Download citation
Download citation
link to html
Two tridentate phosphinethiol­ate ligands, [PhP(C6H4S-2)2]2−, coordinate to the GeIV centre in a facial manner yielding the title compound, [Ge(C18H13PS2)2], which exhibits a pseudo-twofold symmetry with the two P-atom donors in a cis configuration. The Ge centre has a distorted octahedral environment. Two phenyl rings, one from each of the phosphinethiol­ate ligands, are parallel to one another, indicating π–π interactions. The molecules are linked by weak C—H...π and C—H...S interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104033256/ga1085sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104033256/ga1085Isup2.hkl
Contains datablock I

CCDC reference: 264784

Comment top

Thiolates and phosphines are common ligands in coordination chemistry. Bidentate ligands using a combination of both donor sites have attracted much attention in recent decades (Stephan, 1984; Dilworth et al., 1992). Metal complexes bearing polydentate ligands with both donor sites {e.g. [PhP(C6H4S-2)2]−2} are used in frontier research areas, such as biomimetic (Nguyen et al., 1996), metal–organic chemical vapour deposition (Pérez-Lourido et al., 1999) and catalytic (Clark et al., 2000) studies. In the course of studying the different 31P NMR behaviour of metal complexes with phosphinothiolate, we found that metal complexes containing the heavier congener of group 14 (i.e. Ge, Sn or Pb) have seldom been studied. Only one relevant structure with Sn, {PhP[C6H3(S-2)(SiMe3-3)]2}2Sn2 (Froelich et al., 1996), has been reported to date. We report here the first crystal structure of a Ge complex obtained by the reaction of a phosphinothiolate ligand and germanium chloride in tetrahydrofuran. n-BuLi was used to remove H atoms from the proligands (phenylphosphinothiol), yielding the tridentate ligand [PhP(C6H4S-2)2]−2 (L), which coordinates to the Ge centre to give the title complex, GeL2, (I).

Complex (I) contains a Ge centre with two [PhP(C6H4S-2)2]−2 ligands (Fig. 1). Each tridentate ligand uses one P and two S donor sites to coordinate to the Ge centre in a facial manner. Molecular models strongly suggest that the ligand favours facial over meridional coordination in an octahedral complex, mainly due to the pyramidal coordination of P (Dilworth et al., 1996). The octahedron formed by the two ligands around the Ge centre is slightly distorted, due to the bite angles of the ligands (ca 81–85°) and the steric repulsion between the phosphine groups, which leads to a P1—Ge—P2 angle of 100.34 (3)°.

Complex (I) exhibits a pseudo-twofold symmetry on the P1/P2/S1/S3 plane through the Ge centre. In a rare ReIV analogue, ReL2 (Dilworth et al., 1996), the pseudo-twofold symmetry becomes crystallographically real. The overall geometry of these two complexes is strikingly similar, except that the P1—Re—P2 angle of 108.8 (1)° is somewhat larger than the P1—Ge—P2 angle.

The Ge—P bond lengths [2.413 (1) and 2.417 (1) Å] in (I) are almost identical to those observed in Ge[Me3SiC(PMe2)2]2Cl2 (2.410–2.413 Å; Karsch et al., 1996), the only reported six-coordinated Ge complex available containing Ge—P bonds. Most of the Ge—S distances in (I) are around 2.4 Å (Table 1). These values are comparable with those cited for the six-coordinated complex [(L1Fe)2Ge][BPh4] [2.422, 2.433 and 2.438 Å; L1 is 1,4,7-(4-tert-butyl-2-mercaptobenzyl)-1,4,7-triazacyclononane; Glaser et al., 1999]. The reported Ge—S bond lengths in Ge complexes involving the mercaptophenyl group range from 2.195 Å in tris(benzene-1,2-dithiolato-S,S')germanium(IV) (Pfeiffer et al., 1989) to 2.477 Å in (L2)2Ge [L2 is 2,2'-thiotris(4,6-di-tert-butylphenolate); Pastor et al., 1997]. Of all the Ge—S distances in (I), only the Ge—S1 distance of 2.343 (1) Å is significantly shorter than the others (Table 1).

The two phenyl rings, one from each of the two phosphinothiolate ligands, are parallel to each other, with a separation (ring centroid to phenyl plane) of 3.5 (1) Å. This usually indicates the existence of a ππ interaction. Although similar distances between phenyl–phenyl planes are found in the ReL2 analogue [3.1 (1) and 3.5 (1) Å for two independent molecules], the phenyl pairs are positioned differently in these two complexes. In ReL2, the two phenyl rings are twisted away from each other, while those in (I) are arranged almost face to face (Fig. 1). Compared with the ReL2 analogue, the smaller P—M—P angle (ca 8° smaller) in (I), together with the larger S—M—S angle (ca 10° larger) across it, provides evidence for a stronger ππ interaction in (I). These angular differences are consistent with the twist of the coordination planes around the metal centre. In (I), the twist between the P2/Ge1/S3 and P1/Ge1/S1 planes is 6.2 (1)°, while the twist between similar planes in ReL2 is 17.1 (1)°. The smaller twist in (I) brings the two phenyl rings closer and hence produces a smaller P—M—P angle.

The molecules of (I) pack with weak C—H···π and C—H···S hydrogen-bond interactions (Table 2). The C—H···S interatomic distances and angles are comparable with those found in the report on Zn2(µ-C6H4S2)2(C10H8N2)2 [H···S = 2.84 Å, C···S = 3.637 (2) Å and C—H···S = 143°], where a possible C—H···S hydrogen bond is proposed (Hatch et al., 2003).

Experimental top

The title complex was obtained in a two-step reaction. First, the phosphinothiolate ligand was generated by mixing a tetrahydrofuran (thf) solution of the proligand PhP(C6H4SH-2)2 with n-BuLi in a 1:2 molar ratio at 273 K. An equimolar quantity (with respect to the ligand) of GeCl4 was added to this solution and stirred for 4 h. The yellow precipitate extracted using CH2Cl2 gave suitable crystals of (I) on re-crystallization in thf. The melting point was determined to be 542 (1) K. The 1H NMR spectrum gave a multiplet around 6.85–7.16 p.p.m. and 31P NMR a singlet at −17.82 p.p.m.

Refinement top

All H atoms were placed in calculated positions with C—H distances of 0.93 Å. They were included using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1985); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular packing of (I), showing the intermolecular C—H···S and most of the C—H···π interactions (Table 2). [Symmetry codes: (2) 1 − x, 1/2 + y, 1/2 − z; (3) −x, −y, 1 − z; (3a) 1 − x, 1 − y, 1 − z; (4) x, 1/2 − y, 1/2 + z.]
Bis[2,2'-(phenylphosphinediyl)dibenzenethiolato-κ3S,P,S']germanium(IV) top
Crystal data top
[Ge(C18H13PS2)2]F(000) = 1472
Mr = 721.34Dx = 1.478 Mg m3
Monoclinic, P21/cMelting point: 269(2) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71069 Å
a = 11.537 (4) ÅCell parameters from 20 reflections
b = 16.729 (3) Åθ = 4.9–7.4°
c = 16.882 (4) ŵ = 1.33 mm1
β = 95.96 (2)°T = 298 K
V = 3240.7 (14) Å3Prism, yellow
Z = 40.55 × 0.35 × 0.25 mm
Data collection top
Rigaku AFC-7S
diffractometer
Rint = 0.026
ω/2θ scansθmax = 26°, θmin = 2.2°
Absorption correction: ψ scan
(North et al., 1968)
h = 014
Tmin = 0.635, Tmax = 0.720k = 020
6696 measured reflectionsl = 2020
6369 independent reflections3 standard reflections every 150 reflections
3913 reflections with I > 2σ(I) intensity decay: 0.4%
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0243P)2 + 0.899P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.033(Δ/σ)max = 0.001
wR(F2) = 0.094Δρmax = 0.34 e Å3
S = 1.01Δρmin = 0.30 e Å3
6369 reflectionsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
389 parametersExtinction coefficient: 0.00152 (17)
0 restraints
Crystal data top
[Ge(C18H13PS2)2]V = 3240.7 (14) Å3
Mr = 721.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.537 (4) ŵ = 1.33 mm1
b = 16.729 (3) ÅT = 298 K
c = 16.882 (4) Å0.55 × 0.35 × 0.25 mm
β = 95.96 (2)°
Data collection top
Rigaku AFC-7S
diffractometer
3913 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.026
Tmin = 0.635, Tmax = 0.7203 standard reflections every 150 reflections
6696 measured reflections intensity decay: 0.4%
6369 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.01Δρmax = 0.34 e Å3
6369 reflectionsΔρmin = 0.30 e Å3
389 parameters
Special details top

Experimental. The scan width was (1.31 + 0.35tanθ)° with an ω scan speed of 16° per minute (up to 4 scans to achieve I/σ(I) > 15). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4976 (3)0.1715 (2)0.15359 (18)0.0426 (8)
C20.5242 (3)0.2473 (2)0.1273 (2)0.0547 (9)
H20.50830.2920.15710.066*
C30.5742 (3)0.2564 (3)0.0569 (2)0.0671 (11)
H30.59320.30710.03970.08*
C40.5956 (3)0.1903 (3)0.0123 (2)0.0698 (12)
H40.62940.19660.03490.084*
C50.5676 (3)0.1150 (3)0.0366 (2)0.0594 (10)
H50.58060.07110.00490.071*
C60.5198 (3)0.1038 (2)0.1085 (2)0.0482 (9)
C70.5446 (3)0.12284 (19)0.31860 (18)0.0405 (7)
C80.6420 (3)0.1717 (2)0.3370 (2)0.0528 (9)
H80.64670.22070.31160.063*
C90.7313 (3)0.1477 (3)0.3927 (3)0.0727 (12)
H90.79660.17990.40450.087*
C100.7222 (4)0.0755 (3)0.4304 (3)0.0888 (15)
H100.78140.05960.46870.107*
C110.6283 (4)0.0266 (3)0.4129 (3)0.0730 (12)
H110.62510.02210.43910.088*
C120.5370 (3)0.0487 (2)0.3562 (2)0.0464 (8)
C130.3606 (3)0.24116 (18)0.27134 (19)0.0390 (7)
C140.2812 (3)0.2785 (2)0.2152 (2)0.0591 (10)
H140.26740.25790.16390.071*
C150.2238 (4)0.3458 (3)0.2363 (3)0.0806 (14)
H150.17120.3710.1990.097*
C160.2430 (4)0.3758 (2)0.3113 (3)0.0812 (14)
H160.2040.42180.32450.097*
C170.3193 (4)0.3392 (2)0.3676 (3)0.0665 (11)
H170.33110.35970.4190.08*
C180.3784 (3)0.2719 (2)0.3474 (2)0.0474 (8)
H180.43060.2470.38530.057*
C190.1245 (3)0.04691 (19)0.3094 (2)0.0426 (8)
C200.1721 (3)0.1125 (2)0.2713 (2)0.0501 (9)
C210.1582 (3)0.1887 (2)0.3030 (3)0.0646 (11)
H210.190.23270.27960.077*
C220.0989 (4)0.1991 (2)0.3677 (3)0.0733 (13)
H220.08830.25050.38650.088*
C230.0540 (4)0.1347 (3)0.4060 (3)0.0697 (12)
H230.01580.14280.45120.084*
C240.0662 (3)0.0584 (2)0.3766 (2)0.0532 (9)
H240.03560.01490.40170.064*
C250.0452 (3)0.06936 (18)0.18684 (19)0.0409 (8)
C260.0738 (3)0.06807 (19)0.1970 (2)0.0487 (9)
H260.09770.06050.24740.058*
C270.1550 (3)0.0781 (2)0.1321 (2)0.0583 (10)
H270.23410.0790.13870.07*
C280.1187 (3)0.0869 (2)0.0571 (2)0.0552 (10)
H280.1740.09230.01330.066*
C290.0031 (3)0.08777 (19)0.0464 (2)0.0471 (8)
H290.01940.09350.00460.057*
C300.0827 (3)0.08004 (18)0.11180 (18)0.0388 (7)
C310.1394 (3)0.12209 (18)0.34870 (19)0.0390 (7)
C320.0676 (3)0.1879 (2)0.3389 (2)0.0524 (9)
H320.02180.19570.29090.063*
C330.0633 (4)0.2424 (2)0.4002 (2)0.0628 (10)
H330.01370.28630.39380.075*
C340.1329 (4)0.2316 (2)0.4708 (2)0.0658 (11)
H340.12980.26810.51210.079*
C350.2063 (4)0.1674 (2)0.4803 (2)0.0626 (10)
H350.25420.1610.52770.075*
C360.2098 (3)0.1124 (2)0.4203 (2)0.0514 (9)
H360.25930.06860.42740.062*
P10.43131 (7)0.15171 (5)0.24313 (5)0.03569 (19)
P20.15233 (7)0.05018 (5)0.27032 (5)0.03649 (19)
S10.49654 (8)0.00613 (6)0.14389 (6)0.0552 (2)
S20.42126 (8)0.01910 (5)0.33668 (6)0.0518 (2)
S30.24374 (9)0.10036 (5)0.18502 (6)0.0567 (3)
S40.22994 (7)0.08414 (6)0.09253 (5)0.0472 (2)
Ge10.33115 (3)0.027470 (19)0.21073 (2)0.03788 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0351 (17)0.056 (2)0.0356 (17)0.0016 (16)0.0008 (14)0.0006 (16)
C20.050 (2)0.066 (2)0.047 (2)0.0068 (19)0.0044 (17)0.0065 (18)
C30.057 (2)0.086 (3)0.058 (2)0.008 (2)0.008 (2)0.023 (2)
C40.051 (2)0.117 (4)0.043 (2)0.001 (3)0.0080 (19)0.015 (2)
C50.0352 (19)0.095 (3)0.047 (2)0.008 (2)0.0009 (16)0.010 (2)
C60.0333 (17)0.069 (2)0.0407 (19)0.0013 (16)0.0023 (15)0.0017 (17)
C70.0341 (16)0.0444 (18)0.0412 (18)0.0057 (15)0.0051 (14)0.0035 (15)
C80.042 (2)0.065 (2)0.050 (2)0.0051 (18)0.0022 (16)0.0056 (18)
C90.047 (2)0.091 (3)0.075 (3)0.009 (2)0.018 (2)0.008 (3)
C100.065 (3)0.103 (4)0.088 (3)0.009 (3)0.041 (3)0.008 (3)
C110.063 (3)0.069 (3)0.079 (3)0.010 (2)0.030 (2)0.014 (2)
C120.0410 (19)0.049 (2)0.0474 (19)0.0082 (16)0.0061 (15)0.0009 (16)
C130.0398 (17)0.0294 (16)0.0479 (19)0.0019 (14)0.0049 (15)0.0021 (14)
C140.061 (2)0.048 (2)0.065 (2)0.0096 (19)0.008 (2)0.0097 (18)
C150.074 (3)0.052 (3)0.112 (4)0.025 (2)0.006 (3)0.015 (3)
C160.074 (3)0.039 (2)0.132 (4)0.008 (2)0.020 (3)0.011 (3)
C170.059 (3)0.049 (2)0.094 (3)0.008 (2)0.018 (2)0.026 (2)
C180.0438 (19)0.0427 (19)0.055 (2)0.0061 (16)0.0027 (16)0.0073 (16)
C190.0392 (18)0.0356 (17)0.0502 (19)0.0024 (14)0.0093 (15)0.0059 (15)
C200.048 (2)0.0367 (18)0.062 (2)0.0068 (16)0.0113 (17)0.0018 (16)
C210.061 (2)0.037 (2)0.093 (3)0.0054 (18)0.005 (2)0.010 (2)
C220.074 (3)0.041 (2)0.103 (4)0.012 (2)0.001 (3)0.028 (2)
C230.063 (3)0.075 (3)0.071 (3)0.017 (2)0.003 (2)0.029 (2)
C240.049 (2)0.051 (2)0.058 (2)0.0093 (17)0.0029 (18)0.0105 (18)
C250.0365 (17)0.0315 (16)0.052 (2)0.0002 (14)0.0091 (15)0.0043 (15)
C260.0412 (19)0.0394 (19)0.064 (2)0.0050 (15)0.0035 (17)0.0062 (17)
C270.0355 (19)0.051 (2)0.085 (3)0.0047 (16)0.0126 (19)0.008 (2)
C280.048 (2)0.044 (2)0.067 (3)0.0001 (17)0.0242 (19)0.0004 (18)
C290.057 (2)0.0330 (17)0.047 (2)0.0002 (16)0.0137 (16)0.0000 (15)
C300.0416 (18)0.0303 (16)0.0420 (18)0.0001 (14)0.0077 (14)0.0001 (14)
C310.0403 (17)0.0333 (16)0.0434 (18)0.0040 (14)0.0047 (15)0.0011 (14)
C320.052 (2)0.045 (2)0.059 (2)0.0008 (17)0.0002 (18)0.0012 (17)
C330.071 (3)0.043 (2)0.075 (3)0.0051 (19)0.010 (2)0.0104 (19)
C340.082 (3)0.053 (2)0.065 (3)0.010 (2)0.020 (2)0.020 (2)
C350.076 (3)0.066 (3)0.045 (2)0.006 (2)0.005 (2)0.0064 (19)
C360.058 (2)0.050 (2)0.046 (2)0.0038 (17)0.0031 (17)0.0009 (16)
P10.0341 (4)0.0353 (4)0.0364 (4)0.0017 (3)0.0028 (3)0.0002 (3)
P20.0357 (4)0.0320 (4)0.0403 (4)0.0004 (3)0.0030 (3)0.0024 (3)
S10.0487 (5)0.0551 (5)0.0619 (6)0.0137 (4)0.0056 (4)0.0140 (5)
S20.0536 (5)0.0415 (5)0.0567 (5)0.0031 (4)0.0116 (4)0.0109 (4)
S30.0694 (6)0.0358 (5)0.0637 (6)0.0030 (4)0.0014 (5)0.0115 (4)
S40.0444 (5)0.0557 (5)0.0399 (4)0.0007 (4)0.0036 (4)0.0044 (4)
Ge10.03819 (19)0.03251 (18)0.04136 (19)0.00401 (15)0.00347 (14)0.00254 (14)
Geometric parameters (Å, º) top
C1—C21.388 (5)C20—C211.398 (5)
C1—C61.404 (5)C20—S31.759 (4)
C1—P11.794 (3)C21—C221.358 (6)
C2—C31.382 (5)C21—H210.93
C2—H20.93C22—C231.385 (6)
C3—C41.375 (6)C22—H220.93
C3—H30.93C23—C241.383 (5)
C4—C51.373 (6)C23—H230.93
C4—H40.93C24—H240.93
C5—C61.396 (5)C25—C301.392 (4)
C5—H50.93C25—C261.402 (5)
C6—S11.770 (4)C25—P21.804 (3)
C7—C81.398 (5)C26—C271.376 (5)
C7—C121.401 (5)C26—H260.93
C7—P11.794 (3)C27—C281.382 (5)
C8—C91.380 (5)C27—H270.93
C8—H80.93C28—C291.365 (5)
C9—C101.374 (6)C28—H280.93
C9—H90.93C29—C301.410 (4)
C10—C111.364 (6)C29—H290.93
C10—H100.93C30—S41.764 (3)
C11—C121.397 (5)C31—C321.378 (5)
C11—H110.93C31—C361.393 (4)
C12—S21.756 (4)C31—P21.806 (3)
C13—C181.378 (4)C32—C331.384 (5)
C13—C141.395 (4)C32—H320.93
C13—P11.792 (3)C33—C341.377 (6)
C14—C151.372 (5)C33—H330.93
C14—H140.93C34—C351.367 (5)
C15—C161.358 (6)C34—H340.93
C15—H150.93C35—C361.373 (5)
C16—C171.371 (6)C35—H350.93
C16—H160.93C36—H360.93
C17—C181.378 (5)P1—Ge12.4131 (10)
C17—H170.93P2—Ge12.4173 (12)
C18—H180.93S1—Ge12.3429 (12)
C19—C241.390 (5)S2—Ge12.3979 (11)
C19—C201.412 (5)S3—Ge12.3848 (10)
C19—P21.795 (3)S4—Ge12.4000 (10)
C2—C1—C6120.3 (3)C23—C24—H24120.1
C2—C1—P1124.5 (3)C19—C24—H24120.1
C6—C1—P1115.2 (3)C30—C25—C26121.0 (3)
C3—C2—C1120.1 (4)C30—C25—P2118.8 (2)
C3—C2—H2119.9C26—C25—P2120.1 (3)
C1—C2—H2119.9C27—C26—C25119.7 (4)
C4—C3—C2119.7 (4)C27—C26—H26120.1
C4—C3—H3120.1C25—C26—H26120.1
C2—C3—H3120.1C26—C27—C28119.7 (3)
C5—C4—C3120.9 (4)C26—C27—H27120.1
C5—C4—H4119.6C28—C27—H27120.1
C3—C4—H4119.6C29—C28—C27121.1 (3)
C4—C5—C6120.6 (4)C29—C28—H28119.5
C4—C5—H5119.7C27—C28—H28119.5
C6—C5—H5119.7C28—C29—C30120.8 (3)
C5—C6—C1118.3 (3)C28—C29—H29119.6
C5—C6—S1120.4 (3)C30—C29—H29119.6
C1—C6—S1121.3 (3)C25—C30—C29117.7 (3)
C8—C7—C12120.2 (3)C25—C30—S4124.7 (2)
C8—C7—P1120.7 (3)C29—C30—S4117.6 (3)
C12—C7—P1119.0 (2)C32—C31—C36119.0 (3)
C9—C8—C7120.5 (4)C32—C31—P2122.6 (3)
C9—C8—H8119.7C36—C31—P2118.3 (3)
C7—C8—H8119.7C31—C32—C33120.3 (3)
C10—C9—C8118.9 (4)C31—C32—H32119.8
C10—C9—H9120.6C33—C32—H32119.8
C8—C9—H9120.6C34—C33—C32119.8 (4)
C11—C10—C9121.6 (4)C34—C33—H33120.1
C11—C10—H10119.2C32—C33—H33120.1
C9—C10—H10119.2C35—C34—C33120.2 (4)
C10—C11—C12121.0 (4)C35—C34—H34119.9
C10—C11—H11119.5C33—C34—H34119.9
C12—C11—H11119.5C34—C35—C36120.3 (4)
C11—C12—C7117.8 (3)C34—C35—H35119.8
C11—C12—S2117.6 (3)C36—C35—H35119.8
C7—C12—S2124.7 (2)C35—C36—C31120.3 (3)
C18—C13—C14119.3 (3)C35—C36—H36119.9
C18—C13—P1122.1 (2)C31—C36—H36119.9
C14—C13—P1118.5 (3)C13—P1—C1108.37 (16)
C15—C14—C13119.4 (4)C13—P1—C7110.74 (15)
C15—C14—H14120.3C1—P1—C7107.77 (15)
C13—C14—H14120.3C13—P1—Ge1123.99 (11)
C16—C15—C14120.7 (4)C1—P1—Ge1101.77 (11)
C16—C15—H15119.7C7—P1—Ge1103.04 (11)
C14—C15—H15119.7C19—P2—C25108.31 (14)
C15—C16—C17120.8 (4)C19—P2—C31107.55 (15)
C15—C16—H16119.6C25—P2—C31110.62 (15)
C17—C16—H16119.6C19—P2—Ge1101.78 (12)
C16—C17—C18119.5 (4)C25—P2—Ge1104.34 (12)
C16—C17—H17120.2C31—P2—Ge1123.26 (11)
C18—C17—H17120.2C6—S1—Ge1100.47 (12)
C13—C18—C17120.3 (4)C12—S2—Ge1101.99 (12)
C13—C18—H18119.8C20—S3—Ge1100.30 (11)
C17—C18—H18119.8C30—S4—Ge1103.05 (11)
C24—C19—C20120.6 (3)S1—Ge1—S397.23 (4)
C24—C19—P2123.1 (3)S1—Ge1—S294.46 (4)
C20—C19—P2116.2 (3)S3—Ge1—S290.35 (4)
C21—C20—C19117.9 (4)S1—Ge1—S490.57 (4)
C21—C20—S3120.3 (3)S3—Ge1—S492.46 (4)
C19—C20—S3121.8 (3)S2—Ge1—S4173.88 (4)
C22—C21—C20120.8 (4)S1—Ge1—P181.12 (3)
C22—C21—H21119.6S3—Ge1—P1175.61 (3)
C20—C21—H21119.6S2—Ge1—P185.73 (3)
C21—C22—C23121.3 (4)S4—Ge1—P191.62 (3)
C21—C22—H22119.3S1—Ge1—P2175.83 (3)
C23—C22—H22119.3S3—Ge1—P281.59 (3)
C24—C23—C22119.6 (4)S2—Ge1—P289.55 (4)
C24—C23—H23120.2S4—Ge1—P285.50 (4)
C22—C23—H23120.2P1—Ge1—P2100.34 (3)
C23—C24—C19119.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···S1i0.932.883.671 (3)143
C34—H34···S4ii0.932.993.808 (3)147
C22—H22···Cg1iii0.932.923.798 (4)157
C27—H27···Cg2iv0.933.123.861 (4)138
C15—H15···Cg3v0.933.273.987 (5)136
C3—H3···Cg4vi0.933.284.032 (5)139
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x1, y, z; (v) x, y+1/2, z+1/2; (vi) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ge(C18H13PS2)2]
Mr721.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.537 (4), 16.729 (3), 16.882 (4)
β (°) 95.96 (2)
V3)3240.7 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.33
Crystal size (mm)0.55 × 0.35 × 0.25
Data collection
DiffractometerRigaku AFC-7S
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.635, 0.720
No. of measured, independent and
observed [I > 2σ(I)] reflections
6696, 6369, 3913
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.094, 1.01
No. of reflections6369
No. of parameters389
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.30

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1985), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
P1—Ge12.4131 (10)S2—Ge12.3979 (11)
P2—Ge12.4173 (12)S3—Ge12.3848 (10)
S1—Ge12.3429 (12)S4—Ge12.4000 (10)
S1—Ge1—S397.23 (4)S2—Ge1—P185.73 (3)
S1—Ge1—S294.46 (4)S4—Ge1—P191.62 (3)
S3—Ge1—S290.35 (4)S1—Ge1—P2175.83 (3)
S1—Ge1—S490.57 (4)S3—Ge1—P281.59 (3)
S3—Ge1—S492.46 (4)S2—Ge1—P289.55 (4)
S2—Ge1—S4173.88 (4)S4—Ge1—P285.50 (4)
S1—Ge1—P181.12 (3)P1—Ge1—P2100.34 (3)
S3—Ge1—P1175.61 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···S1i0.932.883.671 (3)143
C34—H34···S4ii0.932.993.808 (3)147
C22—H22···Cg1iii0.932.923.798 (4)157
C27—H27···Cg2iv0.933.123.861 (4)138
C15—H15···Cg3v0.933.273.987 (5)136
C3—H3···Cg4vi0.933.284.032 (5)139
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x1, y, z; (v) x, y+1/2, z+1/2; (vi) x, y+1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds