Download citation
Download citation
link to html
The title compound, 2,4-diamino-5-(4-chloro­phen­yl)-6-ethyl­pyrimidine-1,3-diium dinitrate, C12H15ClN42+·2NO3, contains two crystallographically independent pyrimethamine (PMN) mol­ecules, which differ in the relative orientations of the pyrimidine and benzene rings and of the eth­yl substitutents. In both pyrimethamine mol­ecules, all the pyrimidine N atoms are protonated, unlike most related compounds, in which only one pyrimidine N atom is protonated. The two pyrimethamine moieties are bridged by a variety of N—H...O(nitrate) inter­actions, including some three-centre hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105016513/ga1099sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105016513/ga1099Isup2.hkl
Contains datablock I

CCDC reference: 288638

Comment top

Pyrimethamine is an antifolate drug used in the treatment of malaria. In the chemotherapy of malaria and neoplastic diseases, substituted 2,4-diamino pyrimidines are widely employed as metabolic inhibitors of pathways leading to the synthesis of proteins and nucleic acids (Hitchings & Burchall, 1965). Pyrimethamine acts against malarial parasites by selectively inhibiting their dihydrofolate reductase–thymidylate synthase (Sardarian et al., 2003). Hydrogen bonding plays a key role in molecular recognition (Goswami & Ghosh, 1997) and crystal engineering (Goswami et al., 1999). The design of a number of supramolecular nanoarchitectures, such as layers, ribbons, rosettes, rods, tapes, tubes, sheets and spheres, can be achieved through N—H···O and O—H···O hydrogen bonds (Vishweshwar et al., 2002; Aitipamula et al., 2002). The crystal structure of pyrimethamine (PMN) itself has been reported from our laboratory (Sethuraman & Muthiah, 2002). The crystal structures of trimethoprim nitrate (Murugesan & Muthiah, 1997), PMN hydrogen maleate, PMN hydrogen succinate, PMN hydrogen phthalate and PMN fumarate (Sethuraman et al., 2003), and PMN hydrogen glutarate and PMN formate (Stanley et al., 2002), have also been reported from our laboratory. In this paper, the conformation and hydrogen-bonding patterns of pyrimethamine dinitrate (PMNN), (I), are reported.

The asymmetric unit of (I) contains two pyrimethamine cations and four nitrate anions (Fig. 1). Both the PMN moieties are protonated at N1, N3, N1A and N3A of the pyrimidine moiety, which is evident from the increase in the internal angles C2—N1—C6, C2—N3—C4, C2A—N1A—C6A and C2A—N3A—C4A at the corresponding N atoms. The angles (Table 1) are smaller than the values observed in neutral pyrimethamine [116.25 (18), 116.38 (17), 116.09 (18) and 116.47°, respectively; Sethuraman & Muthiah, 2002]. Usually, only one pyrimidine N atom (N1 or N1A) is protonated in the pyrimethamine molecule, but in (I) all the pyrimidine N atoms are protonated in both the pyrimethamine molecules.

The dihedral angle between the pyrimidine plane and the substituted phenyl plane is 82.5 (2)° in one molecule and 73.9 (2)° in the other. Similar dihedral angles are seen in the crystal structures of neutral pyrimethamine [74.4 (1)° in molecule A and 82.4 (1)° in molecule B; Sethuraman & Muthiah, 2002], 2,4-diamino-5-(3',4'-dichlorophenyl)-6-methylpyrimidinium ethanesulfonate (71.1°; Cody, 1983) and metoprine (78.1° in molecule A and 91.6° in molecule B; De et al., 1989). The two torsion angles (C5—C6—C7—C8 and C5A—C6A—C7A—C8A) of the PMN moieties are −107.7 (5) and −100.9 (5)°, respectively. These values are close to those observed in modelling studies of dihydrofolate reductase–pyrimethamine complexes, which indicates that these angles play an important role in the proper docking of the drug molecule in the active site of the enzyme (Sansom et al., 1989). The lengths of the bonds connecting the pyrimidine and phenyl rings (Table 1) are in close agreement with those reported for metoprine (De et al., 1989). The different mutual arrangements of the p-chlorophenyl and ethyl substituents in the two independent molecules of (I) are illustrated in Fig. 2.

The protonated atom N1A and the 2-amino group are hydrogen bonded to the O atoms of the nitrate anion (O1C and O3C), leading to an eight-membered ring formed via N—H···O bonds (Fig. 3). The other protonation sites, atom N3A and the 4-amino group, are hydrogen bonded to the O atoms of the other nitrate anion (atoms O1D and O2D), forming a similar cyclic hydrogen-bonded ring. Both can be designated by graph-set notation R22(8) (Etter, 1990; Bernstein et al., 1995). This type of interaction is similar to the carboxylate–trimethoprim interaction observed in the trimethoprim cation–dihydrofolate reductase complex (Kuyper, 1990) and to the cyclic hydrogen-bonded motif observed in many organic crystal structures (Allan et al., 1998).

In the other pyrimethamine molecule, the protonated N atom (N1) of the pyrimidine ring forms a three-centre hydrogen bond with two O atoms of the nitrate ion (atoms O1E and O3E). The other protonated N atom (N3) forms a three-centre hydrogen bond, of similar type but weaker, with another nitrate ion (atoms O1B and O3B) (Table 2). The protonated N atom (N3), 2-amino group and 4-amino group are hydrogen bonded with two O atoms of the same nitrate ion (atoms O1B and O3B), forming both three-centre and bifurcated hydrogen bonds. The protonated N atom (donor; N1) and the 2-amino group form hydrogen bonds with the O atom of the nitrate ion (acceptor; O1E), leading to a six-membered ring which can be designated by graph-set notation R21(6) (Fig.3). This type of packing is commonly observed in PMN hydrogen maleate, PMN hydrogen succinate and PMN hydrogenphthalate (Sethuraman et al., 2003).

Experimental top

To a hot methanolic solution of pyrimethamine (62 mg, Shah Pharma Chemicals, India), a few drops of nitric acid were added. The solution was warmed over a water bath for a few minutes. The resultant solution was allowed to cool slowly at room temperature. Crystals of (I) appeared from the mother liquor after a few days.

Refinement top

All the H atoms were fixed geometrically and were refined using a riding model. The refined N—H and C—H bond lengths are 0.85–0.86 Å and 0.92–0.96 Å, and with Uiso(H)=1.2Ueq.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2000); cell refinement: CrysAlis RED (Oxford Diffraction, 2000); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. An orthogonal fit of the two PMN molecules in (I). The fitted atoms are those forming the pyrimidine moiety.
[Figure 3] Fig. 3. A view of the hydrogen-bonded supramolecular chain along the b axis (see Table 2). Other atoms, and H atoms not involved in the bonding, are omitted for clarity.
2,4-diamino-5-(4-chlorophenyl)-6-ethylpyrimidine-1,3-diium dinitrate top
Crystal data top
C12H15ClN42+·2NO3F(000) = 3104
Mr = 374.75Dx = 1.516 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7379 reflections
a = 32.700 (7) Åθ = 3.4–25.7°
b = 12.926 (3) ŵ = 0.28 mm1
c = 16.065 (3) ÅT = 295 K
β = 104.73 (3)°Prismatic, colourless
V = 6567 (3) Å30.4 × 0.3 × 0.2 mm
Z = 16
Data collection top
Kuma KM4CCD κ-geometry
diffractometer
6490 independent reflections
Radiation source: fine-focus sealed tube3225 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω–scansθmax = 26.1°, θmin = 2.6°
Absorption correction: multi-scan
(XEMP, Siemens, 1990)
h = 2140
Tmin = 0.893, Tmax = 0.952k = 1515
27180 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059All H-atom parameters refined
wR(F2) = 0.231 w = 1/[σ2(Fo2) + (0.0399P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6490 reflectionsΔρmax = 0.46 e Å3
451 parametersΔρmin = 0.64 e Å3
0 restraintsExtinction correction: SHELXL, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00014 (3)
Crystal data top
C12H15ClN42+·2NO3V = 6567 (3) Å3
Mr = 374.75Z = 16
Monoclinic, C2/cMo Kα radiation
a = 32.700 (7) ŵ = 0.28 mm1
b = 12.926 (3) ÅT = 295 K
c = 16.065 (3) Å0.4 × 0.3 × 0.2 mm
β = 104.73 (3)°
Data collection top
Kuma KM4CCD κ-geometry
diffractometer
6490 independent reflections
Absorption correction: multi-scan
(XEMP, Siemens, 1990)
3225 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.952Rint = 0.048
27180 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.231All H-atom parameters refined
S = 1.03Δρmax = 0.46 e Å3
6490 reflectionsΔρmin = 0.64 e Å3
451 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.04072 (4)0.38389 (12)0.14099 (11)0.0853 (6)
N10.16443 (10)0.3660 (2)0.0622 (2)0.0355 (11)
N20.23742 (11)0.3728 (3)0.0214 (2)0.0464 (12)
N30.19920 (10)0.3713 (2)0.0814 (2)0.0357 (11)
N40.16403 (11)0.3733 (3)0.1880 (2)0.0450 (11)
C20.20081 (12)0.3704 (3)0.0022 (2)0.0340 (12)
C40.16211 (12)0.3728 (3)0.1053 (2)0.0331 (12)
C50.12343 (12)0.3709 (3)0.0403 (2)0.0334 (12)
C60.12548 (12)0.3651 (3)0.0429 (2)0.0338 (12)
C70.08849 (13)0.3525 (3)0.1182 (2)0.0435 (14)
C80.08739 (14)0.2438 (4)0.1555 (3)0.0623 (19)
C90.08293 (12)0.3726 (3)0.0669 (2)0.0365 (14)
C100.06674 (16)0.4643 (4)0.0862 (4)0.071 (2)
C110.02905 (17)0.4677 (4)0.1102 (4)0.085 (3)
C120.00726 (14)0.3795 (4)0.1141 (3)0.0531 (17)
C130.02354 (14)0.2866 (4)0.0973 (3)0.0549 (17)
C140.06131 (13)0.2823 (4)0.0737 (3)0.0493 (17)
Cl1A0.00876 (4)0.14944 (12)0.62715 (8)0.0713 (5)
N1A0.17211 (10)0.1267 (2)0.3201 (2)0.0402 (11)
N2A0.24307 (11)0.1204 (3)0.3232 (2)0.0506 (14)
N3A0.22203 (11)0.1212 (2)0.4515 (2)0.0384 (11)
N4A0.20396 (11)0.1238 (3)0.5789 (2)0.0461 (13)
C2A0.21302 (13)0.1223 (3)0.3637 (2)0.0378 (14)
C4A0.19163 (12)0.1248 (3)0.4957 (2)0.0337 (12)
C5A0.14851 (12)0.1297 (3)0.4484 (2)0.0340 (12)
C6A0.13952 (13)0.1316 (3)0.3602 (2)0.0361 (12)
C7A0.09640 (13)0.1400 (3)0.3002 (3)0.0471 (14)
C8A0.07890 (16)0.0393 (4)0.2610 (3)0.074 (2)
C9A0.11470 (12)0.1338 (3)0.4949 (2)0.0354 (14)
C10A0.10775 (14)0.2238 (3)0.5362 (3)0.0485 (17)
C11A0.07577 (15)0.2283 (4)0.5782 (3)0.0558 (17)
C12A0.05042 (13)0.1421 (4)0.5778 (3)0.0464 (14)
C13A0.05715 (13)0.0518 (4)0.5383 (3)0.0482 (17)
C14A0.08961 (13)0.0473 (3)0.4978 (3)0.0432 (16)
O1B0.30315 (12)0.3803 (3)0.1384 (2)0.0810 (18)
O2B0.33083 (10)0.3773 (3)0.2751 (2)0.0723 (13)
O3B0.26349 (10)0.3648 (3)0.22723 (19)0.0580 (13)
N1B0.29935 (12)0.3739 (3)0.2139 (2)0.0481 (14)
O1C0.21359 (11)0.1298 (3)0.1448 (2)0.0724 (13)
O2C0.16767 (10)0.1279 (3)0.02391 (19)0.0609 (13)
O3C0.14755 (10)0.1242 (3)0.14138 (19)0.0582 (13)
N1C0.17619 (12)0.1263 (3)0.1024 (2)0.0422 (12)
O1D0.19156 (10)0.3948 (3)0.48109 (18)0.0618 (13)
O2D0.20758 (10)0.3579 (3)0.3641 (2)0.0701 (13)
O3D0.14291 (10)0.3885 (3)0.3619 (2)0.0621 (13)
N1D0.18011 (11)0.3814 (2)0.4017 (2)0.0397 (12)
O1E0.19542 (13)0.6211 (3)0.2856 (2)0.0939 (18)
O2E0.16923 (10)0.6060 (2)0.14908 (18)0.0526 (11)
O3E0.12991 (14)0.6023 (4)0.2360 (3)0.1038 (19)
N1E0.16509 (14)0.6105 (3)0.2241 (2)0.0498 (14)
H10.165100.363900.115300.0430*
H20.260400.375500.019000.0560*
H30.238500.371600.074400.0560*
H40.222600.371400.120900.0430*
H50.188200.372700.225200.0540*
H60.141100.374000.205000.0540*
H70.062700.364800.100400.0520*
H7A0.089900.403100.162000.0520*
H8A0.086000.193700.112300.0750*
H8B0.063000.237100.203300.0750*
H8C0.112500.232400.174900.0750*
H100.081300.525400.083000.0860*
H110.018400.530800.123000.1020*
H130.008900.225800.101200.0660*
H140.072200.218800.062800.0590*
H1A0.166000.126200.264800.0480*
H2A0.269100.117600.352100.0610*
H2B0.236800.121600.267900.0610*
H3A0.248100.118500.480200.0460*
H4A0.185700.125900.609000.0550*
H4B0.230500.121300.604200.0550*
H10A0.124500.281700.535400.0580*
H11A0.071300.288600.606200.0670*
H13A0.040300.005800.539600.0570*
H14A0.094700.014000.471900.0520*
H71A0.097600.187800.254400.0570*
H71B0.077200.168600.331400.0570*
H81A0.098200.009500.231600.0890*
H82A0.052000.050200.220900.0890*
H83A0.075600.006700.305700.0890*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0551 (9)0.1048 (12)0.1121 (12)0.0042 (8)0.0508 (9)0.0107 (9)
N10.039 (2)0.045 (2)0.0253 (17)0.0022 (16)0.0135 (15)0.0021 (15)
N20.034 (2)0.063 (2)0.045 (2)0.0015 (17)0.0153 (17)0.0022 (18)
N30.0304 (18)0.044 (2)0.0312 (18)0.0006 (15)0.0048 (14)0.0018 (15)
N40.044 (2)0.064 (2)0.0268 (18)0.0046 (18)0.0089 (16)0.0008 (17)
C20.037 (2)0.034 (2)0.032 (2)0.0010 (18)0.0108 (18)0.0013 (18)
C40.039 (2)0.029 (2)0.032 (2)0.0044 (17)0.0101 (18)0.0013 (17)
C50.034 (2)0.038 (2)0.028 (2)0.0026 (18)0.0077 (17)0.0021 (17)
C60.033 (2)0.039 (2)0.030 (2)0.0008 (18)0.0090 (17)0.0005 (17)
C70.035 (2)0.066 (3)0.028 (2)0.001 (2)0.0053 (18)0.001 (2)
C80.054 (3)0.088 (4)0.043 (3)0.023 (3)0.009 (2)0.014 (3)
C90.033 (2)0.047 (3)0.031 (2)0.0035 (19)0.0108 (17)0.0044 (19)
C100.066 (3)0.044 (3)0.121 (5)0.010 (3)0.055 (3)0.019 (3)
C110.073 (4)0.053 (3)0.152 (6)0.009 (3)0.073 (4)0.029 (4)
C120.042 (3)0.068 (3)0.054 (3)0.002 (2)0.021 (2)0.007 (2)
C130.044 (3)0.058 (3)0.067 (3)0.012 (2)0.022 (2)0.003 (3)
C140.045 (3)0.047 (3)0.059 (3)0.002 (2)0.019 (2)0.003 (2)
Cl1A0.0475 (8)0.1116 (12)0.0616 (8)0.0097 (7)0.0264 (6)0.0026 (7)
N1A0.042 (2)0.054 (2)0.0241 (17)0.0036 (17)0.0076 (15)0.0032 (15)
N2A0.043 (2)0.073 (3)0.039 (2)0.0063 (19)0.0165 (17)0.0041 (19)
N3A0.0351 (19)0.048 (2)0.0295 (18)0.0013 (16)0.0034 (15)0.0022 (15)
N4A0.037 (2)0.073 (3)0.0263 (18)0.0005 (18)0.0043 (15)0.0015 (17)
C2A0.044 (3)0.037 (2)0.032 (2)0.0013 (19)0.0089 (19)0.0040 (18)
C4A0.037 (2)0.037 (2)0.027 (2)0.0014 (18)0.0077 (17)0.0003 (17)
C5A0.034 (2)0.037 (2)0.030 (2)0.0012 (18)0.0064 (17)0.0017 (18)
C6A0.037 (2)0.040 (2)0.030 (2)0.0012 (18)0.0062 (18)0.0024 (18)
C7A0.037 (2)0.069 (3)0.033 (2)0.004 (2)0.0045 (19)0.002 (2)
C8A0.062 (4)0.087 (4)0.065 (3)0.018 (3)0.000 (3)0.016 (3)
C9A0.034 (2)0.047 (3)0.0229 (19)0.0046 (19)0.0030 (17)0.0006 (18)
C10A0.046 (3)0.050 (3)0.052 (3)0.007 (2)0.017 (2)0.011 (2)
C11A0.057 (3)0.058 (3)0.057 (3)0.000 (3)0.023 (2)0.014 (2)
C12A0.035 (2)0.071 (3)0.034 (2)0.011 (2)0.0100 (19)0.005 (2)
C13A0.044 (3)0.055 (3)0.047 (3)0.004 (2)0.014 (2)0.000 (2)
C14A0.049 (3)0.041 (3)0.042 (2)0.003 (2)0.016 (2)0.0056 (19)
O1B0.072 (3)0.139 (4)0.0337 (19)0.000 (2)0.0164 (17)0.004 (2)
O2B0.041 (2)0.133 (3)0.0385 (18)0.008 (2)0.0018 (16)0.003 (2)
O3B0.0365 (18)0.093 (3)0.0436 (18)0.0011 (17)0.0087 (14)0.0041 (17)
N1B0.048 (2)0.062 (3)0.035 (2)0.0007 (19)0.0121 (19)0.0023 (18)
O1C0.040 (2)0.136 (3)0.0401 (18)0.004 (2)0.0081 (16)0.000 (2)
O2C0.062 (2)0.091 (3)0.0296 (17)0.0049 (18)0.0112 (15)0.0013 (16)
O3C0.0454 (19)0.094 (3)0.0372 (17)0.0004 (17)0.0140 (15)0.0022 (16)
N1C0.051 (2)0.045 (2)0.032 (2)0.0028 (18)0.0130 (18)0.0016 (17)
O1D0.057 (2)0.100 (3)0.0273 (17)0.0021 (18)0.0086 (15)0.0033 (16)
O2D0.0396 (19)0.130 (3)0.0408 (18)0.0096 (19)0.0103 (15)0.0155 (19)
O3D0.0349 (19)0.099 (3)0.0499 (19)0.0047 (17)0.0061 (15)0.0020 (18)
N1D0.040 (2)0.044 (2)0.034 (2)0.0004 (17)0.0072 (17)0.0044 (16)
O1E0.088 (3)0.156 (4)0.0298 (19)0.042 (3)0.0007 (19)0.004 (2)
O2E0.054 (2)0.076 (2)0.0307 (16)0.0017 (16)0.0161 (14)0.0009 (15)
O3E0.091 (3)0.143 (4)0.101 (3)0.022 (3)0.068 (3)0.009 (3)
N1E0.064 (3)0.047 (2)0.047 (2)0.001 (2)0.030 (2)0.0012 (18)
Geometric parameters (Å, º) top
Cl1—C121.731 (5)C5—C61.357 (5)
Cl1A—C12A1.744 (5)C5—C91.492 (6)
O1B—N1B1.253 (5)C6—C71.486 (5)
O2B—N1B1.230 (5)C7—C81.524 (6)
O3B—N1B1.250 (5)C9—C141.383 (6)
O1C—N1C1.240 (5)C9—C101.366 (7)
O2C—N1C1.220 (4)C10—C111.382 (8)
O3C—N1C1.252 (5)C11—C121.354 (7)
O1D—N1D1.247 (4)C12—C131.368 (7)
O2D—N1D1.241 (5)C13—C141.382 (7)
O3D—N1D1.225 (5)C7—H7A0.9703
N1—C21.328 (5)C7—H70.9700
N1—C61.385 (5)C8—H8A0.9587
O1E—N1E1.217 (5)C8—H8C0.9608
N2—C21.310 (5)C8—H8B0.9601
O2E—N1E1.248 (4)C10—H100.9303
N3—C21.357 (4)C11—H110.9302
N3—C41.362 (5)C13—H130.9306
O3E—N1E1.218 (7)C14—H140.9289
N4—C41.314 (4)C4A—C5A1.423 (5)
N1—H10.8593C5A—C9A1.484 (5)
N2—H20.8597C5A—C6A1.372 (4)
N2—H30.8612C6A—C7A1.496 (6)
N3—H40.8610C7A—C8A1.495 (7)
N4—H60.8608C9A—C10A1.386 (6)
N4—H50.8612C9A—C14A1.395 (6)
N1A—C2A1.344 (5)C10A—C11A1.382 (7)
N1A—C6A1.380 (5)C11A—C12A1.388 (7)
N2A—C2A1.309 (5)C12A—C13A1.373 (7)
N3A—C2A1.366 (4)C13A—C14A1.380 (6)
N3A—C4A1.361 (5)C7A—H71A0.9692
N4A—C4A1.294 (4)C7A—H71B0.9706
N1A—H1A0.8596C8A—H81A0.9599
N2A—H2B0.8596C8A—H82A0.9594
N2A—H2A0.8605C8A—H83A0.9593
N3A—H3A0.8606C10A—H10A0.9294
N4A—H4A0.8590C11A—H11A0.9299
N4A—H4B0.8603C13A—H13A0.9296
C4—C51.421 (5)C14A—H14A0.9295
Cl1···O3Di3.331 (4)N1D···H4Bviii2.9488
Cl1A···C8i3.508 (5)N1D···H52.9162
Cl1···H71Bi3.1037N1D···H3Aviii2.6164
Cl1A···H8Bi3.1220N1E···H1vii2.6011
Cl1A···H82Aii3.1375N1E···H2Aiv2.7345
Cl1A···H8Biii3.0647C2···O1Ex3.370 (5)
Cl1A···H8Ai3.1000C2···O1Dx3.055 (6)
O1B···N22.901 (5)C2···O2C3.377 (5)
O1B···C2Aiv3.171 (6)C2A···N1Bvi3.431 (5)
O1B···O2Cv2.998 (5)C2A···O1Bvi3.171 (6)
O1C···N2A2.784 (4)C2A···O2D3.051 (6)
O1C···N2v2.848 (5)C4···O3C3.321 (5)
O1C···O1Evi2.902 (6)C4···O3B3.396 (5)
O1D···O2Evii2.970 (4)C4···O2E3.091 (5)
O1D···N3Aviii2.765 (5)C4···N1C3.221 (6)
O1D···N1vii3.243 (5)C4A···O2Cii3.416 (6)
O1D···C2vii3.055 (6)C6A···O3D3.322 (6)
O1E···N2vii3.056 (5)C7···C143.537 (6)
O1E···N1vii2.880 (5)C7···O3Ex3.046 (6)
O1E···N2Aiv2.981 (5)C7A···O3C3.394 (6)
O1E···O1Civ2.902 (6)C7A···C14A3.453 (6)
O1E···C2vii3.370 (5)C8···O3Ex3.188 (7)
O2B···N4Aviii2.855 (5)C8···Cl1Ai3.508 (5)
O2C···C14Aix3.358 (6)C10···N43.396 (7)
O2C···C4Aix3.416 (6)C10···O3E3.273 (8)
O2C···O1Bv2.998 (5)C10A···O2Evii3.212 (5)
O2C···N2v3.114 (5)C10A···N4A3.308 (6)
O2C···C23.377 (5)C14···C73.537 (6)
O2D···N42.832 (4)C14A···O3Cii3.406 (6)
O2D···N1A3.219 (5)C14A···C7A3.453 (6)
O2D···O3B3.198 (5)C14A···O2Cii3.358 (6)
O2D···C2A3.051 (6)C8···H12.9069
O2D···N3Aviii3.268 (5)C8A···H1A3.0478
O2D···N4Aviii2.813 (5)C9···H72.6014
O2E···N43.086 (5)C9···H62.5288
O2E···O1Dx2.970 (4)C9A···H71B2.6396
O2E···N2Aiv2.794 (5)C9A···H4A2.5684
O2E···C43.091 (5)C10···H62.9253
O2E···C10Ax3.212 (5)C10A···H4A2.8197
O3B···O2D3.198 (5)C14···H71A3.0944
O3B···N32.722 (4)C14···H73.0044
O3B···N4Aviii3.028 (4)C14A···H71B3.0360
O3B···N43.154 (5)C14A···H83A3.0825
O3B···C43.396 (5)H1···N1Ex2.6011
O3C···C14Aix3.406 (6)H1···C82.9069
O3C···C43.321 (5)H1···H32.3239
O3C···N1A2.778 (4)H1···H7A2.4348
O3C···C7A3.394 (6)H1···H8C2.4345
O3D···Cl1i3.331 (4)H1···O1Ex2.0876
O3D···C6A3.322 (6)H1···O3Ex2.4133
O3D···N43.050 (5)H1A···O3C1.9203
O3E···C8vii3.188 (7)H1A···N1C2.7129
O3E···C103.273 (8)H1A···C8A3.0478
O3E···N1vii3.177 (6)H1A···H2B2.3038
O3E···C7vii3.046 (6)H1A···H71A2.3398
O1B···H22.0673H1A···O1C2.7687
O1B···H42.5795H2···O2Cv2.6142
O1C···H3v2.1529H2···O1B2.0673
O1C···H2B1.9326H2···H42.2890
O1C···H1A2.7687H2A···O1Dviii2.6662
O1D···H2Aviii2.6662H2A···O2Evi2.0271
O1D···H3Aviii1.9198H2A···N1Evi2.7345
O1E···H2Aiv2.7472H2A···H3A2.3292
O1E···H1vii2.0876H2A···O1Evi2.7472
O1E···H2Biv2.5729H2B···O1Evi2.5729
O1E···H3vii2.3325H2B···O1C1.9326
O2B···H81Aiv2.9059H2B···N1C2.8846
O2B···H4Aviii2.0670H2B···H1A2.3038
O2C···H14Aix2.7469H3···O1Cv2.1529
O2C···H2v2.6142H3···N1Cv2.9365
O2D···H4Bviii1.9766H3···H12.3239
O2D···H52.1676H3···O1Ex2.3325
O2D···H3Aviii2.5703H3A···N1Dviii2.6164
O2D···H62.9114H3A···O2Dviii2.5703
O2E···H2Aiv2.0271H3A···H2A2.3292
O2E···H10Ax2.4947H3A···H4B2.2099
O3B···H52.4560H3A···O1Dviii1.9198
O3B···H4Bviii2.6709H4···N1B2.5739
O3B···H4Aviii2.7339H4···H52.2431
O3B···H41.8846H4···O3B1.8846
O3C···H1A1.9203H4···H22.2890
O3C···H71A2.8546H4···O1B2.5795
O3C···H142.7528H4A···N1Bviii2.7616
O3C···H81A2.8447H4A···C10A2.8197
O3D···H62.5132H4A···O2Bviii2.0670
O3E···H102.7513H4A···O3Bviii2.7339
O3E···H1vii2.4133H4A···C9A2.5684
O3E···H7Avii2.3435H4B···O2Dviii1.9766
O3E···H11Ax2.8245H4B···O3Bviii2.6709
O3E···H8Cvii2.7116H4B···H3A2.2099
N1···O3Ex3.177 (6)H4B···N1Dviii2.9488
N1···O1Ex2.880 (5)H5···H42.2431
N1···O1Dx3.243 (5)H5···O2D2.1676
N1A···O3C2.778 (4)H5···N1D2.9162
N1A···O2D3.219 (5)H5···O3B2.4560
N1B···C2Aiv3.431 (5)H6···O2D2.9114
N1C···C43.221 (6)H6···C92.5288
N1C···N33.292 (5)H6···O3D2.5132
N1E···N2Aiv3.282 (6)H6···C102.9253
N1E···N43.119 (6)H7···C92.6014
N2···O1Ex3.056 (5)H7···C143.0044
N2···O2Cv3.114 (5)H7A···O3Ex2.3435
N2···O1Cv2.848 (5)H7A···H12.4348
N2···O1B2.901 (5)H8A···Cl1Ai3.1000
N2A···O2Evi2.794 (5)H8B···Cl1Ai3.1220
N2A···N1Evi3.282 (6)H8B···Cl1Axi3.0647
N2A···O1C2.784 (4)H8C···H12.4345
N2A···O1Evi2.981 (5)H8C···N12.7532
N3···O3B2.722 (4)H8C···O3Ex2.7116
N3···N1C3.292 (5)H10···O3E2.7513
N3A···O2Dviii3.268 (5)H10···H11Ax2.4674
N3A···O1Dviii2.765 (5)H10A···O2Evii2.4947
N4···O2D2.832 (4)H11A···O3Evii2.8245
N4···N1E3.119 (6)H11A···H10vii2.4674
N4···C103.396 (7)H14···O3C2.7528
N4···O3D3.050 (5)H14A···O2Cii2.7469
N4···O3B3.154 (5)H14A···H83A2.5845
N4···O2E3.086 (5)H71A···C143.0944
N4A···O3Bviii3.028 (4)H71A···H1A2.3398
N4A···O2Bviii2.855 (5)H71A···O3C2.8546
N4A···C10A3.308 (6)H71B···C9A2.6396
N4A···O2Dviii2.813 (5)H71B···C14A3.0360
N1···H8C2.7532H71B···Cl1i3.1037
N1A···H81A2.9000H81A···O3C2.8447
N1B···H4Aviii2.7616H81A···N1A2.9000
N1B···H42.5739H81A···O2Bvi2.9059
N1C···H2B2.8846H82A···Cl1Aix3.1375
N1C···H3v2.9365H83A···C14A3.0825
N1C···H1A2.7129H83A···H14A2.5845
C2—N1—C6122.9 (3)C8—C7—H7109.37
C2—N3—C4122.7 (3)C6—C7—H7109.31
C2—N1—H1118.52H7—C7—H7A107.97
C6—N1—H1118.61C8—C7—H7A109.69
C2—N2—H2119.92C7—C8—H8A109.80
C2—N2—H3120.12H8A—C8—H8C109.45
H2—N2—H3119.96C7—C8—H8C109.40
C4—N3—H4118.71C7—C8—H8B109.23
C2—N3—H4118.58H8B—C8—H8C109.35
C4—N4—H6119.95H8A—C8—H8B109.60
H5—N4—H6119.98C9—C10—H10119.40
C4—N4—H5120.07C11—C10—H10119.57
C2A—N1A—C6A122.9 (3)C12—C11—H11119.80
C2A—N3A—C4A123.0 (3)C10—C11—H11120.00
C6A—N1A—H1A118.60C14—C13—H13119.69
C2A—N1A—H1A118.50C12—C13—H13119.70
C2A—N2A—H2A119.80C9—C14—H14120.17
H2A—N2A—H2B120.11C13—C14—H14119.96
C2A—N2A—H2B120.08N1A—C2A—N3A117.6 (4)
C4A—N3A—H3A118.50N2A—C2A—N3A121.4 (4)
C2A—N3A—H3A118.55N1A—C2A—N2A121.0 (3)
H4A—N4A—H4B119.82N4A—C4A—C5A123.9 (4)
C4A—N4A—H4A120.16N3A—C4A—N4A117.5 (4)
C4A—N4A—H4B120.02N3A—C4A—C5A118.6 (3)
O2B—N1B—O3B119.8 (3)C6A—C5A—C9A121.8 (3)
O1B—N1B—O3B120.0 (4)C4A—C5A—C9A119.8 (3)
O1B—N1B—O2B120.2 (4)C4A—C5A—C6A118.4 (4)
O2C—N1C—O3C120.9 (4)C5A—C6A—C7A125.9 (4)
O1C—N1C—O2C120.1 (4)N1A—C6A—C7A114.6 (3)
O1C—N1C—O3C119.0 (3)N1A—C6A—C5A119.5 (4)
O1D—N1D—O2D117.8 (4)C6A—C7A—C8A113.9 (4)
O1D—N1D—O3D121.6 (4)C5A—C9A—C14A120.5 (3)
O2D—N1D—O3D120.6 (3)C5A—C9A—C10A120.3 (4)
O1E—N1E—O3E119.3 (4)C10A—C9A—C14A119.2 (4)
O1E—N1E—O2E121.6 (4)C9A—C10A—C11A120.4 (4)
O2E—N1E—O3E119.1 (4)C10A—C11A—C12A119.3 (4)
N1—C2—N3117.7 (4)C11A—C12A—C13A121.3 (4)
N1—C2—N2122.2 (3)Cl1A—C12A—C11A119.3 (4)
N2—C2—N3120.0 (3)Cl1A—C12A—C13A119.5 (4)
N3—C4—C5118.9 (3)C12A—C13A—C14A119.1 (4)
N4—C4—C5123.2 (4)C9A—C14A—C13A120.8 (4)
N3—C4—N4117.9 (3)C8A—C7A—H71A108.68
C4—C5—C6117.8 (4)C8A—C7A—H71B108.70
C6—C5—C9123.6 (3)C6A—C7A—H71B108.81
C4—C5—C9118.6 (3)C6A—C7A—H71A108.78
N1—C6—C7115.0 (3)H71A—C7A—H71B107.79
C5—C6—C7125.0 (4)H81A—C8A—H83A109.44
N1—C6—C5119.9 (3)H82A—C8A—H83A109.59
C6—C7—C8110.7 (3)H81A—C8A—H82A109.50
C5—C9—C10120.1 (4)C7A—C8A—H81A109.12
C10—C9—C14118.6 (4)C7A—C8A—H82A110.02
C5—C9—C14121.3 (4)C7A—C8A—H83A109.16
C9—C10—C11121.0 (5)C9A—C10A—H10A120.01
C10—C11—C12120.2 (5)C11A—C10A—H10A119.63
Cl1—C12—C13120.1 (4)C10A—C11A—H11A120.19
C11—C12—C13119.6 (5)C12A—C11A—H11A120.53
Cl1—C12—C11120.3 (4)C12A—C13A—H13A120.33
C12—C13—C14120.6 (5)C14A—C13A—H13A120.54
C9—C14—C13119.9 (5)C13A—C14A—H14A119.59
C6—C7—H7A109.72C9A—C14A—H14A119.65
C6—N1—C2—N2178.9 (4)C10—C9—C14—C131.8 (6)
C6—N1—C2—N31.7 (5)C5—C9—C10—C11179.4 (5)
C2—N1—C6—C51.3 (5)C9—C10—C11—C120.7 (9)
C2—N1—C6—C7175.9 (3)C10—C11—C12—C132.4 (8)
C4—N3—C2—N13.2 (5)C10—C11—C12—Cl1178.1 (5)
C4—N3—C2—N2177.5 (4)C11—C12—C13—C142.1 (7)
C2—N3—C4—N4179.8 (4)Cl1—C12—C13—C14178.4 (4)
C2—N3—C4—C51.5 (5)C12—C13—C14—C90.0 (7)
C2A—N1A—C6A—C7A177.8 (3)N3A—C4A—C5A—C6A0.6 (5)
C6A—N1A—C2A—N2A178.2 (4)N3A—C4A—C5A—C9A179.9 (3)
C6A—N1A—C2A—N3A1.0 (5)N4A—C4A—C5A—C6A179.2 (4)
C2A—N1A—C6A—C5A1.5 (5)N4A—C4A—C5A—C9A0.1 (6)
C4A—N3A—C2A—N2A178.9 (4)C4A—C5A—C6A—N1A1.3 (6)
C2A—N3A—C4A—N4A179.7 (4)C4A—C5A—C6A—C7A178.0 (4)
C2A—N3A—C4A—C5A0.1 (5)C9A—C5A—C6A—N1A179.4 (3)
C4A—N3A—C2A—N1A0.3 (5)C9A—C5A—C6A—C7A1.3 (6)
N3—C4—C5—C9180.0 (3)C4A—C5A—C9A—C14A106.0 (4)
N3—C4—C5—C61.6 (5)C6A—C5A—C9A—C10A105.4 (5)
N4—C4—C5—C91.8 (6)C6A—C5A—C9A—C14A74.7 (5)
N4—C4—C5—C6176.6 (4)C4A—C5A—C9A—C10A73.9 (5)
C4—C5—C6—N12.9 (6)N1A—C6A—C7A—C8A79.8 (5)
C6—C5—C9—C1481.8 (5)C5A—C6A—C7A—C8A100.9 (5)
C4—C5—C9—C1496.5 (5)C14A—C9A—C10A—C11A1.3 (6)
C6—C5—C9—C1099.0 (5)C5A—C9A—C14A—C13A177.7 (4)
C4—C5—C9—C1082.6 (5)C5A—C9A—C10A—C11A178.8 (4)
C4—C5—C6—C7174.0 (4)C10A—C9A—C14A—C13A2.5 (6)
C9—C5—C6—C74.4 (6)C9A—C10A—C11A—C12A0.7 (7)
C9—C5—C6—N1178.7 (3)C10A—C11A—C12A—Cl1A177.5 (4)
N1—C6—C7—C869.4 (4)C10A—C11A—C12A—C13A1.6 (7)
C5—C6—C7—C8107.7 (5)C11A—C12A—C13A—C14A0.4 (7)
C5—C9—C14—C13179.1 (4)Cl1A—C12A—C13A—C14A178.6 (4)
C14—C9—C10—C111.4 (8)C12A—C13A—C14A—C9A1.6 (7)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z+1/2; (iii) x, y, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z; (vi) x+1/2, y1/2, z+1/2; (vii) x, y+1, z+1/2; (viii) x+1/2, y+1/2, z+1; (ix) x, y, z1/2; (x) x, y+1, z1/2; (xi) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1Ex0.862.092.880 (5)153
N1—H1···O3Ex0.862.413.177 (6)148
N1A—H1A···O3C0.861.922.778 (4)175
N2—H2···O1B0.862.072.901 (5)163
N2A—H2A···O2Evi0.862.032.794 (5)148
N2A—H2B···O1C0.861.932.784 (4)171
N2—H3···O1Ex0.862.333.056 (5)142
N2—H3···O1Cv0.862.152.848 (5)138
N3A—H3A···O1Dviii0.861.922.765 (5)167
N3—H4···O1B0.862.583.290 (5)141
N3—H4···O3B0.861.882.722 (4)164
N4A—H4A···O2Bviii0.862.072.855 (5)152
N4A—H4B···O2Dviii0.861.982.813 (5)164
N4—H5···O2D0.862.172.832 (4)134
N4—H5···O3B0.862.463.154 (5)139
N4—H6···O3D0.862.513.050 (5)121
Symmetry codes: (v) x+1/2, y+1/2, z; (vi) x+1/2, y1/2, z+1/2; (viii) x+1/2, y+1/2, z+1; (x) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC12H15ClN42+·2NO3
Mr374.75
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)32.700 (7), 12.926 (3), 16.065 (3)
β (°) 104.73 (3)
V3)6567 (3)
Z16
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerKuma KM4CCD κ-geometry
diffractometer
Absorption correctionMulti-scan
(XEMP, Siemens, 1990)
Tmin, Tmax0.893, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
27180, 6490, 3225
Rint0.048
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.231, 1.03
No. of reflections6490
No. of parameters451
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.46, 0.64

Computer programs: CrysAlis CCD (Oxford Diffraction, 2000), CrysAlis RED (Oxford Diffraction, 2000), CrysAlis RED, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976) and PLATON (Spek, 2003), PLATON.

Selected geometric parameters (Å, º) top
C5—C91.492 (6)C5A—C9A1.484 (5)
C2—N1—C6122.9 (3)O2D—N1D—O3D120.6 (3)
C2—N3—C4122.7 (3)O1E—N1E—O3E119.3 (4)
C2A—N1A—C6A122.9 (3)O1E—N1E—O2E121.6 (4)
C2A—N3A—C4A123.0 (3)O2E—N1E—O3E119.1 (4)
O1D—N1D—O2D117.8 (4)N1A—C6A—C5A119.5 (4)
O1D—N1D—O3D121.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1Ei0.862.092.880 (5)153
N1—H1···O3Ei0.862.413.177 (6)148
N1A—H1A···O3C0.861.922.778 (4)175
N2—H2···O1B0.862.072.901 (5)163
N2A—H2A···O2Eii0.862.032.794 (5)148
N2A—H2B···O1C0.861.932.784 (4)171
N2—H3···O1Ei0.862.333.056 (5)142
N2—H3···O1Ciii0.862.152.848 (5)138
N3A—H3A···O1Div0.861.922.765 (5)167
N3—H4···O1B0.862.583.290 (5)141
N3—H4···O3B0.861.882.722 (4)164
N4A—H4A···O2Biv0.862.072.855 (5)152
N4A—H4B···O2Div0.861.982.813 (5)164
N4—H5···O2D0.862.172.832 (4)134
N4—H5···O3B0.862.463.154 (5)139
N4—H6···O3D0.862.513.050 (5)121
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds