (11)
H14B—C14—H14C109.5C5—O2—Si1131.36 (11)
C13—C15—H15A109.5C9—O3—Si1130.58 (11)
C13—C15—H15B109.5C13—O4—Si2129.95 (11)
H15A—C15—H15B109.5C17—O5—Si2132.89 (11)
C13—C15—H15C109.5C21—O6—Si2133.08 (12)
H15A—C15—H15C109.5O1—Si1—O2105.95 (7)
H15B—C15—H15C109.5O1—Si1—O3111.60 (7)
C13—C16—H16A109.5O2—Si1—O3103.88 (6)
C13—C16—H16B109.5O1—Si1—S1110.19 (5)
H16A—C16—H16B109.5O2—Si1—S1116.05 (5)
C13—C16—H16C109.5O3—Si1—S1109.06 (5)
H16A—C16—H16C109.5Si1—S1—Co1110.43 (2)
H16B—C16—H16C109.5Si2—S2—Co1103.84 (2)
O5—C17—C20111.17 (16)O5—Si2—O6111.83 (7)
O5—C17—C19105.13 (15)O5—Si2—O4106.04 (6)
C20—C17—C19110.77 (18)O6—Si2—O4105.85 (7)
O5—C17—C18109.16 (16)O5—Si2—S2112.73 (5)
C20—C17—C18110.44 (17)O6—Si2—S2106.07 (5)
C19—C17—C18110.05 (18)O4—Si2—S2114.20 (5)
C17—C18—H18A109.5N1—Co1—N396.46 (6)
C17—C18—H18B109.5N1—Co1—S1122.45 (4)
H18A—C18—H18B109.5N3—Co1—S1106.17 (4)
C17—C18—H18C109.5N1—Co1—S2112.32 (4)
H18A—C18—H18C109.5N3—Co1—S2115.05 (4)
H18B—C18—H18C109.5S1—Co1—S2104.567 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S2i0.882.493.2365 (16)143
N2—H2···O6i0.882.603.367 (2)146
N3—H3D···O40.922.233.0626 (19)150
N3—H3E···O30.922.23.0654 (19)157
Symmetry code: (i) x, y+1, z+1.
(IV) [2-(1H-imidazol-4-yl-κN3)ethylamine-κ2N]bis(tri- tert-butoxysilanethiolato-κS)zinc(II) top
Crystal data top
[Zn(C12H27O3SSi)2(C5H9N3)]Z = 2
Mr = 735.49F(000) = 792
Triclinic, P1Dx = 1.227 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2535 (3) ÅCell parameters from 14894 reflections
b = 14.3163 (5) Åθ = 2.1–32.3°
c = 15.9899 (6) ŵ = 0.82 mm1
α = 95.086 (3)°T = 120 K
β = 96.805 (3)°Prism, colourless
γ = 107.337 (3)°0.21 × 0.15 × 0.09 mm
V = 1990.55 (12) Å3
Data collection top
Oxford Diffraction KM-4 CCD
diffractometer
7386 independent reflections
Graphite monochromator6730 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1Rint = 0.021
ω scans, 0.75 deg widthθmax = 25.5°, θmin = 2.4°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006) analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid [(1995). Acta Cryst. A51, 887-897].
h = 1011
Tmin = 0.79, Tmax = 0.857k = 1717
13696 measured reflectionsl = 1915
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.3294P]
where P = (Fo2 + 2Fc2)/3
7386 reflections(Δ/σ)max = 0.001
427 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Zn(C12H27O3SSi)2(C5H9N3)]γ = 107.337 (3)°
Mr = 735.49V = 1990.55 (12) Å3
Triclinic, P1Z = 2
a = 9.2535 (3) ÅMo Kα radiation
b = 14.3163 (5) ŵ = 0.82 mm1
c = 15.9899 (6) ÅT = 120 K
α = 95.086 (3)°0.21 × 0.15 × 0.09 mm
β = 96.805 (3)°
Data collection top
Oxford Diffraction KM-4 CCD
diffractometer
7386 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006) analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid [(1995). Acta Cryst. A51, 887-897].
6730 reflections with I > 2σ(I)
Tmin = 0.79, Tmax = 0.857Rint = 0.021
13696 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.11Δρmax = 0.74 e Å3
7386 reflectionsΔρmin = 0.32 e Å3
427 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.37862 (18)0.15906 (13)0.11451 (11)0.0262 (4)
C20.4761 (2)0.15242 (14)0.19562 (12)0.0324 (4)
H2A0.47790.20510.23970.049*
H2B0.58070.15970.18480.049*
H2C0.43270.08820.21480.049*
C30.44174 (19)0.25839 (14)0.08313 (12)0.0319 (4)
H3A0.37730.26070.03060.048*
H3B0.54660.26710.07220.048*
H3C0.44190.31130.12640.048*
C40.3701 (2)0.07517 (17)0.04610 (14)0.0461 (5)
H4A0.32760.01170.06670.069*
H4B0.47310.08120.03310.069*
H4C0.3040.07880.00540.069*
C50.00302 (19)0.26218 (12)0.01727 (10)0.0233 (3)
C60.0175 (2)0.16974 (13)0.03073 (11)0.0303 (4)
H6A0.12450.18050.03840.045*
H6B0.04720.1550.08640.045*
H6C0.01540.11420.00170.045*
C70.0615 (2)0.35093 (14)0.02938 (11)0.0369 (4)
H7A0.05450.41020.00340.055*
H7B0.00080.33990.08550.055*
H7C0.16850.35980.03610.055*
C80.1633 (2)0.24701 (16)0.02817 (12)0.0343 (4)
H8A0.19670.19360.06270.051*
H8B0.22760.22960.02770.051*
H8C0.17270.3080.05650.051*
C90.07397 (18)0.08058 (11)0.24590 (10)0.0216 (3)
C100.2151 (2)0.00135 (13)0.20138 (12)0.0312 (4)
H10A0.2930.02730.17890.047*
H10B0.25590.0460.2420.047*
H10C0.18730.03820.15460.047*
C110.0530 (2)0.03816 (14)0.27478 (13)0.0332 (4)
H11A0.07860.00420.22540.05*
H11B0.01850.00880.31480.05*
H11C0.14380.09170.30270.05*
C120.1123 (2)0.13729 (12)0.32074 (11)0.0291 (4)
H12A0.0220.19280.3460.044*
H12B0.14340.09330.36340.044*
H12C0.19640.16230.3010.044*
C130.49693 (19)0.63110 (12)0.18555 (10)0.0239 (3)
C140.4033 (2)0.57499 (15)0.10159 (11)0.0363 (4)
H14A0.34240.50890.11070.055*
H14B0.47230.56930.06080.055*
H14C0.33480.61060.07920.055*
C150.5912 (2)0.57143 (14)0.22552 (12)0.0326 (4)
H15A0.65030.60780.27980.049*
H15B0.66130.56020.18730.049*
H15C0.52270.50780.23530.049*
C160.5993 (2)0.73228 (13)0.17283 (12)0.0356 (4)
H16A0.53630.76920.14660.053*
H16B0.67310.72440.13580.053*
H16C0.65440.76850.2280.053*
C170.66838 (19)0.79047 (12)0.45315 (10)0.0265 (4)
C180.7554 (2)0.71781 (15)0.47269 (13)0.0373 (4)
H18A0.68290.65460.48040.056*
H18B0.82920.74430.52480.056*
H18C0.80990.70780.42550.056*
C190.7801 (3)0.88895 (15)0.44128 (13)0.0445 (5)
H19A0.83470.87930.3940.067*
H19B0.85390.91560.49340.067*
H19C0.72350.93530.42880.067*
C200.5768 (2)0.80362 (15)0.52365 (11)0.0333 (4)
H20A0.52440.85210.51110.05*
H20B0.64610.82690.57770.05*
H20C0.50090.74030.52760.05*
C210.2219 (2)0.79809 (13)0.33632 (13)0.0342 (4)
C220.0666 (3)0.75888 (16)0.28195 (15)0.0565 (7)
H22A0.07410.72070.22960.085*
H22B0.03050.81420.26770.085*
H22C0.00590.71630.31320.085*
C230.3540 (9)0.8728 (4)0.3074 (6)0.0454 (17)0.612 (17)
H23A0.4420.8940.3530.068*0.612 (17)
H23B0.32310.93010.29350.068*0.612 (17)
H23C0.38220.84270.25690.068*0.612 (17)
C240.1935 (11)0.8492 (9)0.4232 (7)0.0343 (14)0.612 (17)
H24A0.11590.80120.44770.051*0.612 (17)
H24B0.15780.90540.41190.051*0.612 (17)
H24C0.28950.87220.46330.051*0.612 (17)
C23A0.3059 (11)0.8431 (9)0.2585 (12)0.053 (3)0.388 (17)
H23D0.41720.86480.27580.079*0.388 (17)
H23E0.27320.89940.24370.079*0.388 (17)
H23F0.27790.79220.2090.079*0.388 (17)
C24A0.233 (2)0.8623 (14)0.4069 (11)0.056 (4)0.388 (17)
H24D0.17660.82650.44860.084*0.388 (17)
H24E0.18830.91370.39110.084*0.388 (17)
H24F0.34050.89280.43160.084*0.388 (17)
C250.0325 (2)0.39171 (12)0.45325 (11)0.0266 (4)
H250.04520.39460.49880.032*
C260.2556 (2)0.38211 (13)0.38281 (12)0.0333 (4)
H260.36050.37770.36960.04*
C270.15301 (18)0.38960 (11)0.32763 (11)0.0239 (3)
C280.17608 (18)0.38940 (12)0.23392 (11)0.0268 (4)
H28A0.28320.38680.21490.035*
H28B0.16110.32890.20640.035*
C290.06848 (18)0.47907 (12)0.20409 (11)0.0259 (4)
H29A0.10660.48330.14450.034*
H29B0.06730.53980.23940.034*
N10.01195 (15)0.39653 (9)0.37287 (8)0.0203 (3)
N20.17823 (17)0.38222 (11)0.46097 (10)0.0339 (4)
H20.21760.37690.50850.041*
N30.08939 (15)0.47270 (10)0.21009 (8)0.0205 (3)
H3D0.15320.53370.20350.027*
H3E0.09160.42930.16460.027*
O10.22235 (12)0.14306 (8)0.12960 (7)0.0221 (2)
O20.09709 (12)0.28836 (8)0.10056 (7)0.0195 (2)
O30.02970 (12)0.14760 (8)0.18413 (7)0.0213 (2)
O40.38640 (12)0.64553 (8)0.23892 (7)0.0195 (2)
O50.57009 (13)0.75507 (8)0.37208 (7)0.0256 (3)
O60.26328 (14)0.71277 (9)0.35991 (8)0.0316 (3)
Si10.13785 (5)0.21774 (3)0.17001 (3)0.01689 (10)
Si20.40432 (5)0.67100 (3)0.34264 (3)0.01777 (10)
S10.27735 (4)0.30608 (3)0.27709 (2)0.01976 (9)
S20.37927 (4)0.54869 (3)0.40704 (2)0.01889 (9)
Zn10.183032 (19)0.429801 (12)0.319338 (10)0.01723 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0193 (8)0.0309 (9)0.0294 (9)0.0124 (7)0.0037 (7)0.0066 (7)
C20.0269 (9)0.0333 (9)0.0397 (10)0.0168 (8)0.0001 (8)0.0006 (8)
C30.0200 (8)0.0454 (11)0.0318 (9)0.0109 (8)0.0075 (7)0.0049 (8)
C40.0347 (11)0.0530 (13)0.0500 (12)0.0218 (10)0.0043 (9)0.0228 (10)
C50.0249 (8)0.0278 (8)0.0165 (7)0.0080 (7)0.0009 (6)0.0033 (6)
C60.0301 (9)0.0327 (9)0.0251 (9)0.0096 (7)0.0015 (7)0.0037 (7)
C70.0506 (12)0.0337 (10)0.0217 (9)0.0062 (9)0.0021 (8)0.0068 (8)
C80.0258 (9)0.0512 (11)0.0281 (9)0.0168 (8)0.0004 (7)0.0051 (8)
C90.0221 (8)0.0177 (7)0.0250 (8)0.0046 (6)0.0043 (6)0.0072 (6)
C100.0299 (9)0.0231 (8)0.0349 (10)0.0018 (7)0.0017 (8)0.0014 (7)
C110.0319 (10)0.0292 (9)0.0417 (11)0.0120 (8)0.0038 (8)0.0154 (8)
C120.0388 (10)0.0221 (8)0.0255 (9)0.0057 (7)0.0101 (7)0.0052 (7)
C130.0254 (8)0.0258 (8)0.0199 (8)0.0048 (7)0.0108 (6)0.0017 (6)
C140.0378 (10)0.0410 (11)0.0243 (9)0.0046 (8)0.0087 (8)0.0054 (8)
C150.0287 (9)0.0395 (10)0.0367 (10)0.0174 (8)0.0153 (8)0.0048 (8)
C160.0423 (11)0.0301 (9)0.0310 (10)0.0006 (8)0.0198 (8)0.0049 (8)
C170.0267 (8)0.0251 (8)0.0216 (8)0.0003 (7)0.0026 (7)0.0011 (7)
C180.0273 (9)0.0400 (11)0.0403 (11)0.0080 (8)0.0005 (8)0.0016 (9)
C190.0483 (12)0.0331 (10)0.0332 (10)0.0124 (9)0.0000 (9)0.0020 (8)
C200.0328 (10)0.0427 (11)0.0223 (8)0.0111 (8)0.0014 (7)0.0004 (8)
C210.0367 (10)0.0212 (8)0.0541 (12)0.0181 (8)0.0163 (9)0.0099 (8)
C220.0881 (19)0.0347 (11)0.0428 (12)0.0279 (12)0.0223 (12)0.0023 (10)
C230.060 (3)0.035 (2)0.061 (4)0.029 (2)0.031 (3)0.029 (3)
C240.037 (3)0.034 (2)0.036 (3)0.020 (2)0.004 (2)0.0056 (19)
C23A0.042 (4)0.047 (4)0.086 (9)0.024 (3)0.021 (5)0.045 (5)
C24A0.073 (10)0.044 (7)0.054 (9)0.045 (7)0.028 (6)0.018 (5)
C250.0305 (9)0.0207 (8)0.0280 (9)0.0046 (7)0.0124 (7)0.0007 (7)
C260.0224 (9)0.0313 (9)0.0433 (11)0.0031 (7)0.0135 (8)0.0036 (8)
C270.0202 (8)0.0158 (7)0.0345 (9)0.0030 (6)0.0077 (7)0.0013 (7)
C280.0187 (8)0.0252 (8)0.0347 (9)0.0043 (7)0.0032 (7)0.0049 (7)
C290.0206 (8)0.0246 (8)0.0346 (9)0.0087 (7)0.0039 (7)0.0098 (7)
N10.0223 (7)0.0149 (6)0.0243 (7)0.0048 (5)0.0097 (5)0.0019 (5)
N20.0314 (8)0.0336 (8)0.0328 (8)0.0004 (7)0.0207 (7)0.0038 (7)
N30.0197 (7)0.0189 (6)0.0234 (7)0.0057 (5)0.0043 (5)0.0049 (5)
O10.0182 (5)0.0224 (5)0.0252 (6)0.0076 (4)0.0032 (4)0.0033 (5)
O20.0210 (5)0.0212 (5)0.0168 (5)0.0072 (4)0.0025 (4)0.0028 (4)
O30.0192 (5)0.0222 (6)0.0236 (6)0.0061 (4)0.0041 (4)0.0082 (5)
O40.0202 (5)0.0200 (5)0.0190 (5)0.0060 (4)0.0057 (4)0.0040 (4)
O50.0297 (6)0.0216 (6)0.0193 (6)0.0019 (5)0.0047 (5)0.0027 (5)
O60.0359 (7)0.0229 (6)0.0481 (8)0.0179 (5)0.0245 (6)0.0141 (5)
Si10.0165 (2)0.0173 (2)0.0179 (2)0.00677 (16)0.00326 (16)0.00172 (16)
Si20.0204 (2)0.0152 (2)0.0190 (2)0.00560 (17)0.00774 (16)0.00249 (16)
S10.0209 (2)0.02000 (19)0.01943 (19)0.00990 (15)0.00085 (15)0.00110 (15)
S20.02169 (19)0.01690 (18)0.01846 (19)0.00549 (15)0.00487 (15)0.00369 (14)
Zn10.01840 (11)0.01617 (10)0.01894 (11)0.00653 (7)0.00625 (7)0.00335 (7)
Geometric parameters (Å, º) top
C1—O11.4480 (19)C18—H18C0.98
C1—C21.517 (2)C19—H19A0.98
C1—C31.522 (3)C19—H19B0.98
C1—C41.528 (2)C19—H19C0.98
C2—H2A0.98C20—H20A0.98
C2—H2B0.98C20—H20B0.98
C2—H2C0.98C20—H20C0.98
C3—H3A0.98C21—C24A1.365 (18)
C3—H3B0.98C21—O61.451 (2)
C3—H3C0.98C21—C221.508 (3)
C4—H4A0.98C21—C231.515 (5)
C4—H4B0.98C21—C241.598 (10)
C4—H4C0.98C21—C23A1.625 (11)
C5—O21.4541 (18)C22—H22A0.98
C5—C61.519 (2)C22—H22B0.98
C5—C81.522 (2)C22—H22C0.98
C5—C71.522 (2)C23—H23A0.98
C6—H6A0.98C23—H23B0.98
C6—H6B0.98C23—H23C0.98
C6—H6C0.98C24—H24A0.98
C7—H7A0.98C24—H24B0.98
C7—H7B0.98C24—H24C0.98
C7—H7C0.98C23A—H23D0.98
C8—H8A0.98C23A—H23E0.98
C8—H8B0.98C23A—H23F0.98
C8—H8C0.98C24A—H24D0.98
C9—O31.4469 (18)C24A—H24E0.98
C9—C101.519 (2)C24A—H24F0.98
C9—C111.520 (2)C25—N11.326 (2)
C9—C121.522 (2)C25—N21.336 (2)
C10—H10A0.98C25—H250.95
C10—H10B0.98C26—C271.359 (2)
C10—H10C0.98C26—N21.364 (3)
C11—H11A0.98C26—H260.95
C11—H11B0.98C27—N11.387 (2)
C11—H11C0.98C27—C281.488 (2)
C12—H12A0.98C28—C291.525 (2)
C12—H12B0.98C28—H28A0.99
C12—H12C0.98C28—H28B0.99
C13—O41.4555 (18)C29—N31.483 (2)
C13—C151.519 (2)C29—H29A0.99
C13—C161.522 (2)C29—H29B0.99
C13—C141.522 (2)N1—Zn12.0350 (13)
C14—H14A0.98N2—H20.88
C14—H14B0.98N3—Zn12.0804 (13)
C14—H14C0.98N3—H3D0.92
C15—H15A0.98N3—H3E0.92
C15—H15B0.98O1—Si11.6333 (11)
C15—H15C0.98O2—Si11.6507 (11)
C16—H16A0.98O3—Si11.6305 (11)
C16—H16B0.98O4—Si21.6441 (11)
C16—H16C0.98O5—Si21.6282 (12)
C17—O51.447 (2)O6—Si21.6304 (12)
C17—C201.519 (2)Si1—S12.0776 (6)
C17—C191.522 (2)Si2—S22.0771 (6)
C17—C181.525 (3)S1—Zn12.2813 (4)
C18—H18A0.98S2—Zn12.3005 (4)
C18—H18B0.98
O1—C1—C2109.26 (14)C17—C19—H19A109.5
O1—C1—C3110.79 (13)C17—C19—H19B109.5
C2—C1—C3111.04 (14)H19A—C19—H19B109.5
O1—C1—C4105.16 (14)C17—C19—H19C109.5
C2—C1—C4110.12 (15)H19A—C19—H19C109.5
C3—C1—C4110.30 (16)H19B—C19—H19C109.5
C1—C2—H2A109.5C17—C20—H20A109.5
C1—C2—H2B109.5C17—C20—H20B109.5
H2A—C2—H2B109.5H20A—C20—H20B109.5
C1—C2—H2C109.5C17—C20—H20C109.5
H2A—C2—H2C109.5H20A—C20—H20C109.5
H2B—C2—H2C109.5H20B—C20—H20C109.5
C1—C3—H3A109.5C24A—C21—O6110.5 (8)
C1—C3—H3B109.5C24A—C21—C22115.9 (8)
H3A—C3—H3B109.5O6—C21—C22106.55 (15)
C1—C3—H3C109.5C24A—C21—C2390.3 (8)
H3A—C3—H3C109.5O6—C21—C23111.6 (2)
H3B—C3—H3C109.5C22—C21—C23121.3 (4)
C1—C4—H4A109.5O6—C21—C24104.3 (5)
C1—C4—H4B109.5C22—C21—C24105.3 (4)
H4A—C4—H4B109.5C23—C21—C24106.3 (5)
C1—C4—H4C109.5C24A—C21—C23A117.4 (7)
H4A—C4—H4C109.5O6—C21—C23A112.0 (3)
H4B—C4—H4C109.5C22—C21—C23A93.2 (6)
O2—C5—C6112.16 (13)C24—C21—C23A132.2 (6)
O2—C5—C8108.87 (13)C21—C22—H22A109.5
C6—C5—C8109.92 (14)C21—C22—H22B109.5
O2—C5—C7104.91 (13)H22A—C22—H22B109.5
C6—C5—C7110.59 (14)C21—C22—H22C109.5
C8—C5—C7110.27 (15)H22A—C22—H22C109.5
C5—C6—H6A109.5H22B—C22—H22C109.5
C5—C6—H6B109.5C21—C23—H23A109.5
H6A—C6—H6B109.5C21—C23—H23B109.5
C5—C6—H6C109.5C21—C23—H23C109.5
H6A—C6—H6C109.5C21—C24—H24A109.5
H6B—C6—H6C109.5C21—C24—H24B109.5
C5—C7—H7A109.5C21—C24—H24C109.5
C5—C7—H7B109.5C21—C23A—H23D109.5
H7A—C7—H7B109.5C21—C23A—H23E109.5
C5—C7—H7C109.5H23D—C23A—H23E109.5
H7A—C7—H7C109.5C21—C23A—H23F109.5
H7B—C7—H7C109.5H23D—C23A—H23F109.5
C5—C8—H8A109.5H23E—C23A—H23F109.5
C5—C8—H8B109.5C21—C24A—H24D109.5
H8A—C8—H8B109.5C21—C24A—H24E109.5
C5—C8—H8C109.5H24D—C24A—H24E109.5
H8A—C8—H8C109.5C21—C24A—H24F109.5
H8B—C8—H8C109.5H24D—C24A—H24F109.5
O3—C9—C10105.88 (13)H24E—C24A—H24F109.5
O3—C9—C11111.24 (13)N1—C25—N2110.26 (16)
C10—C9—C11110.17 (14)N1—C25—H25124.9
O3—C9—C12107.89 (12)N2—C25—H25124.9
C10—C9—C12110.72 (14)C27—C26—N2106.40 (16)
C11—C9—C12110.82 (15)C27—C26—H26126.8
C9—C10—H10A109.5N2—C26—H26126.8
C9—C10—H10B109.5C26—C27—N1108.50 (16)
H10A—C10—H10B109.5C26—C27—C28129.54 (16)
C9—C10—H10C109.5N1—C27—C28121.95 (14)
H10A—C10—H10C109.5C27—C28—C29113.81 (14)
H10B—C10—H10C109.5C27—C28—H28A108.8
C9—C11—H11A109.5C29—C28—H28A108.8
C9—C11—H11B109.5C27—C28—H28B108.8
H11A—C11—H11B109.5C29—C28—H28B108.8
C9—C11—H11C109.5H28A—C28—H28B107.7
H11A—C11—H11C109.5N3—C29—C28111.16 (13)
H11B—C11—H11C109.5N3—C29—H29A109.4
C9—C12—H12A109.5C28—C29—H29A109.4
C9—C12—H12B109.5N3—C29—H29B109.4
H12A—C12—H12B109.5C28—C29—H29B109.4
C9—C12—H12C109.5H29A—C29—H29B108
H12A—C12—H12C109.5C25—N1—C27106.35 (14)
H12B—C12—H12C109.5C25—N1—Zn1130.86 (12)
O4—C13—C15111.07 (13)C27—N1—Zn1122.09 (11)
O4—C13—C16108.04 (13)C25—N2—C26108.48 (14)
C15—C13—C16110.90 (15)C25—N2—H2125.8
O4—C13—C14105.89 (13)C26—N2—H2125.8
C15—C13—C14110.01 (15)C29—N3—Zn1118.82 (10)
C16—C13—C14110.81 (15)C29—N3—H3D107.6
C13—C14—H14A109.5Zn1—N3—H3D107.6
C13—C14—H14B109.5C29—N3—H3E107.6
H14A—C14—H14B109.5Zn1—N3—H3E107.6
C13—C14—H14C109.5H3D—N3—H3E107
H14A—C14—H14C109.5C1—O1—Si1131.67 (10)
H14B—C14—H14C109.5C5—O2—Si1130.44 (10)
C13—C15—H15A109.5C9—O3—Si1131.24 (10)
C13—C15—H15B109.5C13—O4—Si2130.32 (10)
H15A—C15—H15B109.5C17—O5—Si2133.16 (10)
C13—C15—H15C109.5C21—O6—Si2132.98 (11)
H15A—C15—H15C109.5O3—Si1—O1105.69 (6)
H15B—C15—H15C109.5O3—Si1—O2103.76 (6)
C13—C16—H16A109.5O1—Si1—O2111.48 (6)
C13—C16—H16B109.5O3—Si1—S1116.42 (5)
H16A—C16—H16B109.5O1—Si1—S1109.95 (4)
C13—C16—H16C109.5O2—Si1—S1109.40 (4)
H16A—C16—H16C109.5O5—Si2—O6111.88 (7)
H16B—C16—H16C109.5O5—Si2—O4106.16 (6)
O5—C17—C20111.33 (14)O6—Si2—O4105.71 (6)
O5—C17—C19105.23 (14)O5—Si2—S2112.71 (5)
C20—C17—C19110.80 (16)O6—Si2—S2106.20 (5)
O5—C17—C18109.01 (14)O4—Si2—S2114.06 (4)
C20—C17—C18110.48 (15)Si1—S1—Zn1110.33 (2)
C19—C17—C18109.86 (16)Si2—S2—Zn1102.24 (2)
C17—C18—H18A109.5N1—Zn1—N395.74 (5)
C17—C18—H18B109.5N1—Zn1—S1119.20 (4)
H18A—C18—H18B109.5N3—Zn1—S1107.25 (4)
C17—C18—H18C109.5N1—Zn1—S2110.88 (4)
H18A—C18—H18C109.5N3—Zn1—S2116.88 (4)
H18B—C18—H18C109.5S1—Zn1—S2107.053 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S2i0.882.523.2481 (14)140
N2—H2···O6i0.882.573.355 (2)148
N3—H3D···O40.922.243.0550 (17)147
N3—H3E···O20.922.203.0592 (17)156
Symmetry code: (i) x, y+1, z+1.
(V) [2-(1H-imidazol-4-yl-κN3)methanol]bis(tri-tert- butoxysilanethiolato-κ2O,S)zinc(II) top
Crystal data top
[Zn(C12H27O3SSi)2(C4H6N2O)]F(000) = 1552
Mr = 722.45Dx = 1.225 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 24929 reflections
a = 16.2546 (5) Åθ = 2.2–32.4°
b = 9.2094 (2) ŵ = 0.83 mm1
c = 26.1831 (7) ÅT = 120 K
β = 91.874 (2)°Prism, colourless
V = 3917.39 (18) Å30.39 × 0.2 × 0.04 mm
Z = 4
Data collection top
Oxford Diffraction KM-4 CCD
diffractometer
7283 independent reflections
Graphite monochromator6253 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1Rint = 0.043
ω scans, 0.65 deg widthθmax = 25.5°, θmin = 2.3°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006) analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid [(1995). Acta Cryst. A51, 887-897]
h = 1914
Tmin = 0.685, Tmax = 0.855k = 1011
25278 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0666P)2 + 2.7099P]
where P = (Fo2 + 2Fc2)/3
7283 reflections(Δ/σ)max = 0.001
429 parametersΔρmax = 0.99 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Zn(C12H27O3SSi)2(C4H6N2O)]V = 3917.39 (18) Å3
Mr = 722.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.2546 (5) ŵ = 0.83 mm1
b = 9.2094 (2) ÅT = 120 K
c = 26.1831 (7) Å0.39 × 0.2 × 0.04 mm
β = 91.874 (2)°
Data collection top
Oxford Diffraction KM-4 CCD
diffractometer
7283 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006) analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid [(1995). Acta Cryst. A51, 887-897]
6253 reflections with I > 2σ(I)
Tmin = 0.685, Tmax = 0.855Rint = 0.043
25278 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.09Δρmax = 0.99 e Å3
7283 reflectionsΔρmin = 0.41 e Å3
429 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.23346 (15)0.3039 (3)0.16915 (9)0.0238 (5)
C20.14046 (16)0.2951 (3)0.16199 (12)0.0377 (7)
H2A0.12590.21030.1410.057*
H2B0.120.38340.14490.057*
H2C0.11550.2860.19540.057*
C30.27371 (17)0.3146 (3)0.11735 (10)0.0289 (6)
H3A0.33370.31840.12250.043*
H3B0.25460.40280.09970.043*
H3C0.25870.22940.09660.043*
C40.2586 (2)0.4303 (3)0.20298 (11)0.0365 (7)
H4A0.23310.42030.23620.055*
H4B0.24050.52130.18680.055*
H4C0.31870.43120.20790.055*
C50.31387 (15)0.1437 (3)0.09502 (9)0.0247 (5)
C60.23949 (17)0.2289 (3)0.07445 (11)0.0360 (6)
H6A0.21340.27890.10270.054*
H6B0.25730.30040.04940.054*
H6C0.19990.1620.0580.054*
C70.3549 (2)0.0601 (4)0.05273 (11)0.0408 (7)
H7A0.31510.00710.03670.061*
H7B0.37430.12830.0270.061*
H7C0.40170.00510.06720.061*
C80.37455 (16)0.2458 (3)0.12210 (11)0.0308 (6)
H8A0.42230.19030.1350.046*
H8B0.39260.31980.0980.046*
H8C0.34780.29290.15070.046*
C90.48478 (14)0.1475 (3)0.19331 (10)0.0232 (5)
C100.4992 (2)0.2909 (4)0.16792 (14)0.0540 (10)
H10A0.50370.27630.1310.081*
H10B0.55040.33390.18190.081*
H10C0.45310.35630.17430.081*
C110.4724 (2)0.1677 (5)0.24981 (12)0.0578 (11)
H11A0.42320.22690.25480.087*
H11B0.52060.21650.26540.087*
H11C0.46540.07260.26590.087*
C120.5552 (2)0.0463 (4)0.1851 (2)0.0666 (12)
H12A0.54440.0470.20150.1*
H12B0.60590.08840.20010.1*
H12C0.56160.03140.14840.1*
C130.17112 (16)0.1797 (3)0.38238 (9)0.0237 (5)
C140.07796 (17)0.1894 (3)0.37548 (12)0.0371 (7)
H14A0.05230.11250.39540.056*
H14B0.05920.28430.38740.056*
H14C0.06240.17760.33920.056*
C150.2130 (2)0.2910 (3)0.34966 (12)0.0385 (7)
H15A0.19590.27670.31380.058*
H15B0.19740.38880.36050.058*
H15C0.27290.27970.35350.058*
C160.19733 (19)0.1970 (3)0.43842 (10)0.0344 (6)
H16A0.2570.18410.44230.052*
H16B0.18240.29420.45010.052*
H16C0.16940.12380.45880.052*
C170.35957 (15)0.1461 (3)0.44011 (10)0.0267 (6)
C180.38183 (18)0.3051 (3)0.43204 (12)0.0394 (7)
H18A0.36440.33480.39740.059*
H18B0.44150.31750.43650.059*
H18C0.35390.36530.4570.059*
C190.39767 (17)0.0502 (4)0.40023 (13)0.0401 (7)
H19A0.37950.05030.40490.06*
H19B0.45780.05490.4040.06*
H19C0.38030.08390.3660.06*
C200.38595 (18)0.0986 (4)0.49390 (12)0.0451 (8)
H20A0.35850.15940.51890.068*
H20B0.44570.1090.49850.068*
H20C0.37060.00320.49890.068*
C210.08733 (16)0.2399 (3)0.45826 (10)0.0276 (6)
C220.1249 (9)0.2071 (16)0.5090 (5)0.039 (3)0.65 (3)
H22A0.11020.10820.5190.058*0.65 (3)
H22B0.10470.27620.53410.058*0.65 (3)
H22C0.18490.21520.50760.058*0.65 (3)
C230.1017 (9)0.3944 (8)0.4405 (4)0.046 (2)0.65 (3)
H23A0.16050.40920.43530.069*0.65 (3)
H23B0.0830.46250.46640.069*0.65 (3)
H23C0.07080.41130.40830.069*0.65 (3)
C240.0087 (7)0.2140 (14)0.4594 (5)0.035 (2)0.65 (3)
H24A0.03320.22990.42510.052*0.65 (3)
H24B0.03290.28190.48350.052*0.65 (3)
H24C0.01950.11410.47020.052*0.65 (3)
C22A0.117 (2)0.156 (3)0.5082 (10)0.043 (5)0.35 (3)
H22D0.09760.0560.50680.064*0.35 (3)
H22E0.09570.20480.53830.064*0.35 (3)
H22F0.17780.15680.51060.064*0.35 (3)
C23A0.1363 (14)0.3883 (16)0.4589 (11)0.051 (5)0.35 (3)
H23D0.19440.36980.46770.076*0.35 (3)
H23E0.11330.45360.48430.076*0.35 (3)
H23F0.13170.43350.4250.076*0.35 (3)
C24A0.0038 (14)0.260 (3)0.4559 (9)0.042 (5)0.35 (3)
H24D0.01070.32730.4280.063*0.35 (3)
H24E0.01410.30070.48830.063*0.35 (3)
H24F0.02360.16670.44960.063*0.35 (3)
C250.03948 (14)0.0966 (3)0.28075 (9)0.0219 (5)
H250.04890.15580.31010.026*
C260.02386 (15)0.0196 (3)0.21849 (10)0.0242 (5)
H260.06580.05690.1960.029*
C270.05823 (14)0.0441 (3)0.21601 (9)0.0201 (5)
C280.10370 (14)0.1292 (3)0.17747 (9)0.0226 (5)
H28A0.06380.16610.15120.029*
H28B0.14230.06350.16020.029*
N10.09808 (12)0.0310 (2)0.25592 (7)0.0194 (4)
N20.03456 (12)0.0697 (2)0.25973 (8)0.0239 (5)
H20.08180.10310.27030.029*
O10.25909 (10)0.17131 (17)0.19624 (6)0.0197 (3)
O20.28119 (10)0.03839 (18)0.13005 (6)0.0206 (4)
O30.41294 (10)0.08376 (18)0.16767 (6)0.0216 (4)
O40.19715 (10)0.03761 (17)0.36335 (6)0.0213 (4)
O50.27078 (10)0.13174 (19)0.43794 (6)0.0219 (4)
O60.11396 (10)0.14540 (19)0.41829 (6)0.0242 (4)
O70.14903 (10)0.24901 (18)0.19865 (7)0.0242 (4)
H70.19540.22020.20960.029*
Si10.32091 (4)0.03626 (7)0.18176 (2)0.01611 (14)
Si20.20247 (4)0.12294 (7)0.39136 (2)0.01828 (15)
S10.31089 (3)0.09740 (6)0.24631 (2)0.01777 (13)
S20.22374 (4)0.26116 (6)0.33014 (2)0.02213 (15)
Zn10.218216 (16)0.06420 (3)0.277116 (10)0.02073 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0302 (13)0.0195 (12)0.0217 (12)0.0051 (10)0.0024 (10)0.0067 (10)
C20.0298 (14)0.0428 (17)0.0406 (16)0.0090 (12)0.0041 (12)0.0212 (14)
C30.0355 (14)0.0279 (14)0.0234 (13)0.0050 (11)0.0043 (11)0.0086 (11)
C40.0607 (19)0.0231 (14)0.0260 (14)0.0051 (13)0.0053 (13)0.0044 (11)
C50.0296 (13)0.0264 (13)0.0185 (12)0.0014 (10)0.0076 (10)0.0050 (10)
C60.0363 (15)0.0451 (17)0.0266 (14)0.0032 (13)0.0000 (11)0.0148 (13)
C70.0514 (18)0.0476 (18)0.0244 (14)0.0036 (14)0.0171 (13)0.0003 (13)
C80.0320 (14)0.0288 (14)0.0317 (14)0.0037 (11)0.0031 (11)0.0108 (12)
C90.0198 (11)0.0235 (12)0.0261 (13)0.0057 (9)0.0004 (10)0.0019 (10)
C100.054 (2)0.0476 (19)0.058 (2)0.0290 (16)0.0263 (17)0.0217 (17)
C110.0433 (18)0.100 (3)0.0301 (16)0.0392 (19)0.0011 (14)0.0116 (18)
C120.0311 (17)0.053 (2)0.114 (4)0.0096 (15)0.017 (2)0.030 (2)
C130.0342 (13)0.0164 (12)0.0207 (12)0.0049 (10)0.0025 (10)0.0038 (10)
C140.0354 (15)0.0287 (15)0.0469 (18)0.0103 (12)0.0015 (13)0.0077 (13)
C150.0612 (19)0.0202 (13)0.0351 (16)0.0031 (13)0.0160 (14)0.0018 (12)
C160.0510 (17)0.0275 (14)0.0244 (14)0.0057 (12)0.0014 (12)0.0068 (11)
C170.0204 (12)0.0384 (15)0.0214 (12)0.0001 (10)0.0016 (10)0.0072 (11)
C180.0353 (15)0.0450 (18)0.0380 (16)0.0132 (13)0.0027 (12)0.0104 (14)
C190.0266 (14)0.0499 (19)0.0442 (17)0.0008 (12)0.0086 (12)0.0182 (15)
C200.0277 (15)0.072 (2)0.0355 (17)0.0053 (15)0.0052 (12)0.0035 (16)
C210.0315 (14)0.0307 (14)0.0213 (12)0.0022 (11)0.0099 (10)0.0030 (11)
C220.036 (3)0.058 (7)0.021 (3)0.014 (5)0.002 (2)0.010 (5)
C230.050 (6)0.032 (3)0.058 (5)0.000 (3)0.029 (4)0.009 (3)
C240.016 (3)0.056 (6)0.032 (3)0.003 (3)0.010 (2)0.015 (4)
C22A0.063 (11)0.050 (12)0.016 (6)0.017 (9)0.013 (6)0.009 (8)
C23A0.048 (9)0.022 (5)0.083 (13)0.002 (6)0.025 (8)0.019 (7)
C24A0.040 (8)0.065 (13)0.023 (6)0.014 (8)0.015 (5)0.007 (7)
C250.0230 (12)0.0205 (12)0.0225 (12)0.0017 (9)0.0050 (10)0.0001 (10)
C260.0224 (12)0.0214 (12)0.0287 (13)0.0008 (10)0.0010 (10)0.0013 (10)
C270.0212 (11)0.0189 (11)0.0201 (12)0.0018 (9)0.0003 (9)0.0034 (9)
C280.0207 (11)0.0270 (13)0.0200 (12)0.0024 (10)0.0002 (9)0.0019 (10)
N10.0192 (10)0.0205 (10)0.0184 (10)0.0006 (8)0.0027 (8)0.0003 (8)
N20.0182 (10)0.0228 (11)0.0310 (12)0.0025 (8)0.0046 (8)0.0001 (9)
O10.0257 (8)0.0184 (8)0.0151 (8)0.0032 (7)0.0027 (6)0.0039 (7)
O20.0227 (8)0.0234 (9)0.0159 (8)0.0008 (7)0.0008 (6)0.0020 (7)
O30.0217 (8)0.0236 (9)0.0198 (8)0.0054 (7)0.0035 (7)0.0015 (7)
O40.0302 (9)0.0168 (8)0.0170 (8)0.0040 (7)0.0027 (7)0.0019 (7)
O50.0210 (8)0.0286 (9)0.0160 (8)0.0004 (7)0.0020 (6)0.0018 (7)
O60.0244 (9)0.0299 (9)0.0186 (8)0.0004 (7)0.0043 (7)0.0031 (7)
O70.0193 (8)0.0206 (9)0.0329 (10)0.0024 (7)0.0038 (7)0.0041 (7)
Si10.0175 (3)0.0168 (3)0.0141 (3)0.0008 (2)0.0017 (2)0.0003 (2)
Si20.0229 (3)0.0184 (3)0.0137 (3)0.0013 (2)0.0024 (2)0.0005 (2)
S10.0188 (3)0.0174 (3)0.0172 (3)0.0016 (2)0.0025 (2)0.0029 (2)
S20.0337 (3)0.0170 (3)0.0159 (3)0.0026 (2)0.0036 (2)0.0002 (2)
Zn10.01924 (16)0.02318 (17)0.01979 (16)0.00064 (10)0.00101 (11)0.00635 (11)
Geometric parameters (Å, º) top
C1—O11.466 (3)C18—H18C0.98
C1—C41.511 (4)C19—H19A0.98
C1—C21.519 (4)C19—H19B0.98
C1—C31.528 (3)C19—H19C0.98
C2—H2A0.98C20—H20A0.98
C2—H2B0.98C20—H20B0.98
C2—H2C0.98C20—H20C0.98
C3—H3A0.98C21—C24A1.37 (2)
C3—H3B0.98C21—O61.439 (3)
C3—H3C0.98C21—C221.476 (14)
C4—H4A0.98C21—C231.517 (8)
C4—H4B0.98C21—C241.580 (11)
C4—H4C0.98C21—C23A1.582 (15)
C5—O21.448 (3)C21—C22A1.58 (3)
C5—C71.521 (4)C22—H22A0.98
C5—C81.521 (4)C22—H22B0.98
C5—C61.524 (4)C22—H22C0.98
C6—H6A0.98C23—H23A0.98
C6—H6B0.98C23—H23B0.98
C6—H6C0.98C23—H23C0.98
C7—H7A0.98C24—H24A0.98
C7—H7B0.98C24—H24B0.98
C7—H7C0.98C24—H24C0.98
C8—H8A0.98C22A—H22D0.98
C8—H8B0.98C22A—H22E0.98
C8—H8C0.98C22A—H22F0.98
C9—O31.452 (3)C23A—H23D0.98
C9—C121.497 (4)C23A—H23E0.98
C9—C101.501 (4)C23A—H23F0.98
C9—C111.511 (4)C24A—H24D0.98
C10—H10A0.98C24A—H24E0.98
C10—H10B0.98C24A—H24F0.98
C10—H10C0.98C25—N11.317 (3)
C11—H11A0.98C25—N21.330 (3)
C11—H11B0.98C25—H250.95
C11—H11C0.98C26—C271.357 (3)
C12—H12A0.98C26—N21.373 (3)
C12—H12B0.98C26—H260.95
C12—H12C0.98C27—N11.395 (3)
C13—O41.467 (3)C27—C281.492 (3)
C13—C151.512 (4)C28—O71.429 (3)
C13—C141.522 (4)C28—H28A0.99
C13—C161.523 (3)C28—H28B0.99
C14—H14A0.98N1—Zn12.0357 (19)
C14—H14B0.98N2—H20.88
C14—H14C0.98O1—Si11.6507 (17)
C15—H15A0.98O1—Zn12.4477 (15)
C15—H15B0.98O2—Si11.6326 (17)
C15—H15C0.98O3—Si11.6129 (16)
C16—H16A0.98O4—Si21.6514 (17)
C16—H16B0.98O4—Zn12.4789 (16)
C16—H16C0.98O5—Si21.6242 (17)
C17—O51.449 (3)O6—Si21.6358 (17)
C17—C191.515 (4)O7—H70.84
C17—C201.523 (4)Si1—S12.1016 (8)
C17—C181.525 (4)Si2—S22.0846 (9)
C18—H18A0.98S1—Zn12.2835 (6)
C18—H18B0.98S2—Zn12.2841 (6)
O1—C1—C4106.90 (19)C17—C19—H19C109.5
O1—C1—C2106.32 (19)H19A—C19—H19C109.5
C4—C1—C2111.3 (2)H19B—C19—H19C109.5
O1—C1—C3111.09 (19)C17—C20—H20A109.5
C4—C1—C3110.8 (2)C17—C20—H20B109.5
C2—C1—C3110.3 (2)H20A—C20—H20B109.5
C1—C2—H2A109.5C17—C20—H20C109.5
C1—C2—H2B109.5H20A—C20—H20C109.5
H2A—C2—H2B109.5H20B—C20—H20C109.5
C1—C2—H2C109.5C24A—C21—O6111.7 (10)
H2A—C2—H2C109.5C24A—C21—C22116.7 (11)
H2B—C2—H2C109.5O6—C21—C22113.9 (6)
C1—C3—H3A109.5C24A—C21—C2391.2 (9)
C1—C3—H3B109.5O6—C21—C23106.9 (3)
H3A—C3—H3B109.5C22—C21—C23113.9 (5)
C1—C3—H3C109.5O6—C21—C24104.0 (5)
H3A—C3—H3C109.5C22—C21—C24109.5 (7)
H3B—C3—H3C109.5C23—C21—C24108.0 (5)
C1—C4—H4A109.5C24A—C21—C23A112.4 (10)
C1—C4—H4B109.5O6—C21—C23A111.5 (6)
H4A—C4—H4B109.5C22—C21—C23A88.5 (10)
C1—C4—H4C109.5C24—C21—C23A128.9 (7)
H4A—C4—H4C109.5C24A—C21—C22A112.5 (14)
H4B—C4—H4C109.5O6—C21—C22A102.4 (9)
O2—C5—C7107.5 (2)C23—C21—C22A131.5 (9)
O2—C5—C8111.4 (2)C24—C21—C22A101.0 (12)
C7—C5—C8111.1 (2)C23A—C21—C22A105.6 (11)
O2—C5—C6105.39 (19)C21—C22—H22A109.5
C7—C5—C6111.4 (2)C21—C22—H22B109.5
C8—C5—C6110.0 (2)C21—C22—H22C109.5
C5—C6—H6A109.5C21—C23—H23A109.5
C5—C6—H6B109.5C21—C23—H23B109.5
H6A—C6—H6B109.5C21—C23—H23C109.5
C5—C6—H6C109.5C21—C24—H24A109.5
H6A—C6—H6C109.5C21—C24—H24B109.5
H6B—C6—H6C109.5C21—C24—H24C109.5
C5—C7—H7A109.5C21—C22A—H22D109.5
C5—C7—H7B109.5C21—C22A—H22E109.5
H7A—C7—H7B109.5H22D—C22A—H22E109.5
C5—C7—H7C109.5C21—C22A—H22F109.5
H7A—C7—H7C109.5H22D—C22A—H22F109.5
H7B—C7—H7C109.5H22E—C22A—H22F109.5
C5—C8—H8A109.5C21—C23A—H23D109.5
C5—C8—H8B109.5C21—C23A—H23E109.5
H8A—C8—H8B109.5H23D—C23A—H23E109.5
C5—C8—H8C109.5C21—C23A—H23F109.5
H8A—C8—H8C109.5H23D—C23A—H23F109.5
H8B—C8—H8C109.5H23E—C23A—H23F109.5
O3—C9—C12106.8 (2)C21—C24A—H24D109.5
O3—C9—C10106.6 (2)C21—C24A—H24E109.5
C12—C9—C10110.6 (3)H24D—C24A—H24E109.5
O3—C9—C11111.8 (2)C21—C24A—H24F109.5
C12—C9—C11110.1 (3)H24D—C24A—H24F109.5
C10—C9—C11110.7 (3)H24E—C24A—H24F109.5
C9—C10—H10A109.5N1—C25—N2111.7 (2)
C9—C10—H10B109.5N1—C25—H25124.2
H10A—C10—H10B109.5N2—C25—H25124.2
C9—C10—H10C109.5C27—C26—N2106.7 (2)
H10A—C10—H10C109.5C27—C26—H26126.6
H10B—C10—H10C109.5N2—C26—H26126.6
C9—C11—H11A109.5C26—C27—N1108.4 (2)
C9—C11—H11B109.5C26—C27—C28129.0 (2)
H11A—C11—H11B109.5N1—C27—C28122.6 (2)
C9—C11—H11C109.5O7—C28—C27113.79 (19)
H11A—C11—H11C109.5O7—C28—H28A108.8
H11B—C11—H11C109.5C27—C28—H28A108.8
C9—C12—H12A109.5O7—C28—H28B108.8
C9—C12—H12B109.5C27—C28—H28B108.8
H12A—C12—H12B109.5H28A—C28—H28B107.7
C9—C12—H12C109.5C25—N1—C27105.8 (2)
H12A—C12—H12C109.5C25—N1—Zn1119.94 (17)
H12B—C12—H12C109.5C27—N1—Zn1134.16 (16)
O4—C13—C15105.78 (19)C25—N2—C26107.5 (2)
O4—C13—C14108.0 (2)C25—N2—H2126.3
C15—C13—C14111.0 (2)C26—N2—H2126.3
O4—C13—C16110.2 (2)C1—O1—Si1133.01 (14)
C15—C13—C16111.0 (2)C1—O1—Zn1132.33 (13)
C14—C13—C16110.7 (2)Si1—O1—Zn194.56 (7)
C13—C14—H14A109.5C5—O2—Si1131.63 (15)
C13—C14—H14B109.5C9—O3—Si1137.89 (15)
H14A—C14—H14B109.5C13—O4—Si2131.22 (15)
C13—C14—H14C109.5C13—O4—Zn1134.15 (14)
H14A—C14—H14C109.5Si2—O4—Zn193.38 (7)
H14B—C14—H14C109.5C17—O5—Si2133.62 (15)
C13—C15—H15A109.5C21—O6—Si2132.83 (16)
C13—C15—H15B109.5C28—O7—H7109.5
H15A—C15—H15B109.5O3—Si1—O2105.61 (9)
C13—C15—H15C109.5O3—Si1—O1115.10 (9)
H15A—C15—H15C109.5O2—Si1—O1106.30 (9)
H15B—C15—H15C109.5O3—Si1—S1116.08 (7)
C13—C16—H16A109.5O2—Si1—S1112.42 (7)
C13—C16—H16B109.5O1—Si1—S1101.12 (6)
H16A—C16—H16B109.5O5—Si2—O6105.03 (9)
C13—C16—H16C109.5O5—Si2—O4113.75 (9)
H16A—C16—H16C109.5O6—Si2—O4105.70 (9)
H16B—C16—H16C109.5O5—Si2—S2114.86 (7)
O5—C17—C19110.4 (2)O6—Si2—S2115.12 (7)
O5—C17—C20105.1 (2)O4—Si2—S2102.29 (6)
C19—C17—C20111.1 (3)Si1—S1—Zn188.38 (3)
O5—C17—C18108.8 (2)Si2—S2—Zn188.75 (3)
C19—C17—C18111.1 (2)N1—Zn1—S1116.34 (6)
C20—C17—C18110.1 (2)N1—Zn1—S2107.66 (6)
C17—C18—H18A109.5S1—Zn1—S2135.97 (2)
C17—C18—H18B109.5N1—Zn1—O196.30 (7)
H18A—C18—H18B109.5S1—Zn1—O175.89 (4)
C17—C18—H18C109.5S2—Zn1—O1101.51 (4)
H18A—C18—H18C109.5N1—Zn1—O491.81 (7)
H18B—C18—H18C109.5S1—Zn1—O4100.81 (4)
C17—C19—H19A109.5S2—Zn1—O475.56 (4)
C17—C19—H19B109.5O1—Zn1—O4171.88 (5)
H19A—C19—H19B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O7i0.881.942.751 (3)152
O7—H7···S10.842.373.1959 (17)168
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

(III)(IV)(V)
Crystal data
Chemical formula[Co(C12H27O3SSi)2(C5H9N3)][Zn(C12H27O3SSi)2(C5H9N3)][Zn(C12H27O3SSi)2(C4H6N2O)]
Mr729.05735.49722.45
Crystal system, space groupTriclinic, P1Triclinic, P1Monoclinic, P21/c
Temperature (K)120120120
a, b, c (Å)9.2498 (4), 14.3000 (9), 16.0164 (11)9.2535 (3), 14.3163 (5), 15.9899 (6)16.2546 (5), 9.2094 (2), 26.1831 (7)
α, β, γ (°)95.190 (5), 96.805 (4), 107.336 (4)95.086 (3), 96.805 (3), 107.337 (3)90, 91.874 (2), 90
V3)1990.3 (2)1990.55 (12)3917.39 (18)
Z224
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.640.820.83
Crystal size (mm)0.16 × 0.10 × 0.060.21 × 0.15 × 0.090.39 × 0.2 × 0.04
Data collection
DiffractometerOxford Diffraction KM-4 CCD
diffractometer
Oxford Diffraction KM-4 CCD
diffractometer
Oxford Diffraction KM-4 CCD
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2006) analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid [(1995). Acta Cryst. A51, 887-897]
Analytical
(CrysAlis RED; Oxford Diffraction, 2006) analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid [(1995). Acta Cryst. A51, 887-897].
Analytical
(CrysAlis RED; Oxford Diffraction, 2006) analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid [(1995). Acta Cryst. A51, 887-897]
Tmin, Tmax0.842, 0.930.79, 0.8570.685, 0.855
No. of measured, independent and
observed [I > 2σ(I)] reflections
13851, 7381, 6248 13696, 7386, 6730 25278, 7283, 6253
Rint0.0260.0210.043
(sin θ/λ)max1)0.6060.6060.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.10 0.031, 0.082, 1.11 0.041, 0.112, 1.09
No. of reflections738173867283
No. of parameters407427429
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.330.74, 0.320.99, 0.41

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS86 (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S2i0.882.493.2365 (16)142.7
N2—H2···O6i0.882.603.367 (2)145.8
N3—H3D···O40.922.233.0626 (19)149.7
N3—H3E···O30.922.23.0654 (19)156.5
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S2i0.882.523.2481 (14)140.1
N2—H2···O6i0.882.573.355 (2)148.4
N3—H3D···O40.922.243.0550 (17)146.9
N3—H3E···O20.922.203.0592 (17)155.7
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (V) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O7i0.881.942.751 (3)152.3
O7—H7···S10.842.373.1959 (17)168.3
Symmetry code: (i) x, y+1/2, z+1/2.
Comparative geometrical parameters (Å, °) for (III), (IV) and (V) top
Bonds(III)a(IV)b(V)b
M1—S12.2724 (5)2.2813 (4)2.2835 (6)
M1—S22.3028 (5)2.3005 (4)2.2841 (6)
M1—N12.0116 (15)2.0350 (13)2.0357 (19)
M1—N32.0754 (15)2.0804 (13)
M1—O12.4477 (15)
M1—O42.4789 (16)
Angles
N1—M1—N396.46 (6)95.74 (5)
N1—M1—S1122.45 (4)119.20 (4)116.34 (6)
N1—M1—S2112.32 (4)110.88 (4)107.66 (6)
N3—M1—S1106.17 (5)107.25 (4)
N3—M1—S2115.05 (4)116.88 (4)
S1—M1—S2104.567 (18)107.053 (15)135.97 (2)
N1—M1—O196.30 (7)
N1—M1—O491.81 (7)
O1—M1—S175.89 (4)
O1—M1—S2101.51 (4)
O4—M1—S1100.81 (4)
O4—M1—S275.56 (4)
O1—M1—O4171.88 (5)
Notes: (a) M1=Co1; (b) M1=Zn1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds