Download citation
Download citation
link to html
In the structure of the title compound, [Fe(H2O)6](C17H13O7S)2·8H2O, 16 hydrogen bonds exist between the centrosymmetric [Fe(H2O)6]2+ cation, the isoflavone-3′-sulfonate anions and the coordinated and solvent water mol­ecules. π–π stacking inter­actions between the isoflavone units, hydrogen bonding and electrostatic inter­actions result in a three-dimensional supramolecular structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105036218/ga1112sup1.cif
Contains datablocks I, GA1112

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105036218/ga1112Isup2.hkl
Contains datablock I

CCDC reference: 294316

Comment top

Dimethoxydaidzein (4',7-dimethoxyisoflavone) is found mainly in Leguminosae plants, such as Wisteria brachybotrys (Konoshima et al., 1988), the root of Glycyrrhiza pallidiflora Maxim (Fukai et al., 1990) and the fruits of Amorpha fruticosa (Petkov et al., 1983). It has been shown to be pharmacologically active as an inhibitor of phosphodiesterase (Petkov et al., 1983) and of the Epstein–Barr virus (Konoshima et al., 1988). Oka et al. (1989) also found that dimethoxydaidzein can be used to inhibit cancer cells. The biological utilization rate of isoflavonid is low and the dose is high because of its poor solubility. Thus, it is necessary to synthesize a water-soluble derivative of dimethoxydaidzein in order to study its possible biological effects. We have synthesized several derivatives of daidzein, namely sodium 7-methoxy-4'-hydroxyisoflavone-3'-sulfonate (Zhang et al., 2002), sodium 4',7-dihydroxyisoflavone-3'-sulfonate (Zhang et al., 2003) and sodium 5,7-dihydroxy-4',6-dimethoxyisoflavone-3'-sulfonate (Zhang et al., 2004), and have studied their crystal structures and biological activities. The results show that isoflavonesulfonates possess better biological activities than their parent compounds. The title compound, (I), is a water-soluble derivative of isoflavone with potential medical applications.

A molecular representation of the structure of (I) is shown in Fig. 1. The FeII atom lies on an inversion centre and is coordinated by six water molecules, which form a slightly distorted octahedron. The Fe—O bond lengths fall in the range 2.043 (3)–2.155 (3) Å, close to those in [Fe(H2O)6](C6H2N3O7)2·2H2O and [Fe(H2O)6](NO3)2·2C6H12N4·4H2O [2.024 (1)–2.164 (2) Å; Honda et al. (2003) and Zhu et al. (2003), respectively].

In the anion, the bond lengths and angles of the isoflavone units are similar to those in the isomorphic compounds [Co(H2O)6]X2·8H2O (Zhang et al., 2002) and [Ni(H2O)6]X2·8H2O (Wang & Zhang, 2005) (X is 4',7-dimethoxyisoflavone-3'-sulfonate). The atoms of the benzopyranone moiety containing rings A (C4–C9) and C (C1–C4/C9/O1) display an almost coplanar configuration, with a mean deviation from the least-squares planes of 0.010 (3) Å. To avoid steric conflict, the two rigid ring systems, namely benzene ring B (C10–C15) and the benzopyranone moiety, are rotated by 58.09 (13)° with respect to each other. The methoxy atoms C17 and O4 bonded to atom C13 are nearly coplanar with the attached ring B, with mean deviations from the least-squares plane of 0.013 (4) and 0.012 (3) Å, respectively. Atom O3 of the other methoxy group bonded to atom C7 is nearly coplanar with its attached A/C rings, with a mean out-of-plane deviation of 0.012 (2) Å, while atom C16 of this methoxyl group is slightly out of the plane [0.094 (4) Å].

One hydrogen-bond chain exists between carbonyl atom O2 and the FeII-coordinated water molecule O8, bridged by O11—H25···O2, O11—H26···O13, O13—H29···O14 and O8—H20···O14 hydrogen bonds (Fig. 1). Water atom O14 and sulfonate atom O6 are bifurcated and trifurcated, respectively, by hydrogen bonds (Table 2).

The isoflavone skeletons are arranged in an anti-parallel fashion, with ππ stacking interactions between rings A in a column along the b axis (Fig. 2.). A normal range for such interactions is 3.3–3.8 Å (Janiak, 2000). In (I), rings A of the isoflavone skeleton form stacks with Cg···Cgi = 3.683 (2) Å and Cg···Cgii = 3.799 (2) Å, where Cg, Cgi and Cgii are the centroids of rings A at (x, y, z), (1 − x, −y, 2 − z) and (1 − x, 1 − y, 2 − z), respectively. The C16—H16A···O5vi hydrogen bond [symmetry code: (vi) Please complete] between isoflavone units builds a supramolecular R22(28) synthon (Etter, 1990). These isoflavone columns are also cross-linked by a C8—H8···O7v hydrogen bond [symmetry code: (v) Please complete].

Thus, in the crystal structure of (I), the hydrophilic regions are dominated by classical hydrogen bonds, while the columns of isoflavone moieties generate hydrophobic areas, with the sulfonate group bridging the two regions. This combination of hydrogen bonds, ππ stacking and electrostatic interactions between the cations and anions leads to the formation of a three-dimensional supramolecular structure.

Experimental top

Sodium 4',7-dimethoxyisoflavone-3'-sulfonate was synthesized according to the method of Wang & Zhang (2005). Sodium 4',7-dimethoxyisoflavone-3'-sulfonate (1.0 g) was dissolved in water (10 ml) and then mixed with a saturated solution (5 ml) of FeSO4·7H2O in Solvent?. Crystals of the title compound were obtained after 1 d. On recrystallization from water, single crystals of (I) suitable for X-ray diffraction analysis were obtained by slow evaporation (m.p. 593 K; decomposes).

Refinement top

Water H atoms were located in a difference Fourier map and their positions were refined, with O—H distances in the range 0.72 (4)–0.97 (4) Å. They were constrained with a common Uiso(H) = 0.080 Å2. [Please check added text] All other H atoms were placed in calculated positions and treated as riding, with C—H distances in the range 0.93–0.96 Å and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Thin dashed lines indicate hydrogen bonds. For clarity, the H atoms of the isoflavone skeletons have been omitted.
[Figure 2] Fig. 2. A partial packing diagram for (I), viewed appoximately along the a axis. Thin dashed lines indicate hydrogen bonds and ππ interactions.
Hexaaquairon(II) bis(4',7-dimethoxyisoflavone-3'-sulfonate) octahydrate top
Crystal data top
[Fe(H2O)6](C17H13O7S)2·8H2OF(000) = 1080
Mr = 1030.74Dx = 1.504 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2854 reflections
a = 18.892 (7) Åθ = 2.4–23.6°
b = 7.336 (3) ŵ = 0.52 mm1
c = 18.357 (7) ÅT = 298 K
β = 116.552 (5)°Needle, colourless
V = 2275.8 (15) Å30.46 × 0.18 × 0.16 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
4000 independent reflections
Radiation source: fine-focus sealed tube2643 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2219
Tmin = 0.797, Tmax = 0.922k = 88
11468 measured reflectionsl = 1621
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.9561P]
where P = (Fo2 + 2Fc2)/3
4000 reflections(Δ/σ)max < 0.001
337 parametersΔρmax = 0.29 e Å3
37 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Fe(H2O)6](C17H13O7S)2·8H2OV = 2275.8 (15) Å3
Mr = 1030.74Z = 2
Monoclinic, P21/cMo Kα radiation
a = 18.892 (7) ŵ = 0.52 mm1
b = 7.336 (3) ÅT = 298 K
c = 18.357 (7) Å0.46 × 0.18 × 0.16 mm
β = 116.552 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4000 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2643 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.922Rint = 0.039
11468 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04237 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.29 e Å3
4000 reflectionsΔρmin = 0.32 e Å3
337 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.55831 (12)0.1756 (3)0.89512 (12)0.0455 (6)
O20.32825 (13)0.2899 (4)0.83678 (13)0.0590 (7)
O30.63099 (14)0.2406 (3)1.17776 (13)0.0585 (7)
O40.20929 (13)0.2127 (3)0.45852 (12)0.0460 (6)
O50.22848 (14)0.6887 (3)0.60148 (13)0.0558 (7)
O60.12787 (13)0.4958 (3)0.50765 (15)0.0575 (7)
O70.22723 (14)0.6130 (3)0.47266 (13)0.0536 (6)
O110.18072 (15)0.1818 (3)0.72658 (15)0.0556 (7)
O120.10666 (18)0.4873 (5)0.30998 (17)0.0711 (9)
S10.20970 (5)0.55516 (11)0.53763 (5)0.0383 (2)
C10.50141 (18)0.1791 (5)0.81726 (18)0.0438 (8)
H10.51680.15090.77700.053*
C20.42489 (17)0.2193 (4)0.79258 (18)0.0357 (7)
C30.39813 (18)0.2578 (4)0.85406 (18)0.0392 (8)
C40.45915 (17)0.2521 (4)0.93798 (17)0.0352 (7)
C50.44210 (19)0.2841 (5)1.00360 (19)0.0490 (9)
H50.39040.30910.99390.059*
C60.5004 (2)0.2792 (5)1.0815 (2)0.0522 (9)
H60.48820.30121.12450.063*
C70.57855 (19)0.2414 (4)1.09754 (19)0.0430 (8)
C80.59740 (18)0.2068 (4)1.03452 (18)0.0409 (8)
H80.64910.18051.04450.049*
C90.53676 (18)0.2123 (4)0.95578 (18)0.0361 (7)
C100.36767 (17)0.2146 (4)0.70502 (17)0.0337 (7)
C110.32168 (16)0.3664 (4)0.66634 (17)0.0343 (7)
H110.32640.47200.69620.041*
C120.26918 (16)0.3625 (4)0.58447 (17)0.0306 (7)
C130.26148 (17)0.2054 (4)0.53842 (18)0.0332 (7)
C140.30607 (18)0.0535 (4)0.57656 (18)0.0388 (8)
H140.30130.05250.54690.047*
C150.35776 (18)0.0590 (4)0.65871 (18)0.0390 (8)
H150.38670.04480.68360.047*
C160.7118 (2)0.2118 (6)1.1984 (2)0.0683 (12)
H16A0.74230.21461.25650.102*
H16B0.73000.30601.17450.102*
H16C0.71800.09531.17810.102*
C170.1978 (2)0.0536 (5)0.4097 (2)0.0592 (10)
H17A0.15960.07900.35470.089*
H17B0.17890.04420.43110.089*
H17C0.24710.01910.41030.089*
H250.230 (2)0.202 (5)0.758 (2)0.080*
H260.156 (2)0.272 (6)0.706 (2)0.080*
H270.134 (2)0.433 (6)0.288 (2)0.080*
H280.135 (3)0.500 (6)0.353 (3)0.080*
Fe10.00001.00000.50000.0421 (2)
O80.04029 (18)0.8245 (5)0.55955 (18)0.0792 (10)
O100.11841 (14)0.9613 (4)0.59238 (16)0.0578 (7)
H190.072 (2)0.743 (5)0.540 (2)0.080*
H200.027 (3)0.817 (6)0.605 (2)0.080*
H230.142 (2)1.027 (5)0.634 (2)0.080*
H240.153 (2)0.883 (6)0.591 (2)0.080*
O90.01432 (17)0.7765 (4)0.43155 (19)0.0781 (10)
H210.053 (2)0.712 (6)0.452 (2)0.080*
H220.020 (2)0.708 (6)0.416 (3)0.080*
O130.1013 (2)0.4825 (5)0.6551 (2)0.0801 (10)
H290.087 (2)0.590 (5)0.678 (2)0.080*
H300.112 (3)0.523 (6)0.626 (3)0.080*
O140.0310 (2)0.7164 (5)0.7174 (2)0.0861 (10)
H310.061 (2)0.797 (6)0.762 (2)0.080*
H320.005 (2)0.658 (6)0.729 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0325 (12)0.0692 (16)0.0332 (12)0.0088 (10)0.0134 (10)0.0024 (11)
O20.0309 (13)0.094 (2)0.0479 (14)0.0075 (12)0.0141 (11)0.0103 (13)
O30.0573 (16)0.0711 (17)0.0364 (14)0.0044 (13)0.0113 (12)0.0004 (12)
O40.0552 (14)0.0364 (13)0.0344 (12)0.0041 (10)0.0095 (11)0.0033 (10)
O50.0733 (17)0.0374 (13)0.0452 (13)0.0178 (12)0.0163 (12)0.0062 (11)
O60.0348 (13)0.0469 (14)0.0790 (17)0.0084 (10)0.0148 (12)0.0055 (12)
O70.0711 (16)0.0447 (14)0.0506 (14)0.0098 (12)0.0323 (12)0.0149 (11)
O110.0423 (15)0.0578 (17)0.0544 (16)0.0009 (12)0.0105 (12)0.0049 (13)
O120.068 (2)0.090 (2)0.0506 (17)0.0126 (16)0.0218 (14)0.0034 (17)
S10.0381 (5)0.0316 (4)0.0410 (5)0.0055 (3)0.0140 (4)0.0023 (4)
C10.044 (2)0.053 (2)0.0348 (18)0.0030 (16)0.0184 (15)0.0037 (15)
C20.0339 (17)0.0365 (18)0.0359 (17)0.0013 (13)0.0147 (14)0.0026 (14)
C30.0331 (18)0.0418 (19)0.0412 (19)0.0008 (14)0.0152 (15)0.0007 (15)
C40.0339 (17)0.0367 (18)0.0344 (17)0.0019 (13)0.0149 (14)0.0009 (14)
C50.041 (2)0.061 (2)0.048 (2)0.0050 (16)0.0221 (17)0.0041 (17)
C60.060 (2)0.061 (2)0.039 (2)0.0037 (18)0.0250 (18)0.0065 (17)
C70.047 (2)0.0393 (19)0.0363 (19)0.0002 (15)0.0129 (16)0.0019 (15)
C80.0335 (17)0.0433 (19)0.0395 (19)0.0034 (14)0.0107 (15)0.0023 (15)
C90.0412 (18)0.0316 (17)0.0372 (18)0.0014 (13)0.0191 (15)0.0027 (14)
C100.0318 (16)0.0337 (17)0.0363 (17)0.0009 (13)0.0159 (13)0.0011 (14)
C110.0338 (16)0.0305 (16)0.0385 (17)0.0004 (13)0.0163 (14)0.0054 (14)
C120.0302 (16)0.0291 (16)0.0363 (17)0.0016 (12)0.0183 (13)0.0024 (13)
C130.0314 (16)0.0323 (17)0.0369 (17)0.0016 (13)0.0163 (14)0.0024 (14)
C140.0444 (19)0.0296 (17)0.0438 (19)0.0004 (14)0.0210 (15)0.0054 (14)
C150.0393 (18)0.0328 (17)0.0409 (19)0.0071 (14)0.0144 (15)0.0034 (15)
C160.055 (2)0.084 (3)0.045 (2)0.013 (2)0.0039 (18)0.010 (2)
C170.072 (3)0.049 (2)0.045 (2)0.0003 (18)0.0150 (19)0.0101 (17)
Fe10.0322 (4)0.0379 (4)0.0474 (4)0.0018 (3)0.0098 (3)0.0041 (3)
O80.0641 (19)0.087 (2)0.0697 (19)0.0291 (15)0.0148 (17)0.0081 (19)
O100.0348 (14)0.0595 (17)0.0581 (16)0.0106 (11)0.0019 (12)0.0199 (12)
O90.0524 (18)0.068 (2)0.082 (2)0.0201 (14)0.0011 (16)0.0260 (16)
O130.085 (2)0.076 (2)0.094 (3)0.0157 (17)0.0536 (19)0.0141 (18)
O140.099 (3)0.082 (2)0.088 (2)0.0217 (18)0.051 (2)0.0146 (18)
Geometric parameters (Å, º) top
O1—C11.351 (3)C10—C111.395 (4)
O1—C91.372 (3)C11—C121.382 (4)
O2—C31.235 (3)C11—H110.9300
O3—C71.359 (4)C12—C131.398 (4)
O3—C161.416 (4)C13—C141.383 (4)
O4—C131.354 (3)C14—C151.383 (4)
O4—C171.428 (4)C14—H140.9300
O5—S11.445 (2)C15—H150.9300
O6—S11.457 (2)C16—H16A0.9600
O7—S11.437 (2)C16—H16B0.9600
O11—H250.87 (4)C16—H16C0.9600
O11—H260.80 (4)C17—H17A0.9600
O12—H270.87 (4)C17—H17B0.9600
O12—H280.73 (4)C17—H17C0.9600
S1—C121.771 (3)Fe1—O8i2.043 (3)
C1—C21.340 (4)Fe1—O82.043 (3)
C1—H10.9300Fe1—O102.138 (2)
C2—C31.456 (4)Fe1—O10i2.138 (2)
C2—C101.483 (4)Fe1—O9i2.155 (3)
C3—C41.455 (4)Fe1—O92.155 (3)
C4—C91.383 (4)O8—H190.80 (2)
C4—C51.399 (4)O8—H200.76 (4)
C5—C61.361 (4)O10—H230.84 (4)
C5—H50.9300O10—H240.88 (4)
C6—C71.397 (5)O9—H210.81 (4)
C6—H60.9300O9—H220.77 (4)
C7—C81.378 (4)O13—H290.99 (4)
C8—C91.387 (4)O13—H300.72 (4)
C8—H80.9300O14—H310.97 (4)
C10—C151.385 (4)O14—H320.90 (4)
C1—O1—C9118.1 (2)O4—C13—C14124.3 (3)
C7—O3—C16117.8 (3)O4—C13—C12116.8 (2)
C13—O4—C17118.7 (2)C14—C13—C12118.9 (3)
H25—O11—H26114 (4)C15—C14—C13120.1 (3)
H27—O12—H28104 (5)C15—C14—H14119.9
O7—S1—O5114.14 (15)C13—C14—H14119.9
O7—S1—O6111.97 (15)C14—C15—C10122.0 (3)
O5—S1—O6110.10 (15)C14—C15—H15119.0
O7—S1—C12107.89 (13)C10—C15—H15119.0
O5—S1—C12105.95 (13)O3—C16—H16A109.5
O6—S1—C12106.29 (13)O3—C16—H16B109.5
C2—C1—O1126.1 (3)H16A—C16—H16B109.5
C2—C1—H1116.9O3—C16—H16C109.5
O1—C1—H1116.9H16A—C16—H16C109.5
C1—C2—C3118.4 (3)H16B—C16—H16C109.5
C1—C2—C10121.0 (3)O4—C17—H17A109.5
C3—C2—C10120.5 (3)O4—C17—H17B109.5
O2—C3—C4121.8 (3)H17A—C17—H17B109.5
O2—C3—C2122.7 (3)O4—C17—H17C109.5
C4—C3—C2115.5 (3)H17A—C17—H17C109.5
C9—C4—C5117.4 (3)H17B—C17—H17C109.5
C9—C4—C3120.7 (3)O8i—Fe1—O8180.000 (1)
C5—C4—C3121.9 (3)O8i—Fe1—O1090.02 (12)
C6—C5—C4120.7 (3)O8—Fe1—O1089.98 (12)
C6—C5—H5119.7O8i—Fe1—O10i89.98 (12)
C4—C5—H5119.7O8—Fe1—O10i90.02 (12)
C5—C6—C7120.6 (3)O10—Fe1—O10i180.000 (1)
C5—C6—H6119.7O8i—Fe1—O9i90.37 (15)
C7—C6—H6119.7O8—Fe1—O9i89.63 (15)
O3—C7—C8124.9 (3)O10—Fe1—O9i89.90 (10)
O3—C7—C6114.8 (3)O10i—Fe1—O9i90.10 (10)
C8—C7—C6120.3 (3)O8i—Fe1—O989.63 (15)
C7—C8—C9117.8 (3)O8—Fe1—O990.37 (15)
C7—C8—H8121.1O10—Fe1—O990.10 (10)
C9—C8—H8121.1O10i—Fe1—O989.90 (10)
O1—C9—C4121.1 (3)O9i—Fe1—O9180.000 (1)
O1—C9—C8115.7 (3)Fe1—O8—H19127 (3)
C4—C9—C8123.2 (3)Fe1—O8—H20128 (4)
C15—C10—C11117.6 (3)H19—O8—H20105 (5)
C15—C10—C2121.1 (3)Fe1—O10—H23126 (3)
C11—C10—C2121.3 (3)Fe1—O10—H24127 (2)
C12—C11—C10121.2 (3)H23—O10—H24107 (4)
C12—C11—H11119.4Fe1—O9—H21120 (3)
C10—C11—H11119.4Fe1—O9—H22114 (3)
C11—C12—C13120.3 (3)H21—O9—H22104 (4)
C11—C12—S1120.2 (2)H29—O13—H30103 (5)
C13—C12—S1119.5 (2)H31—O14—H32108 (4)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H25···O20.87 (4)1.88 (4)2.729 (3)166 (4)
O11—H26···O130.80 (4)1.86 (4)2.661 (4)178 (5)
O12—H27···O11ii0.87 (4)1.92 (4)2.785 (4)172 (4)
O12—H28···O70.73 (4)2.27 (4)2.979 (4)165 (5)
O8—H19···O6iii0.80 (2)2.03 (3)2.820 (4)166 (4)
O8—H20···O140.76 (4)1.99 (4)2.711 (4)157 (5)
O9—H21···O60.81 (4)2.06 (4)2.849 (3)162 (4)
O9—H22···O13iii0.77 (4)2.05 (4)2.794 (5)161 (5)
O10—H23···O11iv0.84 (4)1.90 (4)2.735 (4)172 (4)
O10—H24···O50.88 (4)1.96 (4)2.836 (3)172 (4)
O13—H29···O140.99 (4)1.78 (4)2.716 (5)156 (3)
O13—H30···O60.72 (4)2.33 (4)2.966 (4)149 (5)
O14—H31···O12v0.97 (4)1.83 (4)2.736 (4)156 (3)
O14—H32···O12iii0.90 (4)2.03 (4)2.843 (5)149 (4)
C8—H8···O7vi0.932.543.444 (5)164
C16—H16A···O5vii0.962.513.405 (4)155
Symmetry codes: (ii) x, y+1/2, z1/2; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x, y+3/2, z+1/2; (vi) x+1, y1/2, z+3/2; (vii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Fe(H2O)6](C17H13O7S)2·8H2O
Mr1030.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)18.892 (7), 7.336 (3), 18.357 (7)
β (°) 116.552 (5)
V3)2275.8 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.46 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.797, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
11468, 4000, 2643
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.113, 1.01
No. of reflections4000
No. of parameters337
No. of restraints37
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.32

Computer programs: SMART (Bruker, 1999), SMART, SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H25···O20.87 (4)1.88 (4)2.729 (3)166 (4)
O11—H26···O130.80 (4)1.86 (4)2.661 (4)178 (5)
O12—H27···O11i0.87 (4)1.92 (4)2.785 (4)172 (4)
O12—H28···O70.73 (4)2.27 (4)2.979 (4)165 (5)
O8—H19···O6ii0.80 (2)2.03 (3)2.820 (4)166 (4)
O8—H20···O140.76 (4)1.99 (4)2.711 (4)157 (5)
O9—H21···O60.81 (4)2.06 (4)2.849 (3)162 (4)
O9—H22···O13ii0.77 (4)2.05 (4)2.794 (5)161 (5)
O10—H23···O11iii0.84 (4)1.90 (4)2.735 (4)172 (4)
O10—H24···O50.88 (4)1.96 (4)2.836 (3)172 (4)
O13—H29···O140.99 (4)1.78 (4)2.716 (5)156 (3)
O13—H30···O60.72 (4)2.33 (4)2.966 (4)149 (5)
O14—H31···O12iv0.97 (4)1.83 (4)2.736 (4)156 (3)
O14—H32···O12ii0.90 (4)2.03 (4)2.843 (5)149 (4)
C8—H8···O7v0.932.543.444 (5)164
C16—H16A···O5vi0.962.513.405 (4)155
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x, y+3/2, z+1/2; (v) x+1, y1/2, z+3/2; (vi) x+1, y+1, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds