Download citation
Download citation
link to html
The title complex, {[Cu2(C8H4O4)2(C3H4N2)4(H2O)]·H2O}n, is a three-dimensional polymer formed through bridging by phthalate dianions of two different CuII cations and a network of O(N)—H...O hydrogen bonds. The Cu—O and Cu—N inter­action distances are in the ranges 2.0020 (16)–2.4835 (17) and 1.968 (2)–1.9855 (19) Å, respectively. The structure is composed of alternating polymer chains parallel to the c axis, with a shortest Cu...Cu distance of 6.3000 (5) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106019068/ga3009sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106019068/ga3009Isup2.hkl
Contains datablock I

CCDC reference: 618602

Comment top

There has been considerable interest in the design and synthesis of transition metal complexes with carboxylate ligands in coordination chemistry, owing to the fact that this type complex has potential applications in molecular-based magnets, catalysis, supramolecular chemistry and biological systems (Li et al., 2002; Shi et al., 2000; Devereux et al., 2000). It is known that the phthalate dianion is a versatile ligand able to chelate to, as well as bridge, metal ions. The variety of its coordination modes provides the possibility of preparing new metal phthalates with diverse topological structures and interesting physical properties (Biagini Cingi et al., 1979; Squire et al., 1995; Whitcomb & Rogers, 1997).

Several structures of CuII complexes with the phthalate ligand (pht) have been reported, viz. [Cu(pht)(4-MeIm)2(H2O)]n (4-MeIm is 4-methylimidazole; Baca, Filippova et al., 2004 or Baca, Malinovskii et al., 2004), [Cu(pht)(phen)2(H2O)]n.nH2O (phen is 1,10-phenanthroline; Ye et al., 2005), [CuNa2(pht)2(H2O)2]n (Liu et al., 2003), [Cu(pht)(1-MeIm)2]n (Baca, Filippova et al., 2004 or Baca, Malinovskii et al., 2004) and [Cu(pht)2(pic)4(H2O)] (pic is 4-methylpyridine; Gerbeleu et al., 1999). In these structures, the CuII ions are all found to have the same stereochemistry. In only one structure, to the best of our knowledge, have different CuII coordination sites been found, namely [(Cudien)2(Cudien·H2O)TCB(ClO4)2·H2O]n (TCB is tetracarboxylatobenzene; dien is 3-azapentane-1,5-diamine; Zou et al., 1998). We report here another novel three-dimensional copper phthalate, {[Cu2(pht)2(Im)4(H2O)]·H2O}n, (I), in which two different copper(II) environments are observed.

The molecular structure of (I) (Fig 1 and Table 1) can be described as a three-dimensional network of CuII ions, which are linked by phthalate dianions into columns, lying approximately parallel to the c axis, cross-linked by an extensive network of hydrogen bonds including water molecules of crystallization (Fig 2 and Table 2).

The Cu1II ion adopts a distorted square-pyramidal N2O3 environment, with the basal plane defined by atoms O1 and O3 from two phthalate ligands, and atoms N1 and N3 from two imidazole ligands, and with a long Cu—O8(carboxylate)i apical interaction (Table 1). The Cu2II ion is also coordinated in a square-pyramidal geometry, in this case by two imidazole ligands (N5 and N7), a phthalate ligand (O7) and a water molecule (O9) in the basal plane, with the apical position occupied by carboxylate atom O5. The equatorial Cu—N, Cu—O(pht) and Cu—O(water) distances are in agreement with the corresponding distances observed in [Cu(pht)(4-MeIm)2(H2O)]n (Baca, Filippova et al., 2004 or Baca, Malinovskii et al., 2004) and [Cu(pht)2(pic)4(H2O)] (Gerbeleu et al., 1999). The axial Cu2—O5 distance is longer than that in the related complex [Cu(pht)2(pic)4(H2O)] [2.240 (4) Å; Gerbeleu et al., 1999] but shorter than that in [Cu(pht)(4-MeIm)2(H2O)]n [2.353 (2) Å; Baca, Filippova et al., 2004 or Baca, Malinovskii et al., 2004]. The C—O bond distances of the carboxylate groups are normal, with coordinated C—O bond distances slightly longer [0.004 (3)–0.050 (3) Å] than the uncoordinated C—O bond distances.

Each phthalate dianion acts as a bidentate ligand, bridging two different CuII ions through O atoms from both carboxylate groups (1,6-bridging mode). Based on this coordination mode of phthalate including the weak interaction between the atoms Cu1 and O8, an infinite polymeric network is formed parallel to the c axis (Fig. 2), with a shortest inter-column Cu—Cu distance of 6.3005 (5) Å. All available H atoms are involved in the hydrogen-bond interactions (Table 2). The coordinated and solvent water molecules (atoms O9 and O10), and uncoordinated imidazole N atoms (atoms N2, N4, N6 and N8) are linked through hydrogen bonds to uncoordinated carboxylate O atoms (atoms O2, O4 and O6). Thus the alternating infinite chains are linked to each other through these hydrogen-bond interactions to form a stable three-dimensional coordination polymer.

Experimental top

Basic copper(II) carbonate (0.220 g, 1 mmol) was added to a solution of ophthalic acid (0.167 g, 1 mmol) and imidazole (0.14 g, 2 mmol) in water (15 ml). The resulting mixture was stirred and heated at 328 K for 30 min. Then, the resulting solution was cooled to room temperature and filtered. Blue single crystals were obtained from the filtrate after two weeks.

Refinement top

All the water and N-bound H atoms were located in difference Fourier maps and their positional parameters were refined with O—H and N—H distances restrained to 0.82 (2) and 0.86 (2) Å, respectively. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H bond lengths of 0.93 Å and Uiso(H) values of 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The asymmetric unit plus additional atoms showing the polymeric links of (I), with displacement ellipsoids at the 30% probability level. Dashed lines represent hydrogen bonds. [Symmetry codes: (a) x − 1, y, z; (b) x + 1, y, z; (c) x − 1, −y + 3/2, z − 1/2; (d) x + 1, −y + 3/2, z + 1/2; (e) −x + 1, −y + 1, −z + 1.]
[Figure 2] Fig. 2. A packing diagram of (I), with hydrogen bonds shown as dashed lines; H atoms not involved in hydrogen bonding have been omitted (see Table 2).
Poly[[aquatetraimidazoledi-µ2-phthalato-dicopper(II)] monohydrate] top
Crystal data top
[Cu2(C8H4O4)2(C3H4N2)4(H2O)]·H2OF(000) = 1560
Mr = 763.66Dx = 1.649 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 9238 reflections
a = 8.8863 (4) Åθ = 2.2–26.6°
b = 22.3787 (10) ŵ = 1.45 mm1
c = 16.1281 (7) ÅT = 292 K
β = 106.470 (1)°Irregular, blue
V = 3075.7 (2) Å30.30 × 0.20 × 0.08 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
7066 independent reflections
Radiation source: fine-focus sealed tube5531 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
ϕ and ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.670, Tmax = 0.893k = 2829
35554 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0519P)2]
where P = (Fo2 + 2Fc2)/3
7066 reflections(Δ/σ)max = 0.002
457 parametersΔρmax = 0.50 e Å3
10 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Cu2(C8H4O4)2(C3H4N2)4(H2O)]·H2OV = 3075.7 (2) Å3
Mr = 763.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8863 (4) ŵ = 1.45 mm1
b = 22.3787 (10) ÅT = 292 K
c = 16.1281 (7) Å0.30 × 0.20 × 0.08 mm
β = 106.470 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7066 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5531 reflections with I > 2σ(I)
Tmin = 0.670, Tmax = 0.893Rint = 0.090
35554 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04110 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.50 e Å3
7066 reflectionsΔρmin = 0.43 e Å3
457 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.38368 (3)0.702231 (12)0.878265 (18)0.02598 (9)
N10.5591 (2)0.65009 (9)0.86917 (12)0.0274 (4)
N30.2021 (2)0.75450 (9)0.87043 (13)0.0317 (5)
O10.49842 (19)0.77613 (7)0.84819 (10)0.0281 (4)
O30.2610 (2)0.63140 (7)0.89838 (10)0.0322 (4)
Cu20.70144 (3)0.671128 (13)0.577869 (18)0.02993 (9)
N50.5240 (2)0.62074 (9)0.58464 (14)0.0341 (5)
N70.8775 (2)0.71926 (9)0.56451 (12)0.0306 (5)
O50.13405 (19)0.60632 (7)0.67299 (10)0.0327 (4)
O70.65465 (19)0.73412 (7)0.65622 (10)0.0287 (4)
O90.6681 (2)0.63837 (8)0.45539 (11)0.0352 (4)
H9A0.739 (3)0.6222 (12)0.4422 (18)0.053*
H9B0.635 (3)0.6648 (10)0.4201 (16)0.053*
C10.6547 (3)0.66159 (11)0.82204 (15)0.0320 (5)
H10.66180.69840.79670.038*
C20.6965 (3)0.56865 (12)0.85990 (18)0.0446 (7)
H20.73560.52990.86620.054*
C30.5854 (3)0.59150 (11)0.89289 (17)0.0380 (6)
H30.53430.57050.92670.046*
C40.2016 (3)0.80465 (12)0.91175 (18)0.0390 (6)
H40.28740.81980.95390.047*
C50.0332 (3)0.79600 (14)0.82388 (19)0.0488 (7)
H50.13750.80330.79390.059*
C60.0537 (3)0.74857 (13)0.81509 (17)0.0420 (7)
H60.01890.71670.77750.050*
C70.4273 (3)0.62872 (12)0.63158 (16)0.0330 (6)
H70.43030.66150.66750.040*
C80.3541 (5)0.54609 (15)0.5640 (3)0.0825 (14)
H80.30080.51080.54400.099*
C90.4752 (4)0.56878 (14)0.5413 (3)0.0760 (13)
H90.52020.55160.50160.091*
C101.0270 (3)0.71387 (12)0.60444 (16)0.0347 (6)
H101.06980.68430.64470.042*
C111.0095 (3)0.79167 (12)0.52102 (18)0.0440 (7)
H111.03470.82480.49270.053*
C120.8653 (3)0.76869 (13)0.51215 (18)0.0441 (7)
H120.77220.78390.47620.053*
C130.4505 (3)0.78165 (10)0.76600 (14)0.0246 (5)
C140.5001 (3)0.83598 (10)0.72686 (14)0.0273 (5)
C150.4891 (3)0.89181 (11)0.76187 (16)0.0371 (6)
H150.45550.89480.81130.045*
C160.5270 (4)0.94293 (12)0.7248 (2)0.0525 (8)
H160.51920.98020.74880.063*
C170.5762 (5)0.93809 (14)0.6521 (2)0.0659 (10)
H170.60380.97230.62710.079*
C180.5852 (4)0.88334 (13)0.6156 (2)0.0527 (8)
H180.61740.88110.56570.063*
C190.0015 (3)0.52635 (10)0.75601 (14)0.0247 (5)
C200.1022 (3)0.54924 (10)0.83137 (14)0.0257 (5)
C210.1268 (3)0.51692 (11)0.90732 (16)0.0356 (6)
H210.19230.53250.95830.043*
C220.0565 (3)0.46243 (12)0.90900 (18)0.0451 (7)
H220.07520.44150.96070.054*
C230.0410 (3)0.43879 (12)0.83460 (18)0.0450 (7)
H230.08670.40150.83540.054*
C240.0712 (3)0.47110 (11)0.75797 (17)0.0373 (6)
H240.13870.45550.70760.045*
C250.1949 (3)0.60498 (10)0.82795 (15)0.0261 (5)
C260.0498 (3)0.56143 (10)0.67332 (14)0.0258 (5)
C270.5476 (3)0.83174 (10)0.65162 (15)0.0304 (5)
C280.5676 (3)0.77355 (11)0.60908 (15)0.0282 (5)
N20.7395 (3)0.61428 (11)0.81527 (14)0.0389 (5)
H2A0.796 (3)0.6112 (14)0.7802 (17)0.058*
N40.0619 (3)0.83122 (11)0.88552 (16)0.0454 (6)
H4A0.037 (4)0.8644 (10)0.901 (2)0.068*
N60.3244 (3)0.58435 (11)0.62159 (16)0.0442 (6)
H6A0.259 (3)0.5815 (14)0.6514 (19)0.066*
N81.1098 (3)0.75650 (11)0.57973 (15)0.0403 (5)
H8A1.206 (2)0.7628 (14)0.6051 (19)0.060*
O20.36521 (19)0.74479 (7)0.71874 (10)0.0309 (4)
O40.2060 (2)0.62187 (8)0.75677 (10)0.0341 (4)
O60.0101 (2)0.54151 (8)0.60978 (11)0.0399 (4)
O80.5061 (2)0.76725 (8)0.53056 (11)0.0417 (4)
O100.0749 (2)0.42958 (8)0.55832 (12)0.0381 (4)
H10A0.051 (4)0.4349 (13)0.5062 (11)0.057*
H10B0.057 (4)0.4611 (10)0.5795 (16)0.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02530 (16)0.02619 (16)0.02868 (16)0.00059 (11)0.01127 (12)0.00183 (12)
N10.0276 (11)0.0290 (11)0.0252 (10)0.0011 (8)0.0068 (8)0.0038 (8)
N30.0294 (11)0.0358 (12)0.0322 (11)0.0026 (9)0.0127 (9)0.0021 (9)
O10.0313 (9)0.0300 (9)0.0233 (8)0.0017 (7)0.0080 (7)0.0001 (7)
O30.0346 (9)0.0346 (9)0.0281 (9)0.0074 (7)0.0099 (7)0.0036 (7)
Cu20.02772 (17)0.03472 (18)0.03089 (17)0.00407 (12)0.01406 (13)0.00314 (12)
N50.0321 (12)0.0334 (11)0.0411 (12)0.0036 (9)0.0176 (10)0.0058 (9)
N70.0247 (11)0.0410 (12)0.0268 (11)0.0000 (9)0.0082 (8)0.0040 (9)
O50.0293 (9)0.0384 (10)0.0323 (9)0.0103 (7)0.0119 (7)0.0088 (7)
O70.0304 (9)0.0314 (9)0.0248 (8)0.0002 (7)0.0087 (7)0.0003 (7)
O90.0357 (10)0.0450 (11)0.0249 (9)0.0073 (8)0.0088 (8)0.0015 (8)
C10.0307 (13)0.0370 (14)0.0291 (13)0.0049 (11)0.0098 (11)0.0018 (10)
C20.0473 (17)0.0349 (15)0.0525 (17)0.0114 (13)0.0158 (14)0.0015 (13)
C30.0426 (16)0.0330 (14)0.0404 (15)0.0021 (12)0.0149 (12)0.0031 (11)
C40.0362 (15)0.0374 (15)0.0447 (16)0.0007 (12)0.0136 (12)0.0082 (12)
C50.0338 (16)0.0584 (19)0.0496 (18)0.0112 (14)0.0043 (13)0.0006 (15)
C60.0357 (15)0.0516 (17)0.0375 (15)0.0008 (13)0.0087 (12)0.0113 (13)
C70.0321 (14)0.0396 (14)0.0292 (13)0.0017 (11)0.0117 (11)0.0047 (11)
C80.094 (3)0.049 (2)0.137 (4)0.039 (2)0.086 (3)0.045 (2)
C90.089 (3)0.0497 (19)0.121 (3)0.0297 (19)0.082 (3)0.045 (2)
C100.0318 (14)0.0433 (15)0.0283 (13)0.0024 (11)0.0075 (11)0.0037 (11)
C110.0482 (17)0.0401 (16)0.0460 (17)0.0044 (13)0.0168 (14)0.0115 (13)
C120.0306 (14)0.0556 (18)0.0435 (16)0.0032 (13)0.0062 (12)0.0202 (13)
C130.0226 (12)0.0278 (12)0.0251 (12)0.0027 (9)0.0097 (10)0.0006 (9)
C140.0253 (12)0.0290 (12)0.0255 (12)0.0005 (9)0.0039 (10)0.0024 (9)
C150.0452 (16)0.0316 (13)0.0322 (14)0.0065 (11)0.0070 (12)0.0016 (11)
C160.073 (2)0.0280 (14)0.0556 (19)0.0015 (14)0.0171 (17)0.0027 (13)
C170.098 (3)0.0327 (17)0.079 (2)0.0069 (17)0.045 (2)0.0131 (16)
C180.075 (2)0.0416 (17)0.0533 (19)0.0036 (15)0.0370 (17)0.0088 (14)
C190.0255 (12)0.0237 (11)0.0275 (12)0.0027 (9)0.0119 (10)0.0005 (9)
C200.0250 (12)0.0270 (12)0.0266 (12)0.0028 (9)0.0097 (10)0.0023 (9)
C210.0354 (14)0.0396 (15)0.0307 (13)0.0005 (11)0.0076 (11)0.0063 (11)
C220.0548 (18)0.0407 (16)0.0422 (16)0.0015 (13)0.0175 (14)0.0189 (13)
C230.0558 (18)0.0298 (14)0.0514 (17)0.0084 (13)0.0183 (15)0.0085 (12)
C240.0420 (15)0.0316 (14)0.0375 (14)0.0050 (11)0.0101 (12)0.0008 (11)
C250.0224 (12)0.0285 (12)0.0281 (12)0.0029 (9)0.0086 (10)0.0010 (10)
C260.0240 (12)0.0276 (12)0.0263 (12)0.0045 (9)0.0077 (10)0.0004 (9)
C270.0332 (13)0.0304 (13)0.0276 (12)0.0006 (10)0.0083 (10)0.0025 (10)
C280.0262 (12)0.0340 (13)0.0270 (13)0.0042 (10)0.0116 (10)0.0020 (10)
N20.0371 (13)0.0471 (14)0.0364 (13)0.0099 (10)0.0168 (10)0.0003 (10)
N40.0484 (15)0.0390 (14)0.0527 (15)0.0127 (11)0.0205 (12)0.0034 (11)
N60.0422 (14)0.0420 (13)0.0595 (16)0.0089 (11)0.0323 (12)0.0081 (11)
N80.0243 (11)0.0518 (14)0.0407 (13)0.0067 (10)0.0025 (10)0.0009 (11)
O20.0301 (9)0.0327 (9)0.0297 (9)0.0069 (7)0.0085 (7)0.0047 (7)
O40.0370 (10)0.0399 (10)0.0269 (9)0.0109 (8)0.0112 (8)0.0029 (7)
O60.0553 (12)0.0398 (10)0.0285 (9)0.0047 (9)0.0181 (9)0.0011 (8)
O80.0501 (11)0.0477 (11)0.0244 (9)0.0015 (9)0.0059 (8)0.0003 (8)
O100.0492 (11)0.0300 (10)0.0361 (10)0.0012 (9)0.0136 (9)0.0038 (8)
Geometric parameters (Å, º) top
Cu1—N31.968 (2)C9—H90.9300
Cu1—N11.9855 (19)C10—N81.333 (3)
Cu1—O32.0020 (16)C10—H100.9300
Cu1—O12.0712 (16)C11—C121.350 (4)
Cu1—O8i2.4835 (17)C11—N81.354 (3)
N1—C11.316 (3)C11—H110.9300
N1—C31.367 (3)C12—H120.9300
N3—C41.306 (3)C13—O21.228 (3)
N3—C61.373 (3)C13—C141.493 (3)
O1—C131.278 (3)C14—C151.386 (3)
O3—C251.267 (3)C14—C271.396 (3)
Cu2—N71.961 (2)C15—C161.376 (4)
Cu2—N51.967 (2)C15—H150.9300
Cu2—O72.0137 (16)C16—C171.366 (4)
Cu2—O92.0483 (17)C16—H160.9300
Cu2—O5ii2.3070 (16)C17—C181.371 (4)
N5—C71.308 (3)C17—H170.9300
N5—C91.362 (4)C18—C271.376 (4)
N7—C101.307 (3)C18—H180.9300
N7—C121.377 (3)C19—C241.387 (3)
O5—C261.252 (3)C19—C201.398 (3)
O5—Cu2iii2.3070 (16)C19—C261.502 (3)
O7—C281.273 (3)C20—C211.385 (3)
O9—H9A0.806 (16)C20—C251.504 (3)
O9—H9B0.817 (16)C21—C221.374 (4)
C1—N21.322 (3)C21—H210.9300
C1—H10.9300C22—C231.372 (4)
C2—C31.348 (4)C22—H220.9300
C2—N21.365 (4)C23—C241.391 (3)
C2—H20.9300C23—H230.9300
C3—H30.9300C24—H240.9300
C4—N41.332 (3)C25—O41.239 (3)
C4—H40.9300C26—O61.256 (3)
C5—C61.344 (4)C27—C281.506 (3)
C5—N41.359 (4)C28—O81.237 (3)
C5—H50.9300N2—H2A0.856 (17)
C6—H60.9300N4—H4A0.833 (18)
C7—N61.328 (3)N6—H6A0.854 (18)
C7—H70.9300N8—H8A0.851 (18)
C8—C91.331 (4)O10—H10A0.815 (16)
C8—N61.343 (4)O10—H10B0.817 (17)
C8—H80.9300
N3—Cu1—N1172.39 (8)C12—C11—H11127.2
N3—Cu1—O390.38 (8)N8—C11—H11127.2
N1—Cu1—O391.25 (8)C11—C12—N7109.5 (2)
N3—Cu1—O187.67 (8)C11—C12—H12125.2
N1—Cu1—O190.17 (7)N7—C12—H12125.2
O3—Cu1—O1175.61 (6)O2—C13—O1123.0 (2)
C1—N1—C3105.2 (2)O2—C13—C14119.3 (2)
C1—N1—Cu1125.22 (17)O1—C13—C14117.8 (2)
C3—N1—Cu1128.19 (17)C15—C14—C27119.3 (2)
C4—N3—C6105.8 (2)C15—C14—C13119.9 (2)
C4—N3—Cu1126.84 (19)C27—C14—C13120.7 (2)
C6—N3—Cu1127.09 (17)C16—C15—C14121.2 (3)
C13—O1—Cu1106.19 (14)C16—C15—H15119.4
C25—O3—Cu1111.06 (14)C14—C15—H15119.4
N7—Cu2—N5176.65 (8)C17—C16—C15119.0 (3)
N7—Cu2—O789.86 (8)C17—C16—H16120.5
N5—Cu2—O793.16 (7)C15—C16—H16120.5
N7—Cu2—O989.56 (8)C16—C17—C18120.7 (3)
N5—Cu2—O987.10 (8)C16—C17—H17119.6
O7—Cu2—O9148.94 (7)C18—C17—H17119.6
N7—Cu2—O5ii92.49 (7)C17—C18—C27121.2 (3)
N5—Cu2—O5ii88.26 (8)C17—C18—H18119.4
O7—Cu2—O5ii103.15 (6)C27—C18—H18119.4
O9—Cu2—O5ii107.90 (7)C24—C19—C20119.7 (2)
C7—N5—C9104.3 (2)C24—C19—C26118.0 (2)
C7—N5—Cu2128.47 (18)C20—C19—C26122.2 (2)
C9—N5—Cu2127.18 (18)C21—C20—C19118.5 (2)
C10—N7—C12105.6 (2)C21—C20—C25121.0 (2)
C10—N7—Cu2128.77 (18)C19—C20—C25120.3 (2)
C12—N7—Cu2125.61 (17)C22—C21—C20121.5 (2)
C26—O5—Cu2iii140.59 (15)C22—C21—H21119.3
C28—O7—Cu2108.00 (14)C20—C21—H21119.3
Cu2—O9—H9A120 (2)C23—C22—C21120.2 (2)
Cu2—O9—H9B110 (2)C23—C22—H22119.9
H9A—O9—H9B107 (2)C21—C22—H22119.9
N1—C1—N2111.6 (2)C22—C23—C24119.4 (2)
N1—C1—H1124.2C22—C23—H23120.3
N2—C1—H1124.2C24—C23—H23120.3
C3—C2—N2105.7 (2)C19—C24—C23120.6 (2)
C3—C2—H2127.2C19—C24—H24119.7
N2—C2—H2127.2C23—C24—H24119.7
C2—C3—N1109.9 (2)O4—C25—O3123.3 (2)
C2—C3—H3125.1O4—C25—C20118.4 (2)
N1—C3—H3125.1O3—C25—C20118.2 (2)
N3—C4—N4111.1 (2)O5—C26—O6125.9 (2)
N3—C4—H4124.5O5—C26—C19116.30 (19)
N4—C4—H4124.5O6—C26—C19117.6 (2)
C6—C5—N4106.2 (2)C18—C27—C14118.6 (2)
C6—C5—H5126.9C18—C27—C28117.3 (2)
N4—C5—H5126.9C14—C27—C28124.0 (2)
C5—C6—N3109.3 (2)O8—C28—O7123.3 (2)
C5—C6—H6125.4O8—C28—C27119.3 (2)
N3—C6—H6125.4O7—C28—C27117.2 (2)
N5—C7—N6111.7 (2)C1—N2—C2107.7 (2)
N5—C7—H7124.1C1—N2—H2A125 (2)
N6—C7—H7124.1C2—N2—H2A126 (2)
C9—C8—N6106.2 (3)C4—N4—C5107.7 (2)
C9—C8—H8126.9C4—N4—H4A127 (3)
N6—C8—H8126.9C5—N4—H4A125 (2)
C8—C9—N5110.4 (3)C7—N6—C8107.3 (2)
C8—C9—H9124.8C7—N6—H6A123 (2)
N5—C9—H9124.8C8—N6—H6A130 (2)
N7—C10—N8110.9 (2)C10—N8—C11108.4 (2)
N7—C10—H10124.5C10—N8—H8A123 (2)
N8—C10—H10124.5C11—N8—H8A128 (2)
C12—C11—N8105.6 (2)H10A—O10—H10B106 (2)
O3—Cu1—N1—C1149.9 (2)O1—C13—C14—C1546.7 (3)
O1—Cu1—N1—C126.0 (2)O2—C13—C14—C2742.9 (3)
O3—Cu1—N1—C314.6 (2)O1—C13—C14—C27137.7 (2)
O1—Cu1—N1—C3169.6 (2)C27—C14—C15—C161.3 (4)
O3—Cu1—N3—C4129.9 (2)C13—C14—C15—C16176.9 (2)
O1—Cu1—N3—C454.1 (2)C14—C15—C16—C170.0 (5)
O3—Cu1—N3—C656.3 (2)C15—C16—C17—C181.1 (5)
O1—Cu1—N3—C6119.7 (2)C16—C17—C18—C271.0 (6)
N3—Cu1—O1—C1381.68 (15)C24—C19—C20—C212.9 (3)
N1—Cu1—O1—C1391.02 (14)C26—C19—C20—C21172.7 (2)
N3—Cu1—O3—C2593.33 (16)C24—C19—C20—C25171.9 (2)
N1—Cu1—O3—C2579.24 (16)C26—C19—C20—C2512.4 (3)
O7—Cu2—N5—C74.5 (2)C19—C20—C21—C222.5 (4)
O9—Cu2—N5—C7153.4 (2)C25—C20—C21—C22172.3 (2)
O5ii—Cu2—N5—C798.5 (2)C20—C21—C22—C230.3 (4)
O7—Cu2—N5—C9176.2 (3)C21—C22—C23—C241.5 (4)
O9—Cu2—N5—C927.3 (3)C20—C19—C24—C231.2 (4)
O5ii—Cu2—N5—C980.8 (3)C26—C19—C24—C23174.7 (2)
O7—Cu2—N7—C1098.8 (2)C22—C23—C24—C191.1 (4)
O9—Cu2—N7—C10112.3 (2)Cu1—O3—C25—O40.3 (3)
O5ii—Cu2—N7—C104.4 (2)Cu1—O3—C25—C20177.78 (15)
O7—Cu2—N7—C1277.9 (2)C21—C20—C25—O4158.1 (2)
O9—Cu2—N7—C1271.0 (2)C19—C20—C25—O416.7 (3)
O5ii—Cu2—N7—C12178.9 (2)C21—C20—C25—O320.1 (3)
N7—Cu2—O7—C2885.36 (15)C19—C20—C25—O3165.2 (2)
N5—Cu2—O7—C2893.17 (15)Cu2iii—O5—C26—O612.6 (4)
O9—Cu2—O7—C283.5 (2)Cu2iii—O5—C26—C19163.10 (16)
O5ii—Cu2—O7—C28177.89 (14)C24—C19—C26—O5107.4 (3)
C3—N1—C1—N20.4 (3)C20—C19—C26—O568.3 (3)
Cu1—N1—C1—N2167.82 (16)C24—C19—C26—O668.6 (3)
N2—C2—C3—N10.2 (3)C20—C19—C26—O6115.6 (2)
C1—N1—C3—C20.1 (3)C17—C18—C27—C140.3 (5)
Cu1—N1—C3—C2167.01 (19)C17—C18—C27—C28177.5 (3)
C6—N3—C4—N40.5 (3)C15—C14—C27—C181.4 (4)
Cu1—N3—C4—N4174.41 (18)C13—C14—C27—C18177.0 (2)
N4—C5—C6—N30.4 (3)C15—C14—C27—C28178.4 (2)
C4—N3—C6—C50.6 (3)C13—C14—C27—C286.0 (4)
Cu1—N3—C6—C5174.31 (19)Cu2—O7—C28—O810.1 (3)
C9—N5—C7—N61.5 (3)Cu2—O7—C28—C27166.44 (16)
Cu2—N5—C7—N6177.95 (19)C18—C27—C28—O852.5 (3)
N6—C8—C9—N50.7 (5)C14—C27—C28—O8130.5 (3)
C7—N5—C9—C81.3 (4)C18—C27—C28—O7124.2 (3)
Cu2—N5—C9—C8178.1 (3)C14—C27—C28—O752.8 (3)
C12—N7—C10—N80.7 (3)N1—C1—N2—C20.6 (3)
Cu2—N7—C10—N8177.85 (17)C3—C2—N2—C10.5 (3)
N8—C11—C12—N70.6 (3)N3—C4—N4—C50.2 (3)
C10—N7—C12—C110.8 (3)C6—C5—N4—C40.1 (3)
Cu2—N7—C12—C11178.12 (19)N5—C7—N6—C81.1 (4)
Cu1—O1—C13—O26.4 (3)C9—C8—N6—C70.2 (5)
Cu1—O1—C13—C14172.95 (15)N7—C10—N8—C110.3 (3)
O2—C13—C14—C15132.6 (2)C12—C11—N8—C100.2 (3)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O10iv0.81 (3)2.02 (3)2.804 (3)164 (3)
O9—H9B···O1v0.82 (2)1.94 (2)2.729 (2)162 (3)
N2—H2A···O5ii0.86 (3)2.00 (3)2.832 (3)163 (3)
N4—H4A···O10vi0.83 (3)1.98 (3)2.787 (3)163 (3)
N6—H6A···O40.85 (3)2.09 (2)2.805 (3)140 (3)
N6—H6A···O60.85 (3)2.46 (3)3.078 (3)130 (3)
N8—H8A···O2ii0.85 (2)2.01 (2)2.713 (3)139 (3)
O10—H10A···O6vii0.82 (2)1.88 (2)2.686 (2)171 (3)
O10—H10B···O60.82 (2)2.00 (2)2.809 (3)170 (3)
Symmetry codes: (ii) x+1, y, z; (iv) x+1, y+1, z+1; (v) x, y+3/2, z1/2; (vi) x, y+1/2, z+3/2; (vii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C8H4O4)2(C3H4N2)4(H2O)]·H2O
Mr763.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)292
a, b, c (Å)8.8863 (4), 22.3787 (10), 16.1281 (7)
β (°) 106.470 (1)
V3)3075.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.45
Crystal size (mm)0.30 × 0.20 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.670, 0.893
No. of measured, independent and
observed [I > 2σ(I)] reflections
35554, 7066, 5531
Rint0.090
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.096, 0.95
No. of reflections7066
No. of parameters457
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.43

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—N31.968 (2)Cu2—N71.961 (2)
Cu1—N11.9855 (19)Cu2—N51.967 (2)
Cu1—O32.0020 (16)Cu2—O72.0137 (16)
Cu1—O12.0712 (16)Cu2—O92.0483 (17)
Cu1—O8i2.4835 (17)Cu2—O5ii2.3070 (16)
O1—C131.278 (3)O5—C261.252 (3)
O3—C251.267 (3)O7—C281.273 (3)
N3—Cu1—N1172.39 (8)N5—Cu2—O793.16 (7)
N3—Cu1—O390.38 (8)N5—Cu2—O987.10 (8)
N3—Cu1—O187.67 (8)N7—Cu2—O5ii92.49 (7)
O3—Cu1—O1175.61 (6)N5—Cu2—O5ii88.26 (8)
N7—Cu2—N5176.65 (8)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O10iii0.81 (3)2.02 (3)2.804 (3)164 (3)
O9—H9B···O1iv0.82 (2)1.94 (2)2.729 (2)162 (3)
N2—H2A···O5ii0.86 (3)2.00 (3)2.832 (3)163 (3)
N4—H4A···O10v0.83 (3)1.98 (3)2.787 (3)163 (3)
N6—H6A···O40.85 (3)2.09 (2)2.805 (3)140 (3)
N6—H6A···O60.85 (3)2.46 (3)3.078 (3)130 (3)
N8—H8A···O2ii0.85 (2)2.01 (2)2.713 (3)139 (3)
O10—H10A···O6vi0.815 (18)1.878 (18)2.686 (2)171 (3)
O10—H10B···O60.82 (2)2.00 (2)2.809 (3)170 (3)
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x, y+3/2, z1/2; (v) x, y+1/2, z+3/2; (vi) x, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds