Download citation
Download citation
link to html
The title compound, C22H19N3O2S, crystallizes in two polymorphic forms having the same space group, viz. P\overline{1}, with Z′ = 2 and Z′ = 1. In both polymorphs, the planar thia­zole ring is fused cis with the dihydro­pyrimidine ring, the carbamoyl group is in an extended conformation with an anti­clinal orientation with respect to the pyrimidine ring, and the phenyl ring is attached to the pyrimidine ring approximately at a right angle. The two polymorphs have different inter­planar angles between the phenyl and thia­zole rings. The mol­ecules are linked by N—H...O and C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106046567/ga3031sup1.cif
Contains datablocks Ia, Ib, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106046567/ga3031Iasup2.hkl
Contains datablock Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106046567/ga3031Ibsup3.hkl
Contains datablock Ib

CCDC references: 289986; 289987

Comment top

Dihydropyrimidines (DHPMs) are heterocyclic systems of remarkable pharmacological potency with antiviral, antitumour, antibacterial and anti-inflammatory activities, and they are used as calcium channel modulators and antihypertensive agents (Kappe, 2000; Rovnyak et al., 1995). DHPMs exhibit a similar pharmacological profile to DHP calcium channel modulators of the nifedipine type and much activity has been observed in this area (Kappe, 1993; Atwal et al., 1991). A DHPM analogue has recently been identified as a potential new anticancer lead that is involved in blocking mitosis by inhibition of a kinesin motor protein (Mayer et al., 1999). We have reported a series of DHPM crystal structures (Ravikumar & Sridhar, 2005; Sridhar & Ravikumar, 2005a,b) and now report the crystal structures of two triclinic polymorphs, (Ia) and (Ib), of the title compound.

The two polymorphs crystallize in the same space group, viz. P1, but there are two independent but chemically identical molecules (1 and 2) in the asymmetric unit of form (Ia) (Fig. 1), whereas there is only one in form (Ib) (Fig. 2). The pyrimidine rings in (Ia) and (Ib) have a chiral C atom at the point of attachment of the phenyl group. Since both compounds crystallize in a centrosymmetric space group, in the solid state a racemic mixture was obtained from the synthesis. It has been reported (Atwal et al., 1990) that the critical factor for the biological activity of most DHPMs is the absolute stereochemistry at the C5 sterocentre. The bond distances and angles in (Ia) and (Ib) (Tables 1 and 3) are in normal ranges (Allen et al., 1987) and are comparable with the corresponding values observed in similar structures (Sulmon et al., 1989; Chandra Mohan et al., 2003; Liang & Cao, 2004). The molecular geometries of the two independent molecules in (Ia) are very similar; the largest differences are 0.012 (4) Å for the C24—C25 bond distance and 1.1 (2)° for the C2—C21—C22 angle. The bond distances involving the S atom, C2—S1 and C9—S1, are significantly different [0.01 (2) Å]. In polymorph (Ib), the phenyl ring (C22–C27) is disordered (all atoms except C22) over two sites of equal occupancy (Fig. 2).

Each molecule consists of a fused thiazole[1,3]pyrimidine ring system with a carbamoyl group and two substituted phenyl groups. It is interesting to note that the thiazole ring cyclization, with respect to the central pyrimidine ring, preferentially occurs with N4 (linear fusion) over N8 (angular fusion), perhaps facilitated by the simultaneous formation of conjugated double bonds. As observed in a similar thiazole–pyrimidine structure (Liu et al., 2004), the thiazole and pyrimidine rings are only approximately coplanar in both polymorphs, with maximum deviations of 0.161 (2) Å for atom C5 of molecule 1 of (Ia), −0.042 (2) Å for atom C7 of molecule 2 of (Ia) and −0.084 (3) Å for atom C7 of (Ib) with respect to the least-squares planes defined by atoms S1/C2/C3/N4/C5–C7/N8/C9 of the ring system. The interplanar angles between the pyrimidine and thiazole rings are 6.1 (2)° for molecule 1 of (Ia), 2.8 (1)° for molecule 2 of (Ia) and 4.2 (1)° for (Ib).

The carbamoyl side chain is in a fully extended conformation. The spatial arrangement of the carbonyl group at C6 adopts an anticlinal (ac) orientation about the C6—C61 bond (Tables 1 and 3). This orientation can probably be attributed to intermolecular N—H···O hydrogen bonding involving atom N6 and carbonyl atom O6 of the carbamoyl side chain for both polymorphs. The phenyl rings [e.g. C51–C56 in (Ia)] are oriented approximately perpendicular to the pyrimidine ring, as shown by the torsion angle C6—C5—C51—C52 (Tables 1 and 3). Specifically, the interplanar angles are 79.8 (1)° for molecule 1 of (Ia), 78.2 (2)° for molecule 2 of (Ia) and 78.6 (1)° for (Ib).

A significant difference is observed in the orientation of the phenyl ring (C22–C26) with respect to the thiazole ring between the two independent molecules of (Ia) and in (Ib) (Fig. 3). The interplanar angles between the mean planes of the phenyl and thiazole rings are 10.2 (2) and 23.4 (2)°, respectively, for molecules 1 and 2 in (Ia), and 29.5 (2) and 15.4 (1)° for the two disordered components of (Ib). The disposition of the C9C10 double bond with respect to the phenyl ring affords the possibility of E and Z isomers. Both polymorphs contain Z isomers, as shown by the C2—C21—C22—C23 torsion angle (Tables 1 and 3). The dihedral angles between the two phenyl rings are 84.3 (1) and 64.3 (1)°, respectively, for molecules 1 and 2 in (Ia), and 61.4 (2) and 85.2 (2)° for the two disordered components in (Ib).

In both polymorphs (Ia) and (Ib), the crystal structure is stabilized by N—H···O, C—H···O and C—H···S hydrogen bonds (Tables 2 and 4). A weak intramolecular C—H···S hydrogen bond forms a pseudo six-membered ring of an S(6) type motif (Bernstein et al., 1995) in both polymorphs. The molecules of (Ia) are linked by a combination of N—H···O and C—H···O hydrogen bonds (Table 2). Within the asymmetric unit, atom N6 acts as hydrogen-bond donor, via atom H6N, to atom O6'. In a similar manner, atom N6' at (x, y, z) acts as donor, via atom H6N', to atom O6 at (x, y − 1, z). These N—H···O hydrogen bonds lead to the formation of an infinite chain of C(4) type motifs, running along the crystallographic b axis (Fig. 4). In a similar fashion, C—H···O interactions involving atom C52 of the phenyl ring and atom O3 of the thiazole ring form an infinite chain running along the b axis. In (Ib), atoms N6 and C52 act as hydrogen-bond donors to atoms O6 and O3 (Table 4) thereby generating a C(4) type motif of chains running along the crystallographic a axis (Fig. 5).

The hydrogen-bond networks thus formed facilitate alternating hydrophobic and hydrophilic zones in both polymorphs. In polymorph (Ia), the hydrophobic layers around the b = 1/4 and b = 3/4 axes are sandwiched between the hydrophilic layers about b = 0 and b = 1, while in polymorph (Ib), the hydrophobic layers around a = 1/2 are sandwiched between the hydrophilic layers about a = 0 and a = 1.

Experimental top

A mixture of N-methylacetoacetamide, (1) (100 mmol), thiourea, (2) (100 mmol), benzaldehyde, (3) (100 mmol), absolute ethanol (50 ml) and concentrated hydrochloric acid (2 ml) was stirred and warmed slightly over a steam bath until the mixture become a clear solution. It was allowed to stand overnight at room temperature. The pyrimidinethione, (4), thus formed was filtered off and dried. A mixture of (4) (5.2 g, 2 mmol), chloroacetic acid (2 g, 2 mmol), benzaldehyde (2 g, 2 mmol), fused sodium acetate (4 g, 5 mmol), acetic acid (20 ml) and acetic anhydride (8 ml) was refluxed for 1 h, cooled and poured into cold water. The suspended solid was dissolved in [Diethyl?] ether and then treated with petroleum ether (313–333 K) to give yellow solid compound (5), which was recrystallized from dimethylformamide. Crystals of (Ia) suitable for X-ray analysis were obtained by slow evaporation of a dimethylformamide solution and those of (Ib) were obtained from a methanol solution.

Refinement top

The N-bound H atoms were located in a difference density map and refined isotropically. All other H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.98 Å, and with Uiso(H) = 1.5Ueq(C) for methyl atoms and 1.2Ueq(C) for the other H atoms. In (Ib), atoms C23–C27 of the C22–C27 phenyl ring were found to be disordered. Refining the disordered model led to occupancy factors of 0.507 (4) and 0.493 (4), not significantly different from equal occupancy; in the final cycles, the occupancies of the disordered atoms were fixed at 0.5. The displacement parameters of the disordered atoms C23/C231, C24/C241, C25/C251, C26/C261 and C27/C271 were restrained to isotropic behaviour. The geometries of the disordered atoms were restrained, where distances were set to a target value of 1.39 Å.

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Perspective views of the two independent molecules of (Ia), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A perspective view of the molecule of (Ib), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The least-squares fit between molecule 1 of (Ia) (labelled 1), molecule 2 of (Ia) (labelled 2) (r.m.s deviation 0.062 Å) and the molecule of (Ib) (labelled 3) (r.m.s deviation = 0.031 Å). The disordered atoms of the minor component C121–C161 and all H atoms have been omitted for clarity.
[Figure 4] Fig. 4. A part of the crystal structure of polymorph (Ia), showing the infinite chain along the b axis. Dashed lines indicate N—H···O and C—H···O hydrogen bonds. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted. Only atoms involved in hydrogen bonding are labelled. [Symmetry code: (i) x, y − 1, z].
[Figure 5] Fig. 5. A part of the crystal structure of polymorph (Ib), showing the infinite chain along the a axis. Dashed lines indicate N—H···O and C—H···O hydrogen bonds. For the sake of clarity, the disordered atoms of the minor component C121–C161 and all H atoms not involved in hydrogen bonding have been omitted. Only atoms involved in hydrogen bonding are labelled. [Symmetry code: (i) x − 1, y, z].
(Ia) (2Z)-2-benzylidene-N,7-dimethyl-3-oxo-5-phenyl- 5H-1,3-thiazolo[3,2-a]pyrimidine-6(3H)-carboxamide top
Crystal data top
C22H19N3O2SZ = 4
Mr = 389.46F(000) = 816
Triclinic, P1Dx = 1.344 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5353 (6) ÅCell parameters from 4411 reflections
b = 10.2071 (6) Åθ = 2.3–27.7°
c = 20.7901 (12) ŵ = 0.19 mm1
α = 79.198 (1)°T = 293 K
β = 79.645 (1)°Needle, pale yellow
γ = 78.257 (1)°0.20 × 0.11 × 0.08 mm
V = 1924.8 (2) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5389 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 25.0°, θmin = 1.0°
ω scansh = 1111
14058 measured reflectionsk = 1212
6733 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0671P)2 + 0.5641P]
where P = (Fo2 + 2Fc2)/3
6733 reflections(Δ/σ)max = 0.001
517 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C22H19N3O2Sγ = 78.257 (1)°
Mr = 389.46V = 1924.8 (2) Å3
Triclinic, P1Z = 4
a = 9.5353 (6) ÅMo Kα radiation
b = 10.2071 (6) ŵ = 0.19 mm1
c = 20.7901 (12) ÅT = 293 K
α = 79.198 (1)°0.20 × 0.11 × 0.08 mm
β = 79.645 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5389 reflections with I > 2σ(I)
14058 measured reflectionsRint = 0.021
6733 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.34 e Å3
6733 reflectionsΔρmin = 0.15 e Å3
517 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C21.0723 (2)0.7162 (2)0.15301 (10)0.0382 (5)
C30.9611 (2)0.7656 (2)0.20677 (10)0.0372 (5)
C50.8392 (2)0.6801 (2)0.31933 (9)0.0340 (5)
H50.84390.76390.33480.041*
C60.8749 (2)0.5619 (2)0.37419 (10)0.0337 (5)
C70.9815 (2)0.4563 (2)0.36419 (10)0.0369 (5)
C91.0463 (2)0.5446 (2)0.25614 (10)0.0351 (5)
C211.0976 (2)0.7975 (2)0.09500 (11)0.0459 (6)
H211.04800.88610.09410.055*
C221.1895 (2)0.7708 (3)0.03324 (11)0.0483 (6)
C231.1948 (3)0.8781 (3)0.01931 (12)0.0593 (7)
H231.14580.96420.01280.071*
C241.2713 (3)0.8584 (4)0.08051 (13)0.0751 (9)
H241.27390.93100.11500.090*
C251.3441 (3)0.7312 (4)0.09069 (13)0.0758 (9)
H251.39450.71750.13220.091*
C261.3421 (3)0.6248 (3)0.03959 (13)0.0707 (8)
H261.39230.53920.04640.085*
C271.2662 (3)0.6441 (3)0.02193 (12)0.0605 (7)
H271.26630.57120.05630.073*
C510.6882 (2)0.6914 (2)0.30289 (9)0.0342 (5)
C520.6581 (3)0.6086 (2)0.26370 (11)0.0464 (6)
H520.73220.54450.24640.056*
C530.5194 (3)0.6195 (3)0.24981 (13)0.0585 (7)
H530.50090.56340.22300.070*
C540.4087 (3)0.7131 (3)0.27557 (13)0.0593 (7)
H540.31530.72120.26610.071*
C550.4376 (3)0.7939 (3)0.31522 (13)0.0604 (7)
H550.36290.85670.33320.073*
C560.5752 (2)0.7840 (2)0.32900 (11)0.0471 (6)
H560.59270.84000.35610.057*
C610.7855 (2)0.5824 (2)0.43942 (10)0.0376 (5)
C620.6512 (3)0.4826 (3)0.54166 (12)0.0660 (8)
H62A0.71640.46970.57340.099*
H62B0.59320.41260.55270.099*
H62C0.58930.56940.54220.099*
C711.0349 (2)0.3430 (2)0.41604 (12)0.0503 (6)
H71A0.99980.36800.45910.075*
H71B1.13880.32570.40930.075*
H71C1.00010.26280.41290.075*
N40.95108 (17)0.66454 (17)0.26116 (8)0.0350 (4)
N60.7337 (2)0.4766 (2)0.47607 (9)0.0461 (5)
H6N0.742 (3)0.408 (2)0.4597 (12)0.047 (7)*
N81.06363 (19)0.44234 (18)0.30106 (9)0.0437 (5)
O30.88599 (18)0.87635 (15)0.20455 (8)0.0526 (4)
O60.75952 (19)0.69455 (16)0.45711 (7)0.0523 (4)
S11.15128 (6)0.54809 (6)0.17749 (3)0.04702 (19)
C2'1.0555 (2)0.2127 (2)0.15237 (10)0.0377 (5)
C3'0.9337 (2)0.2559 (2)0.20330 (10)0.0377 (5)
C5'0.8272 (2)0.1807 (2)0.31993 (9)0.0326 (5)
H5'0.83340.26610.33340.039*
C6'0.8663 (2)0.0661 (2)0.37597 (10)0.0330 (5)
C7'0.9838 (2)0.0303 (2)0.36913 (10)0.0367 (5)
C9'1.0497 (2)0.0554 (2)0.26078 (10)0.0360 (5)
C21'1.0683 (2)0.2839 (2)0.09123 (10)0.0435 (5)
H21'0.99420.35730.08390.052*
C22'1.1799 (2)0.2641 (2)0.03460 (11)0.0449 (6)
C23'1.1488 (3)0.3263 (3)0.02787 (12)0.0620 (7)
H23'1.05800.37880.03210.074*
C24'1.2489 (3)0.3119 (4)0.08335 (13)0.0817 (10)
H24'1.22540.35380.12470.098*
C25'1.3831 (3)0.2362 (4)0.07811 (15)0.0791 (9)
H25'1.45040.22450.11590.095*
C26'1.4181 (3)0.1777 (3)0.01692 (15)0.0798 (9)
H26'1.51060.12890.01310.096*
C27'1.3174 (3)0.1904 (3)0.03886 (13)0.0667 (8)
H27'1.34220.14880.08000.080*
C51'0.6745 (2)0.1913 (2)0.30545 (9)0.0323 (5)
C52'0.6404 (2)0.1034 (2)0.27011 (11)0.0432 (5)
H52'0.71170.03430.25530.052*
C53'0.5010 (3)0.1172 (2)0.25649 (12)0.0510 (6)
H53'0.47940.05750.23250.061*
C54'0.3941 (2)0.2186 (3)0.27819 (12)0.0503 (6)
H54'0.30050.22820.26870.060*
C55'0.4272 (2)0.3056 (3)0.31404 (12)0.0521 (6)
H55'0.35530.37380.32930.063*
C56'0.5659 (2)0.2923 (2)0.32753 (11)0.0434 (5)
H56'0.58700.35190.35170.052*
C61'0.7712 (2)0.0845 (2)0.44023 (10)0.0356 (5)
C62'0.6434 (3)0.0219 (3)0.54295 (11)0.0595 (7)
H62D0.70800.03790.57520.089*
H62E0.58460.09110.55250.089*
H62F0.58230.06500.54450.089*
C71'1.0378 (2)0.1387 (2)0.42289 (11)0.0511 (6)
H71D0.99400.11410.46530.077*
H71E1.14110.14830.41900.077*
H71F1.01290.22300.41880.077*
N4'0.93550 (17)0.16196 (16)0.26091 (8)0.0332 (4)
N6'0.7269 (2)0.0246 (2)0.47745 (9)0.0435 (5)
H6N'0.742 (3)0.094 (2)0.4626 (12)0.047 (7)*
N8'1.07813 (19)0.03859 (19)0.30853 (9)0.0449 (5)
O3'0.84515 (18)0.35821 (16)0.19735 (8)0.0549 (5)
O6'0.73611 (17)0.19801 (15)0.45699 (7)0.0473 (4)
S1'1.16396 (6)0.06382 (6)0.18438 (3)0.04387 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0347 (11)0.0399 (12)0.0356 (12)0.0034 (9)0.0013 (9)0.0046 (10)
C30.0353 (12)0.0367 (12)0.0345 (12)0.0032 (10)0.0007 (9)0.0016 (9)
C50.0365 (11)0.0323 (11)0.0295 (11)0.0035 (9)0.0016 (9)0.0042 (9)
C60.0364 (11)0.0349 (11)0.0299 (11)0.0093 (9)0.0042 (9)0.0024 (9)
C70.0310 (11)0.0405 (12)0.0371 (12)0.0078 (9)0.0060 (9)0.0020 (10)
C90.0275 (10)0.0355 (12)0.0379 (12)0.0018 (9)0.0003 (9)0.0028 (10)
C210.0466 (13)0.0447 (13)0.0396 (13)0.0035 (11)0.0009 (10)0.0012 (10)
C220.0418 (13)0.0597 (16)0.0363 (13)0.0059 (11)0.0017 (10)0.0001 (11)
C230.0534 (15)0.0702 (18)0.0413 (14)0.0042 (13)0.0028 (12)0.0076 (13)
C240.0710 (19)0.100 (2)0.0383 (15)0.0092 (18)0.0052 (13)0.0110 (15)
C250.069 (2)0.112 (3)0.0372 (15)0.0107 (19)0.0103 (13)0.0121 (16)
C260.0724 (19)0.082 (2)0.0504 (16)0.0074 (16)0.0107 (14)0.0186 (15)
C270.0665 (17)0.0626 (17)0.0425 (14)0.0060 (14)0.0080 (12)0.0045 (12)
C510.0359 (11)0.0322 (11)0.0292 (11)0.0027 (9)0.0002 (9)0.0002 (9)
C520.0488 (14)0.0437 (13)0.0447 (13)0.0007 (11)0.0081 (11)0.0107 (11)
C530.0649 (18)0.0586 (17)0.0585 (16)0.0180 (14)0.0201 (14)0.0067 (13)
C540.0392 (14)0.0693 (18)0.0639 (17)0.0109 (13)0.0104 (12)0.0080 (14)
C550.0377 (14)0.0669 (18)0.0654 (17)0.0034 (12)0.0058 (12)0.0087 (14)
C560.0406 (13)0.0503 (14)0.0461 (13)0.0006 (11)0.0036 (11)0.0140 (11)
C610.0423 (12)0.0400 (13)0.0317 (11)0.0104 (10)0.0063 (9)0.0044 (10)
C620.088 (2)0.0660 (18)0.0385 (14)0.0242 (16)0.0158 (14)0.0064 (13)
C710.0392 (13)0.0516 (15)0.0512 (14)0.0044 (11)0.0082 (11)0.0120 (12)
N40.0328 (9)0.0327 (9)0.0324 (9)0.0005 (7)0.0031 (7)0.0011 (8)
N60.0618 (13)0.0395 (12)0.0357 (11)0.0167 (10)0.0081 (9)0.0084 (9)
N80.0359 (10)0.0404 (11)0.0433 (11)0.0041 (8)0.0007 (8)0.0044 (9)
O30.0588 (10)0.0364 (9)0.0453 (9)0.0089 (8)0.0089 (8)0.0023 (7)
O60.0778 (12)0.0400 (9)0.0400 (9)0.0171 (8)0.0023 (8)0.0116 (7)
S10.0444 (3)0.0410 (3)0.0423 (3)0.0045 (3)0.0109 (3)0.0025 (3)
C2'0.0359 (12)0.0401 (12)0.0357 (12)0.0069 (9)0.0018 (9)0.0055 (10)
C3'0.0411 (12)0.0356 (12)0.0327 (11)0.0027 (10)0.0028 (9)0.0032 (9)
C5'0.0342 (11)0.0309 (11)0.0298 (11)0.0034 (9)0.0010 (9)0.0038 (9)
C6'0.0345 (11)0.0347 (11)0.0310 (11)0.0090 (9)0.0061 (9)0.0037 (9)
C7'0.0331 (11)0.0403 (12)0.0351 (11)0.0079 (9)0.0068 (9)0.0015 (9)
C9'0.0285 (11)0.0378 (12)0.0390 (12)0.0034 (9)0.0031 (9)0.0038 (10)
C21'0.0439 (13)0.0453 (13)0.0359 (12)0.0038 (10)0.0001 (10)0.0026 (10)
C22'0.0461 (14)0.0494 (14)0.0379 (13)0.0128 (11)0.0004 (10)0.0043 (11)
C23'0.0517 (15)0.089 (2)0.0379 (14)0.0102 (14)0.0011 (12)0.0002 (13)
C24'0.072 (2)0.136 (3)0.0347 (15)0.028 (2)0.0007 (14)0.0052 (17)
C25'0.071 (2)0.108 (3)0.0508 (18)0.0235 (19)0.0235 (15)0.0154 (17)
C26'0.0511 (17)0.092 (2)0.075 (2)0.0025 (16)0.0156 (15)0.0063 (18)
C27'0.0491 (15)0.083 (2)0.0506 (16)0.0046 (14)0.0040 (12)0.0139 (14)
C51'0.0328 (11)0.0319 (11)0.0275 (10)0.0024 (9)0.0008 (8)0.0015 (8)
C52'0.0381 (12)0.0409 (13)0.0491 (13)0.0014 (10)0.0059 (10)0.0127 (11)
C53'0.0480 (14)0.0534 (15)0.0556 (15)0.0101 (12)0.0130 (12)0.0124 (12)
C54'0.0329 (12)0.0564 (15)0.0582 (15)0.0042 (11)0.0090 (11)0.0018 (12)
C55'0.0363 (13)0.0509 (15)0.0608 (16)0.0056 (11)0.0043 (11)0.0133 (12)
C56'0.0403 (13)0.0430 (13)0.0437 (13)0.0006 (10)0.0001 (10)0.0134 (10)
C61'0.0396 (12)0.0368 (12)0.0314 (11)0.0074 (10)0.0072 (9)0.0050 (9)
C62'0.0688 (17)0.0651 (17)0.0380 (13)0.0187 (14)0.0118 (12)0.0027 (12)
C71'0.0384 (13)0.0584 (16)0.0475 (14)0.0050 (11)0.0101 (11)0.0139 (12)
N4'0.0323 (9)0.0333 (9)0.0292 (9)0.0008 (7)0.0005 (7)0.0031 (7)
N6'0.0535 (12)0.0369 (11)0.0374 (11)0.0124 (9)0.0064 (9)0.0068 (9)
N8'0.0335 (10)0.0481 (11)0.0427 (11)0.0036 (8)0.0028 (8)0.0044 (9)
O3'0.0631 (11)0.0414 (9)0.0410 (9)0.0150 (8)0.0048 (8)0.0031 (7)
O6'0.0654 (11)0.0375 (9)0.0385 (9)0.0113 (8)0.0001 (8)0.0098 (7)
S1'0.0331 (3)0.0491 (4)0.0392 (3)0.0024 (3)0.0041 (2)0.0010 (3)
Geometric parameters (Å, º) top
C2—C211.343 (3)C2'—C21'1.339 (3)
C2—C31.482 (3)C2'—C3'1.479 (3)
C2—S11.748 (2)C2'—S1'1.746 (2)
C3—O31.206 (2)C3'—O3'1.204 (2)
C3—N41.384 (3)C3'—N4'1.387 (3)
C5—N41.471 (2)C5'—N4'1.470 (2)
C5—C511.516 (3)C5'—C51'1.518 (3)
C5—C61.526 (3)C5'—C6'1.527 (3)
C5—H50.9800C5'—H5'0.9800
C6—C71.341 (3)C6'—C7'1.338 (3)
C6—C611.493 (3)C6'—C61'1.494 (3)
C7—N81.418 (3)C7'—N8'1.416 (3)
C7—C711.499 (3)C7'—C71'1.500 (3)
C9—N81.269 (3)C9'—N8'1.270 (3)
C9—N41.376 (3)C9'—N4'1.374 (3)
C9—S11.755 (2)C9'—S1'1.755 (2)
C21—C221.456 (3)C21'—C22'1.453 (3)
C21—H210.9300C21'—H21'0.9300
C22—C271.389 (3)C22'—C27'1.382 (3)
C22—C231.396 (3)C22'—C23'1.390 (3)
C23—C241.376 (3)C23'—C24'1.369 (4)
C23—H230.9300C23'—H23'0.9300
C24—C251.377 (4)C24'—C25'1.365 (4)
C24—H240.9300C24'—H24'0.9300
C25—C261.370 (4)C25'—C26'1.369 (4)
C25—H250.9300C25'—H25'0.9300
C26—C271.379 (3)C26'—C27'1.374 (4)
C26—H260.9300C26'—H26'0.9300
C27—H270.9300C27'—H27'0.9300
C51—C521.379 (3)C51'—C52'1.380 (3)
C51—C561.385 (3)C51'—C56'1.385 (3)
C52—C531.382 (3)C52'—C53'1.381 (3)
C52—H520.9300C52'—H52'0.9300
C53—C541.375 (4)C53'—C54'1.377 (3)
C53—H530.9300C53'—H53'0.9300
C54—C551.366 (4)C54'—C55'1.374 (3)
C54—H540.9300C54'—H54'0.9300
C55—C561.372 (3)C55'—C56'1.376 (3)
C55—H550.9300C55'—H55'0.9300
C56—H560.9300C56'—H56'0.9300
C61—O61.231 (2)C61'—O6'1.236 (2)
C61—N61.329 (3)C61'—N6'1.329 (3)
C62—N61.452 (3)C62'—N6'1.451 (3)
C62—H62A0.9600C62'—H62D0.9600
C62—H62B0.9600C62'—H62E0.9600
C62—H62C0.9600C62'—H62F0.9600
C71—H71A0.9600C71'—H71D0.9600
C71—H71B0.9600C71'—H71E0.9600
C71—H71C0.9600C71'—H71F0.9600
N6—H6N0.82 (2)N6'—H6N'0.80 (2)
C21—C2—C3120.2 (2)C21'—C2'—C3'120.3 (2)
C21—C2—S1129.31 (18)C21'—C2'—S1'129.19 (18)
C3—C2—S1110.45 (15)C3'—C2'—S1'110.47 (15)
O3—C3—N4123.34 (19)O3'—C3'—N4'123.47 (19)
O3—C3—C2126.28 (19)O3'—C3'—C2'126.1 (2)
N4—C3—C2110.35 (18)N4'—C3'—C2'110.39 (18)
N4—C5—C51112.05 (16)N4'—C5'—C51'111.68 (16)
N4—C5—C6108.53 (16)N4'—C5'—C6'108.68 (15)
C51—C5—C6112.12 (16)C51'—C5'—C6'112.88 (16)
N4—C5—H5108.0N4'—C5'—H5'107.8
C51—C5—H5108.0C51'—C5'—H5'107.8
C6—C5—H5108.0C6'—C5'—H5'107.8
C7—C6—C61124.93 (19)C7'—C6'—C61'124.24 (19)
C7—C6—C5122.40 (18)C7'—C6'—C5'122.69 (18)
C61—C6—C5112.55 (17)C61'—C6'—C5'112.61 (17)
C6—C7—N8122.52 (19)C6'—C7'—N8'122.88 (19)
C6—C7—C71126.4 (2)C6'—C7'—C71'126.3 (2)
N8—C7—C71111.04 (18)N8'—C7'—C71'110.82 (18)
N8—C9—N4127.04 (19)N8'—C9'—N4'127.22 (19)
N8—C9—S1121.52 (16)N8'—C9'—S1'121.17 (16)
N4—C9—S1111.42 (14)N4'—C9'—S1'111.57 (15)
C2—C21—C22131.1 (2)C2'—C21'—C22'130.0 (2)
C2—C21—H21114.5C2'—C21'—H21'115.0
C22—C21—H21114.5C22'—C21'—H21'115.0
C27—C22—C23117.7 (2)C27'—C22'—C23'117.4 (2)
C27—C22—C21124.4 (2)C27'—C22'—C21'124.2 (2)
C23—C22—C21117.8 (2)C23'—C22'—C21'118.3 (2)
C24—C23—C22121.1 (3)C24'—C23'—C22'121.4 (3)
C24—C23—H23119.4C24'—C23'—H23'119.3
C22—C23—H23119.4C22'—C23'—H23'119.3
C23—C24—C25119.9 (3)C25'—C24'—C23'120.2 (3)
C23—C24—H24120.0C25'—C24'—H24'119.9
C25—C24—H24120.0C23'—C24'—H24'119.9
C26—C25—C24120.0 (3)C24'—C25'—C26'119.6 (3)
C26—C25—H25120.0C24'—C25'—H25'120.2
C24—C25—H25120.0C26'—C25'—H25'120.2
C25—C26—C27120.3 (3)C25'—C26'—C27'120.5 (3)
C25—C26—H26119.8C25'—C26'—H26'119.7
C27—C26—H26119.8C27'—C26'—H26'119.7
C26—C27—C22120.9 (3)C26'—C27'—C22'120.9 (3)
C26—C27—H27119.5C26'—C27'—H27'119.5
C22—C27—H27119.5C22'—C27'—H27'119.5
C52—C51—C56118.2 (2)C52'—C51'—C56'118.6 (2)
C52—C51—C5121.77 (19)C52'—C51'—C5'121.78 (18)
C56—C51—C5120.01 (19)C56'—C51'—C5'119.61 (19)
C51—C52—C53120.9 (2)C51'—C52'—C53'120.5 (2)
C51—C52—H52119.5C51'—C52'—H52'119.8
C53—C52—H52119.5C53'—C52'—H52'119.8
C54—C53—C52120.1 (2)C54'—C53'—C52'120.5 (2)
C54—C53—H53120.0C54'—C53'—H53'119.8
C52—C53—H53120.0C52'—C53'—H53'119.8
C55—C54—C53119.2 (2)C55'—C54'—C53'119.2 (2)
C55—C54—H54120.4C55'—C54'—H54'120.4
C53—C54—H54120.4C53'—C54'—H54'120.4
C54—C55—C56121.0 (2)C54'—C55'—C56'120.4 (2)
C54—C55—H55119.5C54'—C55'—H55'119.8
C56—C55—H55119.5C56'—C55'—H55'119.8
C55—C56—C51120.6 (2)C55'—C56'—C51'120.7 (2)
C55—C56—H56119.7C55'—C56'—H56'119.6
C51—C56—H56119.7C51'—C56'—H56'119.6
O6—C61—N6122.2 (2)O6'—C61'—N6'122.4 (2)
O6—C61—C6120.39 (19)O6'—C61'—C6'120.04 (19)
N6—C61—C6117.39 (19)N6'—C61'—C6'117.57 (19)
N6—C62—H62A109.5N6'—C62'—H62D109.5
N6—C62—H62B109.5N6'—C62'—H62E109.5
H62A—C62—H62B109.5H62D—C62'—H62E109.5
N6—C62—H62C109.5N6'—C62'—H62F109.5
H62A—C62—H62C109.5H62D—C62'—H62F109.5
H62B—C62—H62C109.5H62E—C62'—H62F109.5
C7—C71—H71A109.5C7'—C71'—H71D109.5
C7—C71—H71B109.5C7'—C71'—H71E109.5
H71A—C71—H71B109.5H71D—C71'—H71E109.5
C7—C71—H71C109.5C7'—C71'—H71F109.5
H71A—C71—H71C109.5H71D—C71'—H71F109.5
H71B—C71—H71C109.5H71E—C71'—H71F109.5
C9—N4—C3116.10 (17)C9'—N4'—C3'115.92 (17)
C9—N4—C5121.47 (16)C9'—N4'—C5'122.16 (16)
C3—N4—C5122.31 (16)C3'—N4'—C5'121.79 (16)
C61—N6—C62122.3 (2)C61'—N6'—C62'122.8 (2)
C61—N6—H6N118.6 (17)C61'—N6'—H6N'119.2 (18)
C62—N6—H6N118.8 (17)C62'—N6'—H6N'117.9 (18)
C9—N8—C7116.20 (18)C9'—N8'—C7'116.29 (18)
C2—S1—C991.55 (10)C2'—S1'—C9'91.54 (10)
C21—C2—C3—O30.2 (4)C21'—C2'—C3'—O3'5.6 (4)
S1—C2—C3—O3178.6 (2)S1'—C2'—C3'—O3'175.8 (2)
C21—C2—C3—N4178.7 (2)C21'—C2'—C3'—N4'175.2 (2)
S1—C2—C3—N40.1 (2)S1'—C2'—C3'—N4'3.4 (2)
N4—C5—C6—C77.8 (3)N4'—C5'—C6'—C7'1.4 (3)
C51—C5—C6—C7116.5 (2)C51'—C5'—C6'—C7'125.9 (2)
N4—C5—C6—C61168.50 (16)N4'—C5'—C6'—C61'173.92 (16)
C51—C5—C6—C6167.2 (2)C51'—C5'—C6'—C61'61.6 (2)
C61—C6—C7—N8179.61 (19)C61'—C6'—C7'—N8'174.92 (19)
C5—C6—C7—N83.8 (3)C5'—C6'—C7'—N8'3.3 (3)
C61—C6—C7—C712.6 (4)C61'—C6'—C7'—C71'2.4 (3)
C5—C6—C7—C71173.2 (2)C5'—C6'—C7'—C71'174.0 (2)
C3—C2—C21—C22173.8 (2)C3'—C2'—C21'—C22'177.5 (2)
S1—C2—C21—C224.8 (4)S1'—C2'—C21'—C22'4.2 (4)
C2—C21—C22—C274.3 (4)C2'—C21'—C22'—C27'20.2 (4)
C2—C21—C22—C23179.4 (2)C2'—C21'—C22'—C23'161.8 (3)
C27—C22—C23—C241.1 (4)C27'—C22'—C23'—C24'1.9 (4)
C21—C22—C23—C24175.5 (2)C21'—C22'—C23'—C24'180.0 (3)
C22—C23—C24—C250.1 (5)C22'—C23'—C24'—C25'0.6 (5)
C23—C24—C25—C261.1 (5)C23'—C24'—C25'—C26'1.6 (5)
C24—C25—C26—C270.8 (5)C24'—C25'—C26'—C27'2.4 (5)
C25—C26—C27—C220.5 (5)C25'—C26'—C27'—C22'1.1 (5)
C23—C22—C27—C261.4 (4)C23'—C22'—C27'—C26'1.1 (4)
C21—C22—C27—C26175.0 (3)C21'—C22'—C27'—C26'179.1 (3)
N4—C5—C51—C5243.4 (3)N4'—C5'—C51'—C52'45.4 (3)
C6—C5—C51—C5279.0 (2)C6'—C5'—C51'—C52'77.4 (2)
N4—C5—C51—C56138.55 (19)N4'—C5'—C51'—C56'133.94 (19)
C6—C5—C51—C5699.1 (2)C6'—C5'—C51'—C56'103.3 (2)
C56—C51—C52—C531.2 (3)C56'—C51'—C52'—C53'0.7 (3)
C5—C51—C52—C53179.3 (2)C5'—C51'—C52'—C53'178.7 (2)
C51—C52—C53—C540.5 (4)C51'—C52'—C53'—C54'0.2 (4)
C52—C53—C54—C550.5 (4)C52'—C53'—C54'—C55'0.5 (4)
C53—C54—C55—C560.7 (4)C53'—C54'—C55'—C56'0.7 (4)
C54—C55—C56—C510.0 (4)C54'—C55'—C56'—C51'0.2 (4)
C52—C51—C56—C550.9 (3)C52'—C51'—C56'—C55'0.5 (3)
C5—C51—C56—C55179.1 (2)C5'—C51'—C56'—C55'178.9 (2)
C7—C6—C61—O6135.6 (2)C7'—C6'—C61'—O6'131.5 (2)
C5—C6—C61—O640.6 (3)C5'—C6'—C61'—O6'40.9 (3)
C7—C6—C61—N645.8 (3)C7'—C6'—C61'—N6'48.8 (3)
C5—C6—C61—N6138.0 (2)C5'—C6'—C61'—N6'138.8 (2)
N8—C9—N4—C3174.7 (2)N8'—C9'—N4'—C3'176.2 (2)
S1—C9—N4—C33.8 (2)S1'—C9'—N4'—C3'1.9 (2)
N8—C9—N4—C59.2 (3)N8'—C9'—N4'—C5'0.3 (3)
S1—C9—N4—C5172.28 (15)S1'—C9'—N4'—C5'177.76 (14)
O3—C3—N4—C9179.0 (2)O3'—C3'—N4'—C9'175.8 (2)
C2—C3—N4—C92.5 (3)C2'—C3'—N4'—C9'3.4 (3)
O3—C3—N4—C55.0 (3)O3'—C3'—N4'—C5'0.1 (3)
C2—C3—N4—C5173.52 (18)C2'—C3'—N4'—C5'179.29 (17)
C51—C5—N4—C9110.5 (2)C51'—C5'—N4'—C9'125.09 (19)
C6—C5—N4—C913.9 (3)C6'—C5'—N4'—C9'0.1 (3)
C51—C5—N4—C365.4 (2)C51'—C5'—N4'—C3'59.3 (2)
C6—C5—N4—C3170.27 (18)C6'—C5'—N4'—C3'175.55 (17)
O6—C61—N6—C624.5 (4)O6'—C61'—N6'—C62'5.0 (4)
C6—C61—N6—C62177.0 (2)C6'—C61'—N6'—C62'175.3 (2)
N4—C9—N8—C73.8 (3)N4'—C9'—N8'—C7'2.0 (3)
S1—C9—N8—C7174.60 (15)S1'—C9'—N8'—C7'175.93 (15)
C6—C7—N8—C910.2 (3)C6'—C7'—N8'—C9'3.5 (3)
C71—C7—N8—C9167.2 (2)C71'—C7'—N8'—C9'174.2 (2)
C21—C2—S1—C9179.7 (2)C21'—C2'—S1'—C9'176.4 (2)
C3—C2—S1—C91.62 (17)C3'—C2'—S1'—C9'2.03 (16)
N8—C9—S1—C2175.6 (2)N8'—C9'—S1'—C2'178.40 (19)
N4—C9—S1—C23.03 (16)N4'—C9'—S1'—C2'0.20 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6N···O60.82 (2)2.17 (2)2.939 (3)157 (2)
N6—H6N···O6i0.80 (2)2.16 (2)2.922 (3)161 (2)
C27—H27···S10.932.553.255 (3)133
C27—H27···S10.932.633.267 (3)126
C52—H52···O30.932.313.193 (3)160
C52—H52···O3i0.932.323.247 (3)173
Symmetry code: (i) x, y1, z.
(Ib) (2Z)-2-benzylidene-N,7-dimethyl-3-oxo-5-phenyl- 5H-1,3-thiazolo[3,2-a]pyrimidine-6(3H)-carboxamide top
Crystal data top
C22H19N3O2SZ = 2
Mr = 389.46F(000) = 408
Triclinic, P1Dx = 1.336 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.1109 (9) ÅCell parameters from 2057 reflections
b = 9.5564 (16) Åθ = 2.2–22.9°
c = 20.503 (3) ŵ = 0.19 mm1
α = 97.594 (3)°T = 293 K
β = 93.371 (3)°Block, pale yellow
γ = 101.755 (3)°0.20 × 0.17 × 0.12 mm
V = 968.0 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2656 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 25.0°, θmin = 1.0°
ω scansh = 66
9402 measured reflectionsk = 1111
3395 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.28 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.3108P]
where P = (Fo2 + 2Fc2)/3
3395 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.43 e Å3
12 restraintsΔρmin = 0.30 e Å3
Crystal data top
C22H19N3O2Sγ = 101.755 (3)°
Mr = 389.46V = 968.0 (3) Å3
Triclinic, P1Z = 2
a = 5.1109 (9) ÅMo Kα radiation
b = 9.5564 (16) ŵ = 0.19 mm1
c = 20.503 (3) ÅT = 293 K
α = 97.594 (3)°0.20 × 0.17 × 0.12 mm
β = 93.371 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2656 reflections with I > 2σ(I)
9402 measured reflectionsRint = 0.037
3395 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06712 restraints
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.28Δρmax = 0.43 e Å3
3395 reflectionsΔρmin = 0.30 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C20.0816 (6)0.0636 (3)0.65255 (14)0.0416 (7)
C30.2258 (6)0.0520 (3)0.70491 (15)0.0477 (8)
C50.1794 (5)0.1670 (3)0.81970 (13)0.0356 (6)
H50.36280.16150.83410.043*
C60.0037 (5)0.1297 (3)0.87490 (13)0.0351 (6)
C70.2074 (6)0.0168 (3)0.86663 (14)0.0414 (7)
C90.1424 (6)0.0487 (3)0.75864 (14)0.0403 (7)
C210.1732 (7)0.0834 (4)0.59297 (16)0.0592 (9)
H100.33370.02020.58890.071*
C220.0708 (6)0.1841 (3)0.53386 (13)0.0491 (8)
C230.1256 (14)0.1494 (7)0.47165 (16)0.0566 (18)*0.50
H230.22110.05740.46780.068*0.50
C240.0400 (16)0.2499 (6)0.4152 (3)0.061 (2)*0.50
H240.08120.22600.37390.073*0.50
C250.1075 (15)0.3865 (7)0.4206 (3)0.069 (3)*0.50
H250.16840.45450.38320.083*0.50
C260.1621 (16)0.4193 (8)0.4831 (3)0.063 (2)*0.50
H260.25670.51140.48700.089*0.50
C270.0805 (13)0.3193 (4)0.5399 (3)0.0581 (18)*0.50
H270.12610.34240.58110.073*0.50
C2310.2343 (11)0.1936 (7)0.4823 (2)0.0552 (17)*0.50
H2310.41300.14510.48990.066*0.50
C2410.1457 (13)0.2714 (8)0.4200 (3)0.067 (2)*0.50
H2410.26170.27920.38710.080*0.50
C2510.1252 (12)0.3370 (10)0.4095 (3)0.068 (2)*0.50
H2510.19770.37660.36680.081*0.50
C2610.2912 (13)0.3454 (8)0.4608 (3)0.069 (2)*0.50
H2610.46490.40120.45420.082*0.50
C2710.1887 (7)0.2674 (6)0.5222 (3)0.0530 (17)*0.50
H2710.29800.27110.55690.064*0.50
C510.1865 (5)0.3190 (3)0.80424 (13)0.0353 (7)
C520.0214 (6)0.3513 (3)0.76696 (16)0.0502 (8)
H520.17100.27890.75100.060*
C530.0092 (7)0.4903 (4)0.75309 (17)0.0590 (9)
H530.14920.51070.72750.071*
C540.2100 (7)0.5985 (4)0.77716 (18)0.0583 (9)
H540.21850.69190.76790.070*
C550.4144 (7)0.5678 (3)0.81458 (17)0.0574 (9)
H550.56230.64080.83100.069*
C560.4039 (6)0.4294 (3)0.82823 (15)0.0471 (8)
H560.54490.41010.85390.056*
C610.1062 (6)0.2214 (3)0.93961 (14)0.0391 (7)
C620.0032 (7)0.3523 (4)1.04242 (15)0.0640 (10)
H62A0.00110.28681.07420.096*
H62B0.12280.41241.05240.096*
H62C0.17990.41181.04410.096*
C710.3765 (7)0.0367 (3)0.91942 (16)0.0589 (10)
H71A0.28680.00530.96210.088*
H71B0.40420.14000.91510.088*
H71C0.54670.00950.91490.088*
N40.0869 (4)0.0570 (2)0.76105 (11)0.0373 (6)
N60.0702 (6)0.2705 (3)0.97661 (12)0.0465 (7)
H6N0.229 (7)0.257 (3)0.9621 (16)0.056 (11)*
N80.2916 (5)0.0708 (3)0.80484 (13)0.0547 (8)
O30.4362 (5)0.1340 (3)0.70081 (12)0.0820 (9)
O60.3496 (4)0.2522 (3)0.95699 (10)0.0556 (6)
S10.20708 (17)0.15809 (9)0.68101 (4)0.0545 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0440 (17)0.0404 (16)0.0367 (16)0.0044 (13)0.0026 (13)0.0004 (13)
C30.0424 (18)0.057 (2)0.0371 (17)0.0027 (15)0.0078 (14)0.0000 (14)
C50.0325 (15)0.0376 (15)0.0341 (15)0.0041 (12)0.0015 (12)0.0015 (12)
C60.0388 (16)0.0373 (15)0.0319 (15)0.0133 (13)0.0047 (12)0.0060 (12)
C70.0530 (18)0.0310 (15)0.0429 (17)0.0103 (14)0.0154 (14)0.0083 (13)
C90.0433 (17)0.0291 (15)0.0463 (18)0.0022 (13)0.0078 (14)0.0045 (13)
C210.055 (2)0.067 (2)0.0439 (19)0.0087 (17)0.0116 (16)0.0042 (16)
C220.062 (2)0.0454 (18)0.0377 (17)0.0070 (15)0.0091 (15)0.0021 (14)
C510.0361 (15)0.0360 (15)0.0312 (15)0.0029 (12)0.0077 (12)0.0011 (12)
C520.0418 (18)0.051 (2)0.054 (2)0.0006 (15)0.0013 (15)0.0128 (16)
C530.058 (2)0.062 (2)0.062 (2)0.0208 (18)0.0021 (18)0.0204 (18)
C540.072 (2)0.0399 (18)0.066 (2)0.0124 (17)0.0197 (19)0.0114 (16)
C550.060 (2)0.0402 (19)0.064 (2)0.0016 (16)0.0020 (18)0.0030 (16)
C560.0457 (18)0.0412 (18)0.0473 (18)0.0022 (14)0.0058 (14)0.0033 (14)
C610.0397 (17)0.0434 (17)0.0363 (16)0.0108 (13)0.0032 (13)0.0102 (13)
C620.068 (2)0.081 (3)0.0393 (19)0.020 (2)0.0031 (17)0.0106 (17)
C710.081 (2)0.0375 (18)0.058 (2)0.0044 (17)0.0317 (19)0.0064 (15)
N40.0355 (13)0.0381 (13)0.0340 (13)0.0011 (10)0.0056 (10)0.0005 (10)
N60.0403 (16)0.0581 (17)0.0388 (15)0.0144 (13)0.0012 (13)0.0057 (12)
N80.0628 (18)0.0389 (15)0.0519 (17)0.0121 (13)0.0249 (14)0.0042 (12)
O30.0598 (16)0.103 (2)0.0514 (15)0.0378 (15)0.0230 (12)0.0246 (14)
O60.0389 (13)0.0830 (17)0.0429 (12)0.0165 (11)0.0011 (10)0.0009 (11)
S10.0598 (6)0.0422 (5)0.0481 (5)0.0116 (4)0.0160 (4)0.0118 (4)
Geometric parameters (Å, º) top
C2—C211.338 (4)C231—C2411.3899 (10)
C2—C31.476 (4)C231—H2310.9300
C2—S11.741 (3)C241—C2511.3901 (11)
C3—O31.209 (4)C241—H2410.9300
C3—N41.388 (4)C251—C2611.3897 (10)
C5—N41.473 (3)C251—H2510.9300
C5—C511.522 (4)C261—C2711.3901 (10)
C5—C61.520 (4)C261—H2610.9300
C5—H50.9800C271—H2710.9300
C6—C71.346 (4)C51—C521.381 (4)
C6—C611.492 (4)C51—C561.383 (4)
C7—N81.414 (4)C52—C531.385 (4)
C7—C711.502 (4)C52—H520.9300
C9—N81.263 (3)C53—C541.377 (5)
C9—N41.376 (3)C53—H530.9300
C9—S11.759 (3)C54—C551.362 (5)
C21—C221.442 (4)C54—H540.9300
C21—H100.9300C55—C561.378 (4)
C22—C271.3894 (11)C55—H550.9300
C22—C2711.3899 (11)C56—H560.9300
C22—C231.3899 (11)C61—O61.238 (3)
C22—C2311.3906 (10)C61—N61.329 (4)
C23—C241.3898 (10)C62—N61.454 (4)
C23—H230.9300C62—H62A0.9600
C24—C251.3899 (11)C62—H62B0.9600
C24—H240.9300C62—H62C0.9600
C25—C261.3896 (11)C71—H71A0.9600
C25—H250.9300C71—H71B0.9600
C26—C271.3899 (10)C71—H71C0.9600
C26—H260.9300N6—H6N0.83 (3)
C27—H270.9300
C21—C2—C3121.2 (3)C251—C241—H241121.7
C21—C2—S1128.7 (2)C261—C251—C241122.1 (7)
C3—C2—S1110.0 (2)C261—C251—H251119.0
O3—C3—N4123.0 (3)C241—C251—H251119.0
O3—C3—C2125.9 (3)C251—C261—C271117.7 (6)
N4—C3—C2111.1 (2)C251—C261—H261121.1
N4—C5—C51111.8 (2)C271—C261—H261121.1
N4—C5—C6108.8 (2)C22—C271—C261122.6 (5)
C51—C5—C6112.7 (2)C22—C271—H271118.7
N4—C5—H5107.8C261—C271—H271118.7
C51—C5—H5107.8C52—C51—C56118.3 (3)
C6—C5—H5107.8C52—C51—C5121.7 (2)
C7—C6—C61124.2 (3)C56—C51—C5119.9 (3)
C7—C6—C5122.6 (2)C51—C52—C53120.6 (3)
C61—C6—C5112.9 (2)C51—C52—H52119.7
C6—C7—N8122.4 (3)C53—C52—H52119.7
C6—C7—C71126.4 (3)C54—C53—C52120.1 (3)
N8—C7—C71111.2 (3)C54—C53—H53120.0
N8—C9—N4126.8 (3)C52—C53—H53120.0
N8—C9—S1122.0 (2)C55—C54—C53119.6 (3)
N4—C9—S1111.2 (2)C55—C54—H54120.2
C2—C21—C22132.4 (3)C53—C54—H54120.2
C2—C21—H10113.8C54—C55—C56120.6 (3)
C22—C21—H10113.8C54—C55—H55119.7
C27—C22—C23119.9 (4)C56—C55—H55119.7
C271—C22—C23102.4 (4)C55—C56—C51120.8 (3)
C27—C22—C231110.9 (4)C55—C56—H56119.6
C271—C22—C231116.3 (4)C51—C56—H56119.6
C27—C22—C21118.8 (3)O6—C61—N6121.8 (3)
C271—C22—C21124.8 (3)O6—C61—C6120.2 (3)
C23—C22—C21121.3 (3)N6—C61—C6118.1 (3)
C231—C22—C21118.7 (3)N6—C62—H62A109.5
C24—C23—C22121.0 (5)N6—C62—H62B109.5
C24—C23—H23119.5H62A—C62—H62B109.5
C22—C23—H23119.5N6—C62—H62C109.5
C23—C24—C25119.7 (6)H62A—C62—H62C109.5
C23—C24—H24120.1H62B—C62—H62C109.5
C25—C24—H24120.1C7—C71—H71A109.5
C26—C25—C24118.6 (7)C7—C71—H71B109.5
C26—C25—H25120.7H71A—C71—H71B109.5
C24—C25—H25120.7C7—C71—H71C109.5
C25—C26—C27122.3 (7)H71A—C71—H71C109.5
C25—C26—H26118.8H71B—C71—H71C109.5
C27—C26—H26118.8C9—N4—C3115.5 (2)
C22—C27—C26118.4 (5)C9—N4—C5122.0 (2)
C22—C27—H27120.8C3—N4—C5122.5 (2)
C26—C27—H27120.8C61—N6—C62123.0 (3)
C241—C231—C22123.7 (5)C61—N6—H6N120 (2)
C241—C231—H231118.2C62—N6—H6N117 (2)
C22—C231—H231118.2C9—N8—C7116.9 (3)
C231—C241—C251116.6 (7)C2—S1—C992.02 (13)
C231—C241—H241121.7
C21—C2—C3—O32.7 (6)C21—C22—C271—C261169.5 (6)
S1—C2—C3—O3178.2 (3)C251—C261—C271—C220.7 (11)
C21—C2—C3—N4176.8 (3)N4—C5—C51—C5244.6 (3)
S1—C2—C3—N42.3 (3)C6—C5—C51—C5278.4 (3)
N4—C5—C6—C73.1 (4)N4—C5—C51—C56136.0 (3)
C51—C5—C6—C7121.6 (3)C6—C5—C51—C56101.0 (3)
N4—C5—C6—C61171.2 (2)C56—C51—C52—C531.1 (5)
C51—C5—C6—C6164.2 (3)C5—C51—C52—C53179.5 (3)
C61—C6—C7—N8177.5 (3)C51—C52—C53—C540.8 (5)
C5—C6—C7—N83.9 (4)C52—C53—C54—C550.1 (5)
C61—C6—C7—C710.4 (5)C53—C54—C55—C560.3 (5)
C5—C6—C7—C71174.0 (3)C54—C55—C56—C510.1 (5)
C3—C2—C21—C22178.5 (3)C52—C51—C56—C550.8 (4)
S1—C2—C21—C220.4 (6)C5—C51—C56—C55179.8 (3)
C2—C21—C22—C2729.9 (7)C7—C6—C61—O6133.4 (3)
C2—C21—C22—C27114.6 (7)C5—C6—C61—O640.8 (4)
C2—C21—C22—C23151.5 (5)C7—C6—C61—N648.0 (4)
C2—C21—C22—C231169.8 (5)C5—C6—C61—N6137.8 (3)
C27—C22—C23—C242.5 (10)N8—C9—N4—C3175.6 (3)
C271—C22—C23—C2439.0 (8)S1—C9—N4—C33.3 (3)
C231—C22—C23—C2480.4 (9)N8—C9—N4—C53.8 (5)
C21—C22—C23—C24176.1 (6)S1—C9—N4—C5177.3 (2)
C22—C23—C24—C251.3 (12)O3—C3—N4—C9176.9 (3)
C23—C24—C25—C260.9 (13)C2—C3—N4—C93.6 (4)
C24—C25—C26—C271.7 (13)O3—C3—N4—C52.5 (5)
C271—C22—C27—C2673.8 (8)C2—C3—N4—C5177.0 (2)
C23—C22—C27—C263.1 (9)C51—C5—N4—C9118.3 (3)
C231—C22—C27—C2632.7 (8)C6—C5—N4—C96.8 (4)
C21—C22—C27—C26175.5 (6)C51—C5—N4—C362.3 (3)
C25—C26—C27—C222.8 (12)C6—C5—N4—C3172.6 (3)
C27—C22—C231—C24146.3 (9)O6—C61—N6—C625.8 (5)
C271—C22—C231—C2415.1 (10)C6—C61—N6—C62175.6 (3)
C23—C22—C231—C24166.7 (8)N4—C9—N8—C73.7 (5)
C21—C22—C231—C241170.9 (6)S1—C9—N8—C7175.0 (2)
C22—C231—C241—C2512.8 (12)C6—C7—N8—C97.6 (5)
C231—C241—C251—C26110.3 (14)C71—C7—N8—C9170.6 (3)
C241—C251—C261—C2719.3 (13)C21—C2—S1—C9178.6 (3)
C27—C22—C271—C26196.9 (9)C3—C2—S1—C90.5 (2)
C23—C22—C271—C26126.2 (8)N8—C9—S1—C2177.4 (3)
C231—C22—C271—C2616.2 (9)N4—C9—S1—C21.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6N···O6i0.83 (3)2.14 (3)2.935 (3)161 (3)
C27—H27···S10.932.633.257 (6)125
C52—H52···O3i0.932.293.210 (4)169
Symmetry code: (i) x1, y, z.

Experimental details

(Ia)(Ib)
Crystal data
Chemical formulaC22H19N3O2SC22H19N3O2S
Mr389.46389.46
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)293293
a, b, c (Å)9.5353 (6), 10.2071 (6), 20.7901 (12)5.1109 (9), 9.5564 (16), 20.503 (3)
α, β, γ (°)79.198 (1), 79.645 (1), 78.257 (1)97.594 (3), 93.371 (3), 101.755 (3)
V3)1924.8 (2)968.0 (3)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.190.19
Crystal size (mm)0.20 × 0.11 × 0.080.20 × 0.17 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14058, 6733, 5389 9402, 3395, 2656
Rint0.0210.037
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.141, 1.06 0.067, 0.161, 1.28
No. of reflections67333395
No. of parameters517254
No. of restraints012
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.150.43, 0.30

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1990), SHELXL97.

Selected geometric parameters (Å, º) for (Ia) top
C2—S11.748 (2)C2'—S1'1.746 (2)
C9—S11.755 (2)C9'—S1'1.755 (2)
C24—C251.377 (4)C24'—C25'1.365 (4)
C2—C21—C22131.1 (2)C2'—C21'—C22'130.0 (2)
C2—C21—C22—C274.3 (4)C2'—C21'—C22'—C27'20.2 (4)
C2—C21—C22—C23179.4 (2)C2'—C21'—C22'—C23'161.8 (3)
C6—C5—C51—C5279.0 (2)C6'—C5'—C51'—C52'77.4 (2)
C7—C6—C61—O6135.6 (2)C7'—C6'—C61'—O6'131.5 (2)
C6—C61—N6—C62177.0 (2)C6'—C61'—N6'—C62'175.3 (2)
Hydrogen-bond geometry (Å, º) for (Ia) top
D—H···AD—HH···AD···AD—H···A
N6—H6N···O6'0.82 (2)2.17 (2)2.939 (3)157 (2)
N6'—H6N'···O6i0.80 (2)2.16 (2)2.922 (3)161 (2)
C27—H27···S10.932.553.255 (3)133
C27'—H27'···S1'0.932.633.267 (3)126
C52—H52···O3'0.932.313.193 (3)160
C52'—H52'···O3i0.932.323.247 (3)173
Symmetry code: (i) x, y1, z.
Selected geometric parameters (Å, º) for (Ib) top
C2—S11.741 (3)C24—C251.3899 (11)
C9—S11.759 (3)
C2—C21—C22132.4 (3)
C2—C21—C22—C2729.9 (7)C6—C5—C51—C5278.4 (3)
C2—C21—C22—C27114.6 (7)C7—C6—C61—O6133.4 (3)
C2—C21—C22—C23151.5 (5)C6—C61—N6—C62175.6 (3)
C2—C21—C22—C231169.8 (5)
Hydrogen-bond geometry (Å, º) for (Ib) top
D—H···AD—HH···AD···AD—H···A
N6—H6N···O6i0.83 (3)2.14 (3)2.935 (3)161 (3)
C27—H27···S10.932.633.257 (6)125
C52—H52···O3i0.932.293.210 (4)169
Symmetry code: (i) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds