Download citation
Download citation
link to html
In the title compound, C30H48NO3+·Cl·H2O, the cation acts with a water mol­ecule as a chloride ion receptor. The chloride ion forms three strong intra­molecular hydrogen bonds. The water mol­ecule forms both an intra­molecular bridge between one phenol H atom and the chloride ion, and an inter­molecular link to the aliphatic alcohol O atom. Weak inter­molecular C—H...Cl and C—H ...O hydrogen bonds provide additional packing inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107023797/ga3048sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107023797/ga3048Isup2.hkl
Contains datablock I

CCDC reference: 655504

Comment top

Studies of anion and cation receptors have gained increasing attention lately owing to their importance in biological, environmental and supramolecular chemistry (Amendola et al., 2006; Bianchi et al., 1997; Cormode et al., 2006; Gale et al., 2006). For instance, a large majority of substrates and cofactors engaged in biological processes are anions; among them, phosphate and chloride ions are of special interest because of their ubiquitous presence in biological systems. Indeed, this focus has led to a new branch of chemistry defined as anion coordination chemistry (Bowman-James, 2005). A significant difference between anion and cation bond formation is that cations usually involve strong coordinate bonds. Conversely, anion binding is significantly weaker, often involving multiple hydrogen-bond formation acting in concert with electrostatic interactions (Amendola et al., 2006; Goetz et al., 2006; Wichmann et al., 2006).

The selectivity of an anion receptor is an important factor. Inorganic anions can, in principle, be discriminated on the basis of geometrical parameters, viz. size and shape (Bianchi et al., 1997). Generally, an anion receptor can be either positively charged or a neutral molecule; in the former case, the interaction is based mainly on electrostatic forces and in the latter case on hydrogen bonds (Amendola et al., 2006). Very high selectivity towards anions can be achieved with proteins, which form strong and selective bonds to the anions even in a highly competitive aqueous medium. Thus amides are used as model receptors for anions (Chmielewski et al., 2006). Many molecular topologies based on amine and phenol functions as building blocks of the molecular system have been synthesized for selective anion or cation binding (Ambrosi et al., 2006; Wichmann et al., 2006). However, only a few cationic aminoalkylbisphenols and aminotrisphenols have been shown to form salt-like structures with anions; examples are those in which the phosphates and carbonates act as anions (Chandrasekaran et al., 1999, 2003). To our knowledge, no structural studies of aminoalcoholbisphenols or their hydrochlorides have been reported.

In light of the factors mentioned above we introduce the compound N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-6-amino-1-hexanol, which as an ammonium cation serves as a chloride ion receptor. The compound was prepared as a part of our studies in searching for new low molecular weight organic molecules for uranyl ion complexation and extraction (Sopo et al., 2007). During the purification process the ligand was transformed to a hydrochloride, which was extracted in chloroform; the compound crystallized from this as a monohydrate, (I). Although (I) contains a cation and an anion in the solid state, it acts like a molecule with no net charge and thus it dissolves easily into some nonpolar solvents, e.g. chloroform. Therefore we believe the cation of compound (I) can either act as a receptor at interfaces for anions, or is able to solubilize or transport anions into slightly polar or nonpolar organic solvents.

The basic structural unit of (I) consists of an N,N-bis(2-hydroxy-5-tert-butyl-3- methylbenzyl)-6-ammoniumhexanol cation, a chloride ion and a water molecule (Fig. 1). Selected bond lengths and angles are presented in Table 1. The chloride ion is surrounded by the OH groups of the phenol groups and the water molecule, and most of the polar part of the compound is located in the polar cavity. The outer surface of the zwitterion is lipophilic, and this allows for an easy transport of the chloride ion into organic solvents. The geometries around the phenol atoms O1 and O2 and atom N8 are normal. The symmetry of atom N8 is slightly distorted tetrahedral with bonding angles in the range 106.6 (13)–112.46 (15)°.

The chloride anion forms three strong intramolecular O—H···Cl1 hydrogen bonds, namely one to phenol atom H2O, one to aliphatic alcohol atom H3O and one to the H atom of the water molecule (H42O) (Table 2). The H···Cl1 interaction lengths of the hydrogen bonds range from 2.15 (2) to 2.29 (2) Å. In addition, the chloride ion forms one intermolecular C—H···Cl hydrogen bond. The coordination number of the chloride ion is 3 + 1 (three strong hydrogen bonds and one weak). The H atom of the ammonium group does not form a hydrogen bond to the chloride ion but forms bifurcated hydrogen bonds to two phenol O atoms and thus stabilizes the conformation of the ligand (Fig. 1). The values of the hydrogen-bond parameters are comparable to literature values (Steiner, 2002; Desiraju & Steiner, 1999).

The intermolecular packing of (I) in the ac plane is depicted in Fig. 2. Two of the weak intermolecular C—H···Cl1 bonds provide some cohesion between molecules along the a axis (these have been omitted from the figure for reasons of clarity). The H atoms of the water molecule form hydrogen bonds to the chloride ion and to aliphatic alcohol atom O3 in an adjacent unit, forming a hydrogen-bond chain along the c axis (Fig. 2). Thus the water molecule plays an important dual (intra- and inter-molecular) role by acting as a bridge between the phenol H atom, the aliphatic alcohol O atom and the chloride ion.

Related literature top

For related literature, see: Ambrosi et al. (2006); Amendola et al. (2006); Bianchi et al. (1997); Bowman-James (2005); Chandrasekaran et al. (1999, 2003); Chmielewski & Jurczak (2006); Cormode et al. (2006); Desiraju & Steiner (1999); Gale & Quesada (2006); Goetz & Kruger (2006); Sopo et al. (2007); Steiner (2002); Wichmann et al. (2006).

Experimental top

The title compound was prepared as described by Sopo et al. (2007). Crystals suitable for single-crystal X-ray analysis were obtained at room temperature by slow evaporation of the recrystallization solvent (chloroform).

Refinement top

H atoms of the OH and NH groups were refined isotropically with fixed displacement parameters (1.2Ueq of the host atom). The H3O—O3 distance was refined with a distance restraint of 0.90 (2) Å. H atoms on C atoms were included in calculated positions, with isotropic displacement parameters of 1.2–1.5 times Ueq of the host atom.

Computing details top

Data collection: Collect (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of (I), showing the atom-numbering scheme (Cl1 labelled as Cl). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of (I) in the ac plane, showing the hydrogen-bonding pattern. Selected O, N and Cl1 (Cl) atoms have been labelled. Weak C—H···X hydrogen-bond interactions and CH H atoms have been omitted for clarity. [Symmetry codes: (i) x, -y + 1/2, z - 1/2; (ii) x, -y + 1/2, z + 1/2.]
N,N-Bis(5-tert-butyl-2-hydroxy-3-methylbenzyl)-N- (6-hydroxyhexyl)ammonium chloride monohydrate top
Crystal data top
C30H48NO3+·Cl·H2OF(000) = 1144
Mr = 524.16Dx = 1.122 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5868 reflections
a = 9.3064 (2) Åθ = 2.9–27.1°
b = 25.5909 (9) ŵ = 0.16 mm1
c = 13.0271 (4) ÅT = 173 K
β = 90.306 (2)°Needle, colourless
V = 3102.48 (16) Å30.30 × 0.22 × 0.18 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
4396 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590Rint = 0.032
Horizonally mounted graphite crystal monochromatorθmax = 26.0°, θmin = 3.1°
Detector resolution: 9 pixels mm-1h = 1111
ϕ and ω scansk = 2931
10477 measured reflectionsl = 1616
6003 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0409P)2 + 2.1407P]
where P = (Fo2 + 2Fc2)/3
6003 reflections(Δ/σ)max < 0.001
351 parametersΔρmax = 0.47 e Å3
1 restraintΔρmin = 0.30 e Å3
Crystal data top
C30H48NO3+·Cl·H2OV = 3102.48 (16) Å3
Mr = 524.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3064 (2) ŵ = 0.16 mm1
b = 25.5909 (9) ÅT = 173 K
c = 13.0271 (4) Å0.30 × 0.22 × 0.18 mm
β = 90.306 (2)°
Data collection top
Nonius KappaCCD
diffractometer
4396 reflections with I > 2σ(I)
10477 measured reflectionsRint = 0.032
6003 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0501 restraint
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.47 e Å3
6003 reflectionsΔρmin = 0.30 e Å3
351 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.50011 (5)0.20399 (2)0.35785 (4)0.03477 (16)
O10.13352 (14)0.28126 (5)0.19579 (11)0.0231 (3)
H1O0.217 (3)0.2880 (9)0.1914 (17)0.028*
O20.17474 (15)0.18476 (6)0.36218 (12)0.0295 (4)
H2O0.260 (3)0.1831 (10)0.3558 (17)0.035*
O30.58079 (17)0.26099 (7)0.55700 (14)0.0438 (4)
H3O0.552 (3)0.2502 (11)0.4904 (14)0.053*
O40.41917 (17)0.29099 (7)0.20506 (15)0.0405 (4)
H41O0.450 (3)0.2767 (11)0.151 (2)0.049*
H42O0.438 (3)0.2674 (11)0.254 (2)0.049*
C10.03964 (19)0.31983 (7)0.16597 (14)0.0178 (4)
C20.08060 (19)0.36551 (7)0.11644 (15)0.0203 (4)
C30.0262 (2)0.40147 (7)0.09087 (15)0.0218 (4)
H30.00130.43270.05680.026*
C40.17077 (19)0.39399 (7)0.11264 (15)0.0204 (4)
C50.20769 (19)0.34737 (7)0.16178 (14)0.0192 (4)
H50.30560.34080.17750.023*
C60.10505 (19)0.31042 (7)0.18814 (14)0.0184 (4)
C70.15002 (19)0.26023 (8)0.23904 (15)0.0208 (4)
H7A0.12970.23060.19240.025*
H7B0.25490.26110.25110.025*
N80.07327 (17)0.25125 (6)0.33995 (12)0.0180 (3)
H80.018 (2)0.2515 (8)0.3267 (15)0.022*
C90.11174 (19)0.19816 (7)0.38321 (15)0.0205 (4)
H9A0.07270.19520.45380.025*
H9B0.21760.1950.3870.025*
C100.05363 (19)0.15431 (7)0.31891 (15)0.0210 (4)
C110.1457 (2)0.11935 (8)0.26922 (15)0.0237 (4)
H110.24660.12450.27320.028*
C120.0929 (2)0.07710 (8)0.21401 (17)0.0274 (5)
C130.0564 (2)0.07157 (8)0.21072 (17)0.0310 (5)
H130.09470.04290.17360.037*
C140.1518 (2)0.10536 (8)0.25827 (17)0.0283 (5)
C150.0947 (2)0.14784 (8)0.31248 (16)0.0241 (5)
C160.1020 (2)0.29408 (8)0.41678 (15)0.0233 (4)
H16A0.19350.28680.45240.028*
H16B0.11250.32780.38010.028*
C170.0182 (2)0.29859 (9)0.49560 (16)0.0292 (5)
H17A0.0380.26340.52370.035*
H17B0.0160.32060.5530.035*
C180.1583 (2)0.32137 (10)0.45624 (18)0.0361 (5)
H18A0.14910.35980.45120.043*
H18B0.17710.30760.38660.043*
C190.2853 (2)0.30795 (10)0.52659 (18)0.0381 (6)
H19A0.26180.3190.59740.046*
H19B0.29810.26950.52720.046*
C200.4264 (2)0.33327 (10)0.4957 (2)0.0436 (6)
H20A0.4460.32470.42290.052*
H20B0.41650.37170.5010.052*
C210.5529 (3)0.31596 (10)0.5606 (2)0.0458 (6)
H21A0.63980.33480.53730.055*
H21B0.53520.32610.63270.055*
C220.2356 (2)0.37625 (9)0.09066 (18)0.0316 (5)
H22A0.29110.38070.15420.047*
H22B0.24180.40820.04950.047*
H22C0.27460.34680.05150.047*
C230.2876 (2)0.43424 (8)0.08694 (17)0.0263 (5)
C240.3947 (2)0.40999 (9)0.01111 (18)0.0366 (6)
H24A0.47110.43520.00420.055*
H24B0.43670.37850.04140.055*
H24C0.34490.40080.05240.055*
C250.3668 (3)0.44930 (10)0.1853 (2)0.0468 (7)
H25A0.29810.46370.23510.07*
H25B0.41290.41830.21440.07*
H25C0.44010.47560.16940.07*
C260.2254 (3)0.48350 (9)0.0390 (2)0.0492 (7)
H26A0.15520.49910.08620.074*
H26B0.30290.50850.02550.074*
H26C0.17790.47460.02570.074*
C270.1902 (2)0.03789 (9)0.15804 (18)0.0351 (5)
C280.3490 (2)0.04611 (10)0.1837 (2)0.0468 (7)
H28A0.36290.04230.25780.07*
H28B0.40730.020.14740.07*
H28C0.37860.08120.16230.07*
C290.1715 (3)0.04494 (12)0.0419 (2)0.0542 (7)
H29A0.20310.08010.0220.081*
H29B0.22940.01880.00540.081*
H29C0.07010.04040.02410.081*
C300.1490 (3)0.01816 (10)0.1884 (3)0.0563 (8)
H30A0.04930.0250.16860.084*
H30B0.21260.04290.15310.084*
H30C0.15880.02240.26280.084*
C310.3118 (2)0.09600 (9)0.2546 (2)0.0380 (6)
H31A0.33170.06590.21040.057*
H31B0.34790.0890.32410.057*
H31C0.35960.1270.2270.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0213 (3)0.0412 (3)0.0418 (3)0.0019 (2)0.0030 (2)0.0028 (3)
O10.0135 (6)0.0257 (8)0.0302 (8)0.0038 (6)0.0026 (6)0.0070 (6)
O20.0136 (7)0.0303 (8)0.0445 (9)0.0022 (6)0.0020 (6)0.0022 (7)
O30.0348 (9)0.0511 (11)0.0456 (11)0.0023 (8)0.0012 (7)0.0133 (9)
O40.0278 (8)0.0438 (11)0.0499 (11)0.0064 (7)0.0018 (7)0.0094 (9)
C10.0172 (9)0.0184 (10)0.0178 (10)0.0019 (7)0.0001 (7)0.0003 (8)
C20.0176 (9)0.0201 (10)0.0233 (11)0.0022 (8)0.0013 (8)0.0005 (8)
C30.0236 (10)0.0154 (10)0.0266 (11)0.0022 (8)0.0001 (8)0.0020 (8)
C40.0189 (10)0.0173 (10)0.0249 (11)0.0001 (7)0.0020 (8)0.0022 (8)
C50.0133 (9)0.0216 (10)0.0228 (10)0.0018 (7)0.0009 (7)0.0002 (8)
C60.0178 (9)0.0191 (10)0.0184 (10)0.0017 (7)0.0007 (7)0.0015 (8)
C70.0164 (9)0.0216 (10)0.0245 (11)0.0019 (8)0.0009 (7)0.0056 (8)
N80.0130 (8)0.0183 (8)0.0229 (9)0.0018 (6)0.0033 (6)0.0033 (7)
C90.0152 (9)0.0214 (10)0.0250 (11)0.0001 (7)0.0048 (7)0.0080 (8)
C100.0189 (10)0.0184 (10)0.0258 (11)0.0039 (8)0.0066 (8)0.0098 (8)
C110.0175 (10)0.0222 (10)0.0313 (12)0.0010 (8)0.0051 (8)0.0091 (9)
C120.0258 (11)0.0213 (11)0.0352 (12)0.0008 (8)0.0078 (9)0.0044 (9)
C130.0290 (11)0.0192 (11)0.0449 (14)0.0058 (9)0.0122 (10)0.0039 (10)
C140.0200 (10)0.0223 (11)0.0426 (13)0.0049 (8)0.0101 (9)0.0105 (10)
C150.0182 (10)0.0213 (11)0.0327 (12)0.0001 (8)0.0040 (8)0.0102 (9)
C160.0229 (10)0.0231 (11)0.0238 (11)0.0055 (8)0.0052 (8)0.0002 (9)
C170.0290 (11)0.0321 (12)0.0264 (11)0.0005 (9)0.0035 (9)0.0025 (10)
C180.0341 (12)0.0382 (14)0.0361 (13)0.0094 (10)0.0044 (10)0.0020 (11)
C190.0317 (12)0.0460 (15)0.0366 (14)0.0082 (10)0.0016 (10)0.0052 (11)
C200.0387 (13)0.0423 (15)0.0499 (16)0.0087 (11)0.0086 (11)0.0088 (12)
C210.0300 (12)0.0490 (16)0.0584 (17)0.0034 (11)0.0103 (11)0.0151 (13)
C220.0197 (10)0.0302 (12)0.0448 (14)0.0040 (9)0.0051 (9)0.0112 (10)
C230.0224 (10)0.0196 (10)0.0367 (13)0.0044 (8)0.0003 (9)0.0023 (9)
C240.0260 (11)0.0381 (14)0.0457 (15)0.0088 (10)0.0088 (10)0.0036 (11)
C250.0520 (15)0.0367 (14)0.0517 (17)0.0194 (12)0.0067 (12)0.0086 (12)
C260.0338 (13)0.0273 (13)0.086 (2)0.0062 (10)0.0023 (12)0.0226 (14)
C270.0326 (12)0.0278 (12)0.0449 (14)0.0005 (9)0.0058 (10)0.0049 (11)
C280.0326 (13)0.0435 (15)0.0644 (18)0.0094 (11)0.0066 (12)0.0162 (13)
C290.0525 (16)0.0608 (19)0.0494 (17)0.0006 (14)0.0023 (13)0.0124 (14)
C300.0549 (17)0.0259 (14)0.088 (2)0.0042 (12)0.0070 (15)0.0021 (14)
C310.0229 (11)0.0283 (12)0.0629 (17)0.0065 (9)0.0112 (10)0.0044 (12)
Geometric parameters (Å, º) top
O1—C11.373 (2)C17—H17B0.99
O1—H1O0.79 (2)C18—C191.530 (3)
O2—C151.364 (2)C18—H18A0.99
O2—H2O0.80 (2)C18—H18B0.99
O3—C211.431 (3)C19—C201.521 (3)
O3—H3O0.947 (17)C19—H19A0.99
O4—H41O0.84 (3)C19—H19B0.99
O4—H42O0.90 (3)C20—C211.513 (4)
C1—C21.389 (3)C20—H20A0.99
C1—C61.400 (3)C20—H20B0.99
C2—C31.394 (3)C21—H21A0.99
C2—C221.508 (3)C21—H21B0.99
C3—C41.390 (3)C22—H22A0.98
C3—H30.95C22—H22B0.98
C4—C51.398 (3)C22—H22C0.98
C4—C231.533 (3)C23—C261.523 (3)
C5—C61.386 (3)C23—C251.531 (3)
C5—H50.95C23—C241.531 (3)
C6—C71.506 (3)C24—H24A0.98
C7—N81.510 (2)C24—H24B0.98
C7—H7A0.99C24—H24C0.98
C7—H7B0.99C25—H25A0.98
N8—C161.509 (2)C25—H25B0.98
N8—C91.515 (2)C25—H25C0.98
N8—H80.87 (2)C26—H26A0.98
C9—C101.503 (3)C26—H26B0.98
C9—H9A0.99C26—H26C0.98
C9—H9B0.99C27—C281.532 (3)
C10—C151.393 (3)C27—C291.535 (4)
C10—C111.396 (3)C27—C301.536 (3)
C11—C121.390 (3)C28—H28A0.98
C11—H110.95C28—H28B0.98
C12—C131.397 (3)C28—H28C0.98
C12—C271.533 (3)C29—H29A0.98
C13—C141.384 (3)C29—H29B0.98
C13—H130.95C29—H29C0.98
C14—C151.402 (3)C30—H30A0.98
C14—C311.509 (3)C30—H30B0.98
C16—C171.519 (3)C30—H30C0.98
C16—H16A0.99C31—H31A0.98
C16—H16B0.99C31—H31B0.98
C17—C181.520 (3)C31—H31C0.98
C17—H17A0.99
C1—O1—H1O116.1 (17)C20—C19—H19A108.7
C15—O2—H2O116.9 (17)C18—C19—H19A108.7
C21—O3—H3O105.5 (17)C20—C19—H19B108.7
H41O—O4—H42O104 (3)C18—C19—H19B108.7
O1—C1—C2124.09 (16)H19A—C19—H19B107.6
O1—C1—C6115.43 (16)C21—C20—C19113.5 (2)
C2—C1—C6120.48 (17)C21—C20—H20A108.9
C1—C2—C3118.01 (16)C19—C20—H20A108.9
C1—C2—C22121.46 (17)C21—C20—H20B108.9
C3—C2—C22120.54 (17)C19—C20—H20B108.9
C4—C3—C2123.38 (18)H20A—C20—H20B107.7
C4—C3—H3118.3O3—C21—C20114.2 (2)
C2—C3—H3118.3O3—C21—H21A108.7
C3—C4—C5116.85 (17)C20—C21—H21A108.7
C3—C4—C23123.31 (17)O3—C21—H21B108.7
C5—C4—C23119.84 (16)C20—C21—H21B108.7
C6—C5—C4121.67 (16)H21A—C21—H21B107.6
C6—C5—H5119.2C2—C22—H22A109.5
C4—C5—H5119.2C2—C22—H22B109.5
C5—C6—C1119.60 (17)H22A—C22—H22B109.5
C5—C6—C7119.88 (16)C2—C22—H22C109.5
C1—C6—C7120.51 (16)H22A—C22—H22C109.5
C6—C7—N8112.45 (15)H22B—C22—H22C109.5
C6—C7—H7A109.1C26—C23—C25108.7 (2)
N8—C7—H7A109.1C26—C23—C24108.58 (19)
C6—C7—H7B109.1C25—C23—C24109.13 (18)
N8—C7—H7B109.1C26—C23—C4112.00 (17)
H7A—C7—H7B107.8C25—C23—C4109.28 (18)
C16—N8—C7112.46 (15)C24—C23—C4109.10 (17)
C16—N8—C9111.20 (14)C23—C24—H24A109.5
C7—N8—C9110.41 (14)C23—C24—H24B109.5
C16—N8—H8107.6 (13)H24A—C24—H24B109.5
C7—N8—H8106.6 (13)C23—C24—H24C109.5
C9—N8—H8108.3 (13)H24A—C24—H24C109.5
C10—C9—N8112.08 (14)H24B—C24—H24C109.5
C10—C9—H9A109.2C23—C25—H25A109.5
N8—C9—H9A109.2C23—C25—H25B109.5
C10—C9—H9B109.2H25A—C25—H25B109.5
N8—C9—H9B109.2C23—C25—H25C109.5
H9A—C9—H9B107.9H25A—C25—H25C109.5
C15—C10—C11120.12 (18)H25B—C25—H25C109.5
C15—C10—C9118.81 (18)C23—C26—H26A109.5
C11—C10—C9121.03 (16)C23—C26—H26B109.5
C12—C11—C10121.39 (17)H26A—C26—H26B109.5
C12—C11—H11119.3C23—C26—H26C109.5
C10—C11—H11119.3H26A—C26—H26C109.5
C11—C12—C13116.68 (19)H26B—C26—H26C109.5
C11—C12—C27123.06 (18)C28—C27—C12112.00 (18)
C13—C12—C27120.25 (19)C28—C27—C29108.3 (2)
C14—C13—C12124.0 (2)C12—C27—C29108.80 (19)
C14—C13—H13118C28—C27—C30108.2 (2)
C12—C13—H13118C12—C27—C30110.1 (2)
C13—C14—C15117.77 (17)C29—C27—C30109.5 (2)
C13—C14—C31121.18 (19)C27—C28—H28A109.5
C15—C14—C31121.0 (2)C27—C28—H28B109.5
O2—C15—C10115.32 (18)H28A—C28—H28B109.5
O2—C15—C14124.63 (17)C27—C28—H28C109.5
C10—C15—C14120.04 (19)H28A—C28—H28C109.5
N8—C16—C17111.78 (16)H28B—C28—H28C109.5
N8—C16—H16A109.3C27—C29—H29A109.5
C17—C16—H16A109.3C27—C29—H29B109.5
N8—C16—H16B109.3H29A—C29—H29B109.5
C17—C16—H16B109.3C27—C29—H29C109.5
H16A—C16—H16B107.9H29A—C29—H29C109.5
C16—C17—C18115.55 (18)H29B—C29—H29C109.5
C16—C17—H17A108.4C27—C30—H30A109.5
C18—C17—H17A108.4C27—C30—H30B109.5
C16—C17—H17B108.4H30A—C30—H30B109.5
C18—C17—H17B108.4C27—C30—H30C109.5
H17A—C17—H17B107.5H30A—C30—H30C109.5
C17—C18—C19111.89 (19)H30B—C30—H30C109.5
C17—C18—H18A109.2C14—C31—H31A109.5
C19—C18—H18A109.2C14—C31—H31B109.5
C17—C18—H18B109.2H31A—C31—H31B109.5
C19—C18—H18B109.2C14—C31—H31C109.5
H18A—C18—H18B107.9H31A—C31—H31C109.5
C20—C19—C18114.3 (2)H31B—C31—H31C109.5
O1—C1—C2—C3179.76 (17)C12—C13—C14—C150.4 (3)
C6—C1—C2—C30.7 (3)C12—C13—C14—C31177.9 (2)
O1—C1—C2—C220.3 (3)C11—C10—C15—O2178.77 (17)
C6—C1—C2—C22179.30 (19)C9—C10—C15—O23.5 (3)
C1—C2—C3—C40.2 (3)C11—C10—C15—C141.7 (3)
C22—C2—C3—C4179.84 (19)C9—C10—C15—C14176.06 (18)
C2—C3—C4—C50.7 (3)C13—C14—C15—O2179.18 (19)
C2—C3—C4—C23178.37 (19)C31—C14—C15—O22.6 (3)
C3—C4—C5—C60.4 (3)C13—C14—C15—C101.3 (3)
C23—C4—C5—C6178.74 (18)C31—C14—C15—C10176.92 (19)
C4—C5—C6—C10.5 (3)C7—N8—C16—C17155.08 (16)
C4—C5—C6—C7178.73 (18)C9—N8—C16—C1780.51 (19)
O1—C1—C6—C5179.40 (17)N8—C16—C17—C1871.9 (2)
C2—C1—C6—C51.0 (3)C16—C17—C18—C19160.76 (19)
O1—C1—C6—C71.4 (3)C17—C18—C19—C20175.4 (2)
C2—C1—C6—C7178.21 (18)C18—C19—C20—C21175.1 (2)
C5—C6—C7—N8124.27 (18)C19—C20—C21—O360.1 (3)
C1—C6—C7—N856.5 (2)C3—C4—C23—C262.1 (3)
C6—C7—N8—C1660.3 (2)C5—C4—C23—C26176.9 (2)
C6—C7—N8—C9174.81 (15)C3—C4—C23—C25122.7 (2)
C16—N8—C9—C10166.97 (15)C5—C4—C23—C2556.4 (2)
C7—N8—C9—C1067.47 (19)C3—C4—C23—C24118.1 (2)
N8—C9—C10—C1565.8 (2)C5—C4—C23—C2462.9 (2)
N8—C9—C10—C11116.52 (19)C11—C12—C27—C288.6 (3)
C15—C10—C11—C121.1 (3)C13—C12—C27—C28171.8 (2)
C9—C10—C11—C12176.60 (18)C11—C12—C27—C29111.1 (2)
C10—C11—C12—C130.1 (3)C13—C12—C27—C2968.6 (3)
C10—C11—C12—C27179.79 (19)C11—C12—C27—C30128.9 (2)
C11—C12—C13—C140.2 (3)C13—C12—C27—C3051.4 (3)
C27—C12—C13—C14179.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O40.79 (2)1.89 (2)2.672 (2)166 (2)
O2—H2O···Cl10.80 (2)2.29 (2)3.0686 (15)162 (2)
O3—H3O···Cl10.95 (2)2.15 (2)3.0663 (18)164 (2)
O4—H42O···Cl10.90 (3)2.19 (3)3.0773 (19)172 (2)
O4—H41O···O3i0.84 (3)1.98 (3)2.790 (3)160 (3)
N8—H8···O10.87 (2)2.16 (2)2.803 (2)130.5 (17)
N8—H8···O20.87 (2)2.29 (2)2.881 (2)125.2 (17)
C9—H9B···Cl1ii0.992.663.629 (2)165
C16—H16A···O3ii0.992.603.581 (3)174
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC30H48NO3+·Cl·H2O
Mr524.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)9.3064 (2), 25.5909 (9), 13.0271 (4)
β (°) 90.306 (2)
V3)3102.48 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.30 × 0.22 × 0.18
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10477, 6003, 4396
Rint0.032
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.120, 1.03
No. of reflections6003
No. of parameters351
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.30

Computer programs: Collect (Nonius, 1998), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
O1—C11.373 (2)C7—N81.510 (2)
O2—C151.364 (2)N8—C161.509 (2)
O3—C211.431 (3)N8—C91.515 (2)
O1—C1—C2124.09 (16)C7—N8—C9110.41 (14)
O1—C1—C6115.43 (16)O2—C15—C10115.32 (18)
C16—N8—C7112.46 (15)O2—C15—C14124.63 (17)
C16—N8—C9111.20 (14)O3—C21—C20114.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O40.79 (2)1.89 (2)2.672 (2)166 (2)
O2—H2O···Cl10.80 (2)2.29 (2)3.0686 (15)162 (2)
O3—H3O···Cl10.947 (17)2.146 (18)3.0663 (18)164 (2)
O4—H42O···Cl10.90 (3)2.19 (3)3.0773 (19)172 (2)
O4—H41O···O3i0.84 (3)1.98 (3)2.790 (3)160 (3)
N8—H8···O10.87 (2)2.16 (2)2.803 (2)130.5 (17)
N8—H8···O20.87 (2)2.29 (2)2.881 (2)125.2 (17)
C9—H9B···Cl1ii0.992.663.629 (2)165
C16—H16A···O3ii0.992.603.581 (3)174
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds