Download citation
Download citation
link to html
The title compounds, 2-ethyl­phenyl acridine-9-carboxyl­ate, C22H17NO2, (I), and 2,5-dimethyl­phenyl acridine-9-carboxyl­ate, C22H17NO2, (II), form triclinic and monoclinic crystals, respectively. Related by a centre of symmetry, adjacent molecules of (I) are linked in the lattice via a network of C—H...π and non-specific dispersive interactions. As a result, acridine moieties and independent phenyl moieties of (I) are parallel in the lattice. The molecules of (II), arranged in a `head-to-tail' manner and related by a centre of symmetry, form pairs stabilized via C—H...π interactions. These are linked in the crystal via dispersive interactions. Acridine and independent phenyl moieties lie parallel within the pairs, while adjacent pairs are perpendicular, forming a herring-bone pattern.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104030537/ga1086sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104030537/ga1086Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104030537/ga1086IIsup3.hkl
Contains datablock S2

CCDC references: 263064; 263065

Comment top

Phenyl esters of acridine-9-carboxylic acids are precursors of practically important chemi-luminescent indicators and chemi-luminogenic fragments of chemi-luminescent labels (Dodeigne et al., 2000; Zomer & Jacquemijns, 2001). This is because 9-carboxy-10-methylacridinium phenyl esters react efficiently with hydrogen peroxide in alkaline media, which leads to electronically excited 10-methyl-9-acridinones emitting radiation (Rak et al., 1999). Among other things, this effect is utilized in quantitative assays of macromolecules present in living matter, that is, in immunological, medical, environmental and biochemical analyses (Adamczyk et al., 1999; Dodeigne et al., 2000; Razawi & McCapra, 2002; Smith et al., 2000; Zomer & Jacquemijns, 2001). Despite the long-standing interest shown in this group of compounds, there is only one publication to date -our own - on the crystallography of 2-methylphenyl 2-methoxyacridine-9-carboxylate (Meszko et al., 2002). It is thus important to extend investigations of further representatives of this group, especially since information on the structure, crystal packing and other features may help in the design of very stable compounds that are nevertheless highly reactive towards oxidizing agents (hydrogen peroxide). This paper presents the crystal structure of two isomers, (I) and (II), alkyl-substituted in the phenyl ester group, of phenylacridine-9-carboxylate.

The acridine and phenyl moieties in (I), with average deviations from planarity of 0.0123 and 0.0033 Å, respectively, are oriented at an angle of 62.1 (2)° (defined as γ, the angle between the mean planes delineated by all the non-H atoms of the acridine and phenyl nuclei; Fig. 1, Table 1). The carboxyl group is twisted relative to the acridine skeleton, at an angle of 67.3 (2)° (defined as δ, the angle between the mean planes delineated by all the non-H atoms of the acridine nucleus and atoms C15, O16 and O17).

In the crystalline phase, adjacent molecules of (I), related by a centre of symmetry, are linked via a network of C—H···π interactions and non-specific dispersive interactions (Fig. 2, Table 2). As a result, the acridine moieties and independent phenyl moieties are parallel in the lattice.

The planes of the acridine and phenyl moieties in (II), with average deviations from planarity of 0.0013 and 0.0056 Å, respectively, have a γ angle of 35.7 (2)° (Fig.3, Table 3). The carboxyl group is twisted relative to the acridine skeleton, with a δ angle of 68.1 (2)°.

Arranged in a `head-to-tail' manner, the molecules of (II) form pairs stabilized through C—H···π interactions (Table 4). These pairs of molecules, related by a centre of symmetry, are linked in the crystal via dispersive interactions. The acridine moieties and independent phenyl moieties within the pairs are parallel, while adjacent pairs, which form a herring-bone pattern in the crystal, lie perpendicular to each other (Fig. 4).

Experimental top

Compounds (I) and (II) were synthesized by conversion of commercially available acridine-9-carboxylic acid to acid chloride, and by the reaction of the latter with 2-ethylphenol for (I) or 2,5-dimethylphenol for (II) (Sato, 1996). The crude products were purified chromatographically (SiO2, cyclohexane/ethyl acetate, 3:2 (v/v). Elemental analyses (% found/calculated): for (I): C 81.07/80.71, H 5.07/5.23, N 4.34/4.28; for (II): C 80.49/80.71, H 5.09/5.23, N 4.22/4.28. In both cases, pale-yellow crystals suitable for X-ray investigations were grown from cyclohexane [m.p. 387–389 K for (I) and 452–454 K for (II)].

Refinement top

All H atoms were placed geometrically and refined using a riding model, with C—H distances of 0.96 Å and with Uiso(H) = 1.2Ueq(C). Please check added text.

Computing details top

For both compounds, data collection: KM-4 Software (Kuma Diffraction, 1989); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme and 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The arrangement of the molecules of (I) in the unit cell, viewed along the c axis. H atoms not involved in C—H···π interactions have been omitted. C—H···π interactions are represented by dashed lines. Symmetry codes for these interactions are given in Table 2.
[Figure 3] Fig. 3. The molecular structure of (II), showing the atom-labelling scheme and 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. Part of the crystal structure of (II) in the unit cell, viewed along the c axis, showing the centrosymmetric linking of the molecules by pairs of C—H···π interactions (dashed lines). H atoms not involved in C—H···π interactions have been omitted. Symmetry codes for these interactions are given in Table 4.
(I) 2-ethylphenyl acridine-9-carboxylate top
Crystal data top
C22H17NO2Z = 2
Mr = 327.37F(000) = 344
Triclinic, P1Dx = 1.278 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.995 (2) ÅCell parameters from 50 reflections
b = 9.465 (2) Åθ = 2.3–26°
c = 11.899 (2) ŵ = 0.08 mm1
α = 92.12 (3)°T = 293 K
β = 98.96 (3)°Prism, yellow
γ = 106.28 (3)°0.5 × 0.4 × 0.3 mm
V = 850.7 (4) Å3
Data collection top
Kuma KM-4
diffractometer
Rint = 0.017
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 2.3°
Graphite monochromatorh = 99
θ/2θ scansk = 1111
3507 measured reflectionsl = 140
3337 independent reflections3 standard reflections every 200 reflections
1788 reflections with I > 2σ(I) intensity decay: 1.3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.1515P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3337 reflectionsΔρmax = 0.20 e Å3
227 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.027 (4)
Crystal data top
C22H17NO2γ = 106.28 (3)°
Mr = 327.37V = 850.7 (4) Å3
Triclinic, P1Z = 2
a = 7.995 (2) ÅMo Kα radiation
b = 9.465 (2) ŵ = 0.08 mm1
c = 11.899 (2) ÅT = 293 K
α = 92.12 (3)°0.5 × 0.4 × 0.3 mm
β = 98.96 (3)°
Data collection top
Kuma KM-4
diffractometer
Rint = 0.017
3507 measured reflections3 standard reflections every 200 reflections
3337 independent reflections intensity decay: 1.3%
1788 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.02Δρmax = 0.20 e Å3
3337 reflectionsΔρmin = 0.18 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5133 (3)0.6084 (2)1.18451 (18)0.0511 (5)
H1A0.49840.57601.10520.061*
C20.6438 (3)0.5833 (3)1.2593 (2)0.0650 (6)
H2A0.72160.53361.23290.078*
C30.6677 (4)0.6299 (3)1.3758 (2)0.0781 (8)
H3A0.76060.60971.42820.094*
C40.5649 (4)0.7033 (3)1.41436 (19)0.0718 (7)
H4A0.58150.73191.49450.086*
C50.1004 (4)0.9242 (3)1.3584 (2)0.0677 (7)
H5A0.12890.95561.43850.081*
C60.0342 (4)0.9571 (3)1.2926 (2)0.0741 (7)
H6A0.09491.01881.32460.089*
C70.0827 (3)0.9057 (3)1.1765 (2)0.0663 (6)
H7A0.18070.92831.13110.080*
C80.0062 (3)0.8253 (2)1.12776 (18)0.0519 (5)
H8A0.03020.79041.04850.062*
C90.2568 (2)0.71311 (19)1.14893 (15)0.0380 (4)
N100.3295 (3)0.8110 (2)1.38188 (14)0.0561 (5)
C110.3964 (3)0.6831 (2)1.22095 (15)0.0411 (5)
C120.4262 (3)0.7344 (2)1.33895 (16)0.0499 (5)
C130.1528 (3)0.7912 (2)1.19268 (15)0.0409 (5)
C140.1980 (3)0.8399 (2)1.31147 (16)0.0489 (5)
C150.2216 (2)0.6582 (2)1.02595 (15)0.0392 (4)
O160.21642 (18)0.76849 (14)0.95782 (10)0.0460 (4)
O170.2048 (2)0.53417 (16)0.99104 (11)0.0538 (4)
C180.1779 (3)0.7319 (2)0.83844 (14)0.0400 (5)
C190.3075 (3)0.7949 (2)0.77632 (15)0.0426 (5)
C200.2640 (3)0.7638 (2)0.65900 (16)0.0497 (5)
H20A0.35170.80430.61290.060*
C210.1011 (3)0.6749 (2)0.60717 (17)0.0550 (6)
H21A0.07350.65550.52560.066*
C220.0254 (3)0.6152 (3)0.67261 (18)0.0577 (6)
H22A0.13960.55280.63690.069*
C230.0126 (3)0.6446 (2)0.78953 (17)0.0492 (5)
H23A0.07510.60520.83570.059*
C240.4866 (3)0.8924 (3)0.8307 (2)0.0627 (6)
H24A0.47540.94580.89790.075*
H24B0.52980.96310.77850.075*
C250.6199 (4)0.8113 (4)0.8629 (3)0.1151 (13)
H25A0.73190.88050.89460.173*
H25B0.63180.75700.79630.173*
H25C0.58170.74400.91850.173*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0537 (13)0.0556 (13)0.0470 (12)0.0211 (11)0.0086 (10)0.0037 (9)
C20.0603 (15)0.0770 (16)0.0652 (15)0.0337 (13)0.0072 (12)0.0088 (12)
C30.0671 (17)0.108 (2)0.0622 (16)0.0403 (16)0.0077 (13)0.0105 (15)
C40.0790 (18)0.096 (2)0.0389 (12)0.0316 (15)0.0045 (12)0.0036 (12)
C50.096 (2)0.0703 (16)0.0491 (13)0.0354 (15)0.0301 (13)0.0013 (11)
C60.095 (2)0.0757 (17)0.0726 (17)0.0476 (16)0.0359 (15)0.0065 (13)
C70.0666 (16)0.0717 (16)0.0717 (17)0.0345 (13)0.0177 (12)0.0090 (12)
C80.0515 (13)0.0570 (13)0.0512 (12)0.0198 (11)0.0128 (10)0.0072 (10)
C90.0429 (11)0.0364 (10)0.0332 (9)0.0072 (8)0.0096 (8)0.0049 (8)
N100.0706 (13)0.0671 (12)0.0331 (9)0.0224 (10)0.0124 (8)0.0022 (8)
C110.0466 (12)0.0410 (10)0.0352 (10)0.0100 (9)0.0096 (8)0.0065 (8)
C120.0553 (13)0.0566 (13)0.0360 (11)0.0130 (10)0.0080 (9)0.0066 (9)
C130.0476 (12)0.0389 (10)0.0372 (10)0.0098 (9)0.0148 (8)0.0062 (8)
C140.0603 (14)0.0495 (12)0.0399 (11)0.0142 (11)0.0197 (10)0.0062 (9)
C150.0407 (11)0.0408 (11)0.0360 (10)0.0108 (9)0.0079 (8)0.0031 (8)
O160.0640 (9)0.0415 (7)0.0316 (7)0.0132 (7)0.0091 (6)0.0045 (6)
O170.0732 (10)0.0464 (9)0.0422 (8)0.0214 (7)0.0044 (7)0.0006 (6)
C180.0492 (12)0.0415 (11)0.0299 (9)0.0151 (9)0.0054 (8)0.0035 (8)
C190.0475 (12)0.0429 (11)0.0384 (11)0.0139 (9)0.0085 (9)0.0050 (9)
C200.0584 (14)0.0566 (13)0.0392 (11)0.0204 (11)0.0156 (10)0.0081 (9)
C210.0665 (16)0.0617 (14)0.0348 (11)0.0200 (12)0.0005 (10)0.0010 (10)
C220.0517 (14)0.0632 (14)0.0475 (13)0.0071 (11)0.0056 (10)0.0032 (10)
C230.0480 (13)0.0549 (13)0.0422 (11)0.0095 (10)0.0095 (9)0.0096 (9)
C240.0570 (15)0.0631 (15)0.0562 (14)0.0018 (12)0.0098 (11)0.0058 (11)
C250.0541 (18)0.100 (2)0.170 (3)0.0069 (17)0.0213 (19)0.028 (2)
Geometric parameters (Å, º) top
C1—C21.343 (3)C11—C121.430 (3)
C1—C111.426 (3)C13—C141.429 (3)
C1—H1A0.96C15—O161.351 (2)
C2—C31.406 (3)C15—O171.195 (2)
C2—H2A0.96O16—C181.414 (2)
C3—C41.335 (4)C18—C231.371 (3)
C3—H3A0.96C18—C191.379 (3)
C4—C121.419 (3)C19—C201.385 (3)
C4—H4A0.96C19—C241.499 (3)
C5—C61.346 (4)C20—C211.372 (3)
C5—C141.417 (3)C20—H20A0.96
C5—H5A0.96C21—C221.380 (3)
C6—C71.404 (3)C21—H21A0.96
C6—H6A0.96C22—C231.377 (3)
C7—C81.349 (3)C22—H22A0.96
C7—H7A0.96C23—H23A0.96
C8—C131.423 (3)C24—C251.491 (4)
C8—H8A0.96C24—H24A0.96
C9—C131.400 (3)C24—H24B0.96
C9—C111.400 (3)C25—H25A0.96
C9—C151.491 (2)C25—H25B0.96
N10—C141.337 (3)C25—H25C0.96
N10—C121.339 (3)
C2—C1—C11121.0 (2)N10—C14—C13123.4 (2)
C2—C1—H1A119.6C5—C14—C13119.1 (2)
C11—C1—H1A119.4C9—C15—O16111.19 (16)
C1—C2—C3120.5 (2)C9—C15—O17125.0 (2)
C1—C2—H2A119.7C11—C9—C15118.22 (17)
C3—C2—H2A119.8C15—O16—C18117.60 (14)
C4—C3—C2121.1 (2)O16—C15—O17123.74 (17)
C4—C3—H3A119.5O16—C18—C19117.20 (17)
C2—C3—H3A119.3C18—C19—C24122.8 (2)
C3—C4—C12120.8 (2)C23—C18—C19123.34 (17)
C3—C4—H4A119.8C23—C18—O16119.32 (17)
C12—C4—H4A119.4C18—C19—C20116.3 (2)
C6—C5—C14120.7 (2)C20—C19—C24120.8 (2)
C6—C5—H5A119.9C21—C20—C19122.0 (2)
C14—C5—H5A119.4C21—C20—H20A119.2
C5—C6—C7120.5 (2)C19—C20—H20A118.8
C5—C6—H6A119.7C20—C21—C22119.7 (2)
C7—C6—H6a119.7C20—C21—H21A120.5
C8—C7—C6121.1 (2)C22—C21—H21A119.7
C8—C7—H7A119.5C23—C22—C21120.0 (2)
C6—C7—H7A119.5C23—C22—H22A119.9
C7—C8—C13120.7 (2)C21—C22—H22A120.1
C7—C8—H8A119.6C18—C23—C22118.6 (2)
C13—C8—H8A119.6C18—C23—H23A120.7
C13—C9—C11120.25 (16)C22—C23—H23A120.7
C13—C9—C15121.52 (17)C25—C24—C19114.0 (2)
C14—N10—C12118.59 (17)C25—C24—H24A108.8
C9—C11—C1124.70 (17)C19—C24—H24A109.0
C9—C11—C12117.4 (2)C25—C24—H24B108.5
C1—C11—C12117.9 (2)C19—C24—H24B108.7
N10—C12—C4118.3 (2)H24A—C24—H24B107.7
N10—C12—C11123.1 (2)C24—C25—H25A109.5
C4—C12—C11118.6 (2)C24—C25—H25B109.4
C9—C13—C8124.89 (17)H25A—C25—H25B109.5
C9—C13—C14117.2 (2)C24—C25—H25C109.5
C8—C13—C14117.8 (2)H25A—C25—H25C109.5
N10—C14—C5117.5 (2)H25B—C25—H25C109.5
C11—C1—C2—C30.2 (4)C6—C5—C14—C130.6 (4)
C1—C2—C3—C41.8 (4)C9—C13—C14—N101.9 (3)
C2—C3—C4—C121.1 (5)C8—C13—C14—N10178.0 (2)
C14—C5—C6—C71.4 (4)C9—C13—C14—C5177.6 (2)
C5—C6—C7—C81.5 (4)C8—C13—C14—C52.4 (3)
C6—C7—C8—C130.5 (4)C13—C9—C15—O17128.4 (2)
C13—C9—C11—C1178.0 (2)C13—C9—C15—O1653.5 (2)
C15—C9—C11—C12.7 (3)C9—C15—O16—C18177.82 (16)
C13—C9—C11—C120.3 (3)C11—C9—C13—C141.2 (3)
C15—C9—C11—C12179.0 (2)C11—C9—C15—O16127.2 (2)
C2—C1—C11—C9179.7 (2)C11—C9—C15—O1750.8 (3)
C2—C1—C11—C122.0 (3)C15—O16—C18—C19116.7 (2)
C14—N10—C12—C4179.6 (2)O16—C18—C19—C243.1 (3)
C14—N10—C12—C110.5 (3)O17—C15—O16—C184.1 (3)
C3—C4—C12—N10178.7 (2)C15—O16—C18—C2367.3 (2)
C3—C4—C12—C111.2 (4)C23—C18—C19—C201.0 (3)
C9—C11—C12—N101.2 (3)O16—C18—C19—C20176.74 (17)
C1—C11—C12—N10177.2 (2)C23—C18—C19—C24178.8 (2)
C9—C11—C12—C4178.9 (2)C18—C19—C20—C210.2 (3)
C1—C11—C12—C42.6 (3)C24—C19—C20—C21180.0 (2)
C11—C9—C13—C8178.8 (2)C19—C20—C21—C220.8 (3)
C15—C9—C13—C80.4 (3)C20—C21—C22—C230.3 (3)
C15—C9—C13—C14179.59 (17)C19—C18—C23—C221.5 (3)
C7—C8—C13—C9177.7 (2)O16—C18—C23—C22177.2 (2)
C7—C8—C13—C142.3 (3)C21—C22—C23—C180.8 (3)
C12—N10—C14—C5178.5 (2)C18—C19—C24—C2589.5 (3)
C12—N10—C14—C131.1 (3)C20—C19—C24—C2590.7 (3)
C6—C5—C14—N10179.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···CgAi0.962.813.608 (3)142
C6—H6A···CgAii0.962.813.540 (3)133
C24—H24A···CgBiii0.962.703.576 (3)151
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+2, z+2; (iii) x+1, y+2, z+2.
(II) 2,5-dimethylphenyl acridine-9-carboxylate top
Crystal data top
C22H17NO2F(000) = 688
Mr = 327.37Dx = 1.309 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 50 reflections
a = 11.769 (2) Åθ = 2.3–26°
b = 15.404 (3) ŵ = 0.08 mm1
c = 10.125 (2) ÅT = 293 K
β = 115.18 (3)°Prism, yellow
V = 1661.1 (7) Å30.5 × 0.4 × 0.3 mm
Z = 4
Data collection top
Kuma KM-4
diffractometer
Rint = 0.019
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 2.3°
Graphite monochromatorh = 014
θ/2θ scansk = 190
3424 measured reflectionsl = 1211
3267 independent reflections3 standard reflections every 200 reflections
1619 reflections with I > 2σ(I) intensity decay: 0.6%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0582P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max = 0.001
3267 reflectionsΔρmax = 0.17 e Å3
227 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0155 (17)
Crystal data top
C22H17NO2V = 1661.1 (7) Å3
Mr = 327.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.769 (2) ŵ = 0.08 mm1
b = 15.404 (3) ÅT = 293 K
c = 10.125 (2) Å0.5 × 0.4 × 0.3 mm
β = 115.18 (3)°
Data collection top
Kuma KM-4
diffractometer
Rint = 0.019
3424 measured reflections3 standard reflections every 200 reflections
3267 independent reflections intensity decay: 0.6%
1619 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 0.92Δρmax = 0.17 e Å3
3267 reflectionsΔρmin = 0.15 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.20927 (15)0.47340 (11)0.09760 (19)0.0516 (4)
H1A0.27480.43060.06650.062*
C20.14294 (17)0.49015 (12)0.24163 (19)0.0602 (5)
H2A0.16210.45940.31210.072*
C30.04734 (17)0.55282 (13)0.2900 (2)0.0624 (5)
H3A0.00070.56370.39250.075*
C40.01969 (16)0.59823 (11)0.19379 (19)0.0539 (5)
H4A0.04650.64050.22810.065*
C50.08440 (18)0.66635 (11)0.2897 (2)0.0618 (5)
H5A0.01830.70860.25100.074*
C60.1444 (2)0.65547 (13)0.4348 (2)0.0713 (6)
H6A0.12200.68950.49960.086*
C70.24110 (19)0.59421 (13)0.4949 (2)0.0669 (5)
H7A0.28370.58800.59900.080*
C80.27579 (16)0.54401 (11)0.40834 (19)0.0557 (5)
H8A0.34190.50230.45220.067*
C90.24516 (13)0.50435 (9)0.15759 (17)0.0409 (4)
N100.05513 (12)0.63085 (8)0.04906 (15)0.0490 (3)
C110.18284 (14)0.51921 (9)0.00771 (16)0.0414 (4)
C120.08646 (14)0.58377 (9)0.04112 (17)0.0435 (4)
C130.21465 (14)0.55312 (10)0.25398 (17)0.0432 (4)
C140.11726 (15)0.61638 (10)0.19307 (19)0.0469 (4)
C150.34256 (15)0.43544 (10)0.21445 (17)0.0468 (4)
O160.29415 (10)0.36404 (7)0.24412 (13)0.0534 (3)
O170.44758 (12)0.44111 (9)0.2296 (2)0.0927 (6)
C180.36886 (14)0.28859 (10)0.29262 (18)0.0448 (4)
C190.33351 (14)0.21791 (10)0.20007 (18)0.0489 (4)
C200.40315 (16)0.14305 (11)0.2551 (2)0.0575 (5)
H20A0.38470.09220.19460.069*
C210.49853 (16)0.13915 (11)0.3931 (2)0.0581 (5)
H21A0.54350.08580.42830.070*
C220.53092 (15)0.21036 (11)0.4839 (2)0.0523 (4)
C230.46436 (14)0.28639 (10)0.43039 (18)0.0484 (4)
H23A0.48600.33780.48970.058*
C240.22563 (17)0.22178 (13)0.0514 (2)0.0693 (6)
H24A0.15170.24140.06010.104*
H24B0.21080.16500.00810.104*
H24C0.24540.26130.00910.104*
C250.63114 (18)0.20648 (13)0.6379 (2)0.0746 (6)
H25A0.70320.17650.63940.112*
H25B0.59960.17610.69810.112*
H25C0.65460.26440.67450.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0512 (10)0.0517 (10)0.0548 (11)0.0016 (8)0.0253 (9)0.0000 (8)
C20.0645 (12)0.0692 (12)0.0489 (11)0.0080 (10)0.0260 (10)0.0057 (10)
C30.0592 (11)0.0749 (13)0.0463 (11)0.0058 (10)0.0159 (9)0.0091 (9)
C40.0448 (9)0.0539 (10)0.0525 (11)0.0000 (8)0.0107 (8)0.0133 (9)
C50.0689 (12)0.0490 (10)0.0772 (14)0.0000 (9)0.0403 (11)0.0090 (10)
C60.0914 (15)0.0606 (12)0.0767 (15)0.0106 (12)0.0499 (13)0.0233 (11)
C70.0820 (14)0.0676 (12)0.0512 (11)0.0154 (11)0.0283 (10)0.0128 (10)
C80.0598 (11)0.0534 (10)0.0483 (11)0.0031 (9)0.0175 (9)0.0003 (8)
C90.0379 (8)0.0348 (8)0.0481 (10)0.0004 (7)0.0164 (8)0.0051 (7)
N100.0469 (7)0.0413 (8)0.0559 (9)0.0047 (6)0.0189 (7)0.0042 (7)
C110.0396 (8)0.0377 (8)0.0463 (10)0.0031 (7)0.0176 (8)0.0022 (7)
C120.0404 (9)0.0381 (9)0.0498 (10)0.0023 (7)0.0172 (7)0.0063 (7)
C130.0438 (9)0.0399 (8)0.0442 (10)0.0053 (7)0.0172 (8)0.0000 (7)
C140.0487 (9)0.0366 (9)0.0571 (11)0.0035 (8)0.0242 (8)0.0035 (8)
C150.0451 (10)0.0470 (9)0.0488 (10)0.0035 (8)0.0204 (8)0.0071 (8)
O160.0431 (6)0.0401 (6)0.0743 (8)0.0074 (5)0.0225 (6)0.0141 (6)
O170.0520 (8)0.0727 (9)0.1609 (16)0.0177 (7)0.0525 (9)0.0526 (9)
C180.0405 (8)0.0404 (9)0.0557 (11)0.0069 (7)0.0225 (8)0.0111 (8)
C190.0467 (9)0.0505 (10)0.0512 (11)0.0004 (8)0.0223 (8)0.0024 (8)
C200.0600 (11)0.0454 (10)0.0727 (13)0.0024 (9)0.0335 (10)0.0031 (9)
C210.0569 (11)0.0440 (10)0.0770 (14)0.0124 (9)0.0318 (10)0.0145 (9)
C220.0426 (9)0.0564 (10)0.0582 (11)0.0039 (9)0.0218 (8)0.0149 (9)
C230.0456 (9)0.0439 (9)0.0546 (11)0.0015 (8)0.0201 (8)0.0004 (8)
C240.0626 (12)0.0763 (14)0.0617 (12)0.0016 (10)0.0193 (10)0.0047 (10)
C250.0585 (11)0.0825 (14)0.0696 (14)0.0043 (11)0.0146 (10)0.0279 (11)
Geometric parameters (Å, º) top
C1—C21.354 (2)C11—C121.429 (2)
C1—C111.419 (2)C13—C141.429 (2)
C1—H1A0.96C15—O161.330 (2)
C2—C31.403 (3)C15—O171.182 (2)
C2—H2A0.96O16—C181.413 (2)
C3—C41.347 (2)C18—C231.370 (2)
C3—H3A0.96C18—C191.380 (2)
C4—C121.422 (2)C19—C201.387 (2)
C4—H4A0.96C19—C241.502 (2)
C5—C61.343 (3)C20—C211.372 (2)
C5—C141.421 (2)C20—H20A0.96
C5—H5A0.96C21—C221.377 (2)
C6—C71.402 (3)C21—H21A0.96
C6—H6A0.96C22—C231.385 (2)
C7—C81.356 (3)C22—C251.503 (2)
C7—H7A0.96C23—H23A0.96
C8—C131.422 (2)C24—H24A0.96
C8—H8A0.96C24—H24B0.96
C9—C131.394 (2)C24—H24C0.96
C9—C111.395 (2)C25—H25A0.96
C9—C151.487 (2)C25—H25B0.96
N10—C121.335 (2)C25—H25C0.96
N10—C141.343 (2)
C2—C1—C11120.27 (16)N10—C14—C13123.23 (15)
C2—C1—H1A119.9C5—C14—C13118.38 (16)
C11—C1—H1A119.8C9—C15—O16110.12 (13)
C1—C2—C3121.09 (17)C9—C15—O17126.07 (15)
C1—C2—H2A119.7C11—C9—C15120.01 (14)
C3—C2—H2A119.2C15—O16—C18119.69 (12)
C4—C3—C2120.62 (17)O16—C15—O17123.80 (15)
C4—C3—H3A119.2O16—C18—C19116.71 (14)
C2—C3—H3A120.2C18—C19—C24122.10 (15)
C3—C4—C12120.87 (17)C23—C18—C19123.48 (15)
C3—C4—H4A120.0C23—C18—O16119.59 (15)
C12—C4—H4A119.2C18—C19—C20115.30 (15)
C6—C5—C14121.0 (2)C20—C19—C24122.59 (16)
C6—C5—H5A119.2C21—C20—C19122.22 (17)
C14—C5—H5A119.8C21—C20—H20A118.6
C5—C6—C7120.7 (2)C19—C20—H20A119.1
C5—C6—H6A120.7C20—C21—C22121.29 (16)
C7—C6—H6A118.6C20—C21—H21A119.9
C8—C7—C6121.0 (2)C22—C21—H21A118.8
C8—C7—H7A119.5C21—C22—C23117.56 (17)
C6—C7—H7A119.5C21—C22—C25122.19 (17)
C7—C8—C13120.2 (2)C23—C22—C25120.21 (17)
C7—C8—H8A119.4C18—C23—C22120.13 (16)
C13—C8—H8A120.4C18—C23—H23A120.0
C13—C9—C11120.02 (13)C22—C23—H23A119.8
C13—C9—C15119.96 (14)C19—C24—H24A109.5
C12—N10—C14118.11 (14)C19—C24—H24B109.5
C9—C11—C1123.64 (14)H24A—C24—H24B109.5
C9—C11—C12117.58 (14)C19—C24—H24C109.5
C1—C11—C12118.78 (14)H24A—C24—H24C109.5
N10—C12—C4118.20 (15)H24B—C24—H24C109.5
N10—C12—C11123.43 (15)C22—C25—H25A109.5
C4—C12—C11118.36 (15)C22—C25—H25B109.5
C9—C13—C8123.74 (15)H25A—C25—H25B109.5
C9—C13—C14117.61 (14)C22—C25—H25C109.5
C8—C13—C14118.65 (15)H25A—C25—H25C109.5
N10—C14—C5118.38 (16)H25B—C25—H25C109.5
C11—C1—C2—C30.1 (3)O17—C15—O16—C182.0 (3)
C1—C2—C3—C40.3 (3)C15—O16—C18—C19113.59 (16)
C2—C3—C4—C120.1 (3)C15—C9—C13—C14177.82 (13)
C14—C5—C6—C70.2 (3)C7—C8—C13—C9179.68 (16)
C5—C6—C7—C80.5 (3)C7—C8—C13—C140.4 (2)
C6—C7—C8—C130.4 (3)C12—N10—C14—C5179.95 (15)
C13—C9—C11—C1179.11 (15)C12—N10—C14—C130.2 (2)
C15—C9—C11—C12.0 (2)C6—C5—C14—N10179.15 (16)
C13—C9—C11—C121.5 (2)C6—C5—C14—C131.0 (3)
C15—C9—C11—C12177.43 (13)C9—C13—C14—N100.3 (2)
C2—C1—C11—C9178.60 (15)C8—C13—C14—N10179.02 (15)
C2—C1—C11—C120.8 (2)C9—C13—C14—C5179.64 (15)
C14—N10—C12—C4179.22 (14)C8—C13—C14—C51.1 (2)
C14—N10—C12—C110.3 (2)C13—C9—C15—O17101.7 (2)
C3—C4—C12—N10179.86 (16)C13—C9—C15—O1679.59 (18)
C3—C4—C12—C110.6 (2)C23—C18—C19—C201.0 (2)
C9—C11—C12—N101.1 (2)O16—C18—C19—C20175.58 (13)
C1—C11—C12—N10179.47 (14)C23—C18—C19—C24178.01 (16)
C9—C11—C12—C4178.40 (13)C18—C19—C20—C211.5 (2)
C1—C11—C12—C41.0 (2)C24—C19—C20—C21177.49 (17)
C11—C9—C13—C8178.14 (14)C19—C20—C21—C220.8 (3)
C15—C9—C13—C82.9 (2)C20—C21—C22—C230.5 (3)
C9—C15—O16—C18176.78 (13)C20—C21—C22—C25177.19 (17)
C11—C9—C13—C141.1 (2)C19—C18—C23—C220.3 (2)
C11—C9—C15—O1699.33 (16)O16—C18—C23—C22174.20 (14)
C11—C9—C15—O1779.4 (2)C21—C22—C23—C181.0 (2)
C15—O16—C18—C2371.6 (2)C25—C22—C23—C18176.73 (15)
O16—C18—C19—C243.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25C···CgCi0.962.873.622 (2)136
Symmetry code: (i) x+1, y+3/2, z+3/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC22H17NO2C22H17NO2
Mr327.37327.37
Crystal system, space groupTriclinic, P1Monoclinic, P21/c
Temperature (K)293293
a, b, c (Å)7.995 (2), 9.465 (2), 11.899 (2)11.769 (2), 15.404 (3), 10.125 (2)
α, β, γ (°)92.12 (3), 98.96 (3), 106.28 (3)90, 115.18 (3), 90
V3)850.7 (4)1661.1 (7)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.080.08
Crystal size (mm)0.5 × 0.4 × 0.30.5 × 0.4 × 0.3
Data collection
DiffractometerKuma KM-4
diffractometer
Kuma KM-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3507, 3337, 1788 3424, 3267, 1619
Rint0.0170.019
(sin θ/λ)max1)0.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.125, 1.02 0.036, 0.103, 0.92
No. of reflections33373267
No. of parameters227227
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.180.17, 0.15

Computer programs: KM-4 Software (Kuma Diffraction, 1989), KM-4 Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
C9—C111.400 (3)C15—O161.351 (2)
C9—C151.491 (2)C15—O171.195 (2)
N10—C121.339 (3)O16—C181.414 (2)
C9—C15—O16111.19 (16)C15—O16—C18117.60 (14)
C9—C15—O17125.0 (2)O16—C15—O17123.74 (17)
C9—C15—O16—C18177.82 (16)C15—O16—C18—C19116.7 (2)
C11—C9—C15—O1750.8 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···CgAi0.962.813.608 (3)142
C6—H6A···CgAii0.962.813.540 (3)133
C24—H24A···CgBiii0.962.703.576 (3)151
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+2, z+2; (iii) x+1, y+2, z+2.
Selected geometric parameters (Å, º) for (II) top
C9—C111.395 (2)C15—O161.330 (2)
C9—C151.487 (2)C15—O171.182 (2)
N10—C121.335 (2)O16—C181.413 (2)
C9—C15—O16110.12 (13)C15—O16—C18119.69 (12)
C9—C15—O17126.07 (15)O16—C15—O17123.80 (15)
C9—C15—O16—C18176.78 (13)C15—O16—C18—C2371.6 (2)
C11—C9—C15—O1779.4 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C25—H25C···CgCi0.962.873.622 (2)136
Symmetry code: (i) x+1, y+3/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds