Download citation
Download citation
link to html
The asymmetric unit of the title compound, [Zn(C7H5O3)2(C10H8N2)], contains one monomeric zinc complex. The Zn atom is coordinated to one 2,2′-bipyridyl ligand via both N atoms and to two salicyl­ate anions (Hsal) in a bidentate chelating manner involving carboxyl­ate O-atom coordination. The complex exhibits a distorted octahedral geometry about the ZnII atom, with the `apical' positions occupied by one of the two N atoms of the bipyridyl ligand and an O atom from one Hsal ligand; the Zn atom is 0.168 (1) Å out of the `basal' plane. Two intramolecular six-membered hydrogen-bonded rings are present, generated from interactions between the carboxyl and hydroxyl groups of the salicyl­ate ligands. The crystal packing is governed by weak C—H...O and C—H...π interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104016956/ga1065sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104016956/ga1065Isup2.hkl
Contains datablock I

CCDC reference: 254899

Comment top

Various zinc carboxylates are known to possess mild antiseptic and fungistatic properties. Complexes of CuII, FeIII, CoII, NiII, TiIV and ZnII with 3,5-disubstituted salicylates [nonsteroidal anti-inflammatory drugs (NSAIDs)], and ternary complexes of CuII with added phenanthrolines, have been prepared and characterized by Ranford et al. (1993). Continuing this work, we synthesized and characterized two ternary complexes of ZnII with 3,5-diisopropylsalicylate and 1,10-phenanthroline or 2,9-dimethyl-1,10-phenanthroline (Lemoine et al., 2004). Anticonvulsant and rotorod toxicity activities of these complexes were determined to examine structure-anticonvulsant and structure-hypnotic activities of these ZnII non-steroidal antiinflammatory agent complexes. Here, we describe the synthesis and crystal structure of the title compound, (I), with 2,2'-bipyridyl and salicylate ligands. \sch

The asymmetric unit of (I) contains one monomeric six-coordinate zinc complex. The Zn atom is surrounded by one bidentate 2,2'-bipyridyl ligand, coordinated via atoms N21 and N30, and two anionic bidendate salicylate (Hsal) ligands, coordinated via atoms O1, O2, O11 and O12 (Fig. 1). The complex exhibits a very distorted octahedral geometry around the ZnII atom, with the `apical' positions occupied by atoms O11 and N30. The Zn atom lies 0.168 (1) Å out of the `basal' plane (O1/O2/O12/N21). The degree of deviation from an ideal octahedron is appreciable, with the angles subtended at the Zn atom ranging from 58.88 (9) to 105.0 (1)° (Table 1).

The chelation of ZnII by the Hsal ligands in (I) leads to planar rings, P1 (O1/C1/O2/Zn) and P2 (O11/C11/O12/Zn). The maximum out-of-plane deviation is 0.024 (2) Å for atom C11, with a dihedral angle (P1, P2) of 89.0 (1)°. The Zn—O distances range from 2.019 (3) to 2.365 (3) Å, compared with the corresponding values in a similar environment in the compound (2,2'-bipyridyl)(methanol)(O-salicylato)(O,O'-salicylato)zinc of 2.022 (6)–2.305 (7) Å (Brownless et al., 1999). The phenyl mean planes P3 (C2—C7) and P4 (C12—C17) in the salicylate ligands, with a maximum out-of-plane deviation of 0.013 (3) Å for atom C13, make a dihedral angle of 87.8 (2)°.

The Zn—N21 and Zn—N30 distances of 2.071 (3) and 2.100 (3) Å are in agreement with those observed in the complex [Zn(3,5-diisopropylsalicylate)2(1,10-phenanthroline)] [2.056 (3) and 2.115 (3) Å; Lemoine et al., 2004]. The bipyridyl moiety is essentially planar, with a maximum out-of-plane deviation of 0.037 (4) Å for atom C28, and the ZnII atom is displaced from the least-squares plane P5 [N21/C22—C29/N30/C31—C32] by 0.094 (3) Å. The dihedral angles between plane P3 and planes P4 and P5 are 82.3 (1) and 71.4 (1)°, respectively.

The H atoms attached to atoms O3 and O13 are involved in intramolecular hydrogen bonding via atoms O1 and O11 (Table 2), thus contributing to the lengthening of the O1—Zn and O11—Zn bond distances and the planarity of the rings (O1/C1/C2/C3/O3/H3 and O11/C11/C12/C13/O13/H13); the maximum out-of-plane deviation for these planes is 0.07 (2) Å for atom H13.

The crystal packing of (I) is governed by four C—H···O interactions with C···O < 3.41 Å and τ > 144°, and two C—H ···Cg(π-ring) interactions with H···Cg < 3 Å and τ < 30° (Table 2). The C—H···O interactions lead to chains approximately along the [100] direction (Fig. 2), while the C—H···π(arene) interactions complete a three-dimensional network (Fig. 3). In addition, crystalline cohesion is ensured by numerous van der Waals contacts, the shortest being O2···C25i 3.147 (5) Å [symmetry code: (i) 2 − x, 2 − y, 2 − z].

Table 2. Cg denotes the centroid of ring P3 (C2—C7) and Cg4 denotes the centroid of ring P4 (C12—C17).

Experimental top

Compound (I) was prepared by mixing aqueous solutions of sodium salicylate (1.601 g, 10 mmol) and zinc chloride (0.680 g, 5 mmol). The resulting precipitate was collected by filtration, washed with water and dried overnight. The title complex was obtained in methanol by reaction of this zinc(II) complex with 2,2'-bipyridyl (Bipy:Zn 1:1). The reaction mixture was stirred for 30 min. Colourless parallelepiped crystals of (I) were obtained by slow evaporation of this solution under ambient air pressure.

Refinement top

Hydroxy H atoms were located in the difference map and refined freely. All other H atoms were treated as riding, with C—H distances of 0.93 Å and with Uiso(H) = 1.2Ueq(C). Please check added text and amend as necessary.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1]
[Figure 2]
Fig. 1. A perspective view of the asymmetric unit of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Fig. 2. A view of the packing interactions in the crystal of (I).

Fig. 3. A view of the C—H···pi(arene) interactions in the structure of (I). No caption given in original CIF - please check added text.
(2,2'-Bipyridyl-κ2N,N')bis(salicylato-κ2O,O')zinc(II) top
Crystal data top
[Zn(C7H5O3)2(C10H8N2)]F(000) = 1016
Mr = 495.77Dx = 1.522 Mg m3
Dm = 1.51 (1) Mg m3
Dm measured by flotation in CCl4-CHCl3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.642 (4) ÅCell parameters from 25 reflections
b = 16.635 (3) Åθ = 1.7–8.9°
c = 17.354 (3) ŵ = 1.18 mm1
β = 101.20 (2)°T = 293 K
V = 2164 (2) Å3Parallelepiped, colourless
Z = 40.45 × 0.35 × 0.10 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2350 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 25.0°, θmin = 2.4°
ω/2θ scansh = 99
Absorption correction: empirical (using intensity measurements)
via multi-scan (SADABS; Sheldrick, 1996; Blessing, 1995)
k = 019
Tmin = 0.854, Tmax = 0.889l = 2020
7380 measured reflections3 standard reflections every 60 min
3783 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0415P)2]
where P = (Fo2 + 2Fc2)/3
3783 reflections(Δ/σ)max = 0.001
305 parametersΔρmax = 0.35 e Å3
2 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Zn(C7H5O3)2(C10H8N2)]V = 2164 (2) Å3
Mr = 495.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.642 (4) ŵ = 1.18 mm1
b = 16.635 (3) ÅT = 293 K
c = 17.354 (3) Å0.45 × 0.35 × 0.10 mm
β = 101.20 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2350 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via multi-scan (SADABS; Sheldrick, 1996; Blessing, 1995)
Rint = 0.056
Tmin = 0.854, Tmax = 0.8893 standard reflections every 60 min
7380 measured reflections intensity decay: 1%
3783 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.35 e Å3
3783 reflectionsΔρmin = 0.27 e Å3
305 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8365 (5)0.86391 (19)0.7495 (2)0.0433 (9)
C110.4911 (5)0.7575 (2)0.87345 (19)0.0434 (8)
C120.3574 (4)0.6924 (2)0.87061 (19)0.0388 (8)
C130.4061 (5)0.6122 (2)0.8785 (2)0.0505 (9)
C140.2789 (6)0.5533 (2)0.8757 (3)0.0629 (11)
C150.1024 (6)0.5738 (3)0.8626 (2)0.0616 (11)
C160.0500 (5)0.6523 (2)0.8525 (2)0.0545 (10)
C170.1768 (5)0.7120 (2)0.8574 (2)0.0474 (9)
C20.9457 (4)0.86318 (18)0.68753 (19)0.0370 (8)
C220.8753 (6)0.8483 (3)1.0368 (2)0.0606 (11)
C230.9386 (6)0.8687 (3)1.1147 (3)0.0703 (13)
C240.9122 (7)0.9456 (3)1.1376 (3)0.0738 (14)
C250.8286 (6)0.9996 (3)1.0850 (2)0.0604 (11)
C260.6433 (6)1.1115 (2)0.9594 (3)0.0671 (12)
C270.5612 (7)1.1579 (3)0.8975 (3)0.0782 (15)
C280.5184 (7)1.1257 (3)0.8244 (3)0.0780 (14)
C290.5540 (6)1.0464 (3)0.8146 (3)0.0609 (11)
C30.8657 (5)0.8544 (2)0.6091 (2)0.0450 (9)
C310.6789 (5)1.0312 (2)0.9459 (2)0.0438 (9)
C320.7689 (4)0.9770 (2)1.0080 (2)0.0408 (8)
C40.9691 (6)0.8603 (2)0.5516 (2)0.0590 (11)
C51.1471 (6)0.8728 (3)0.5723 (2)0.0666 (12)
C61.2297 (5)0.8800 (3)0.6500 (2)0.0604 (11)
C71.1291 (5)0.8757 (2)0.7070 (2)0.0477 (9)
N210.7936 (4)0.90096 (17)0.98497 (17)0.0443 (7)
N300.6329 (4)0.99975 (18)0.87368 (17)0.0445 (7)
O10.6698 (3)0.85893 (18)0.73123 (16)0.0636 (8)
O110.6549 (3)0.73973 (16)0.88237 (15)0.0556 (7)
O120.4428 (3)0.83002 (14)0.86698 (15)0.0469 (6)
O130.5794 (4)0.58848 (17)0.8881 (2)0.0747 (9)
O20.9110 (3)0.87260 (15)0.82044 (14)0.0506 (6)
O30.6888 (4)0.84133 (19)0.58557 (17)0.0650 (8)
Zn0.69003 (6)0.87669 (2)0.86794 (2)0.04317 (14)
H130.649 (5)0.6321 (17)0.896 (2)0.068 (3)*
H140.31280.49970.88270.068 (3)*
H150.01670.53370.86040.068 (3)*
H160.07070.66530.84240.068 (3)*
H170.14170.76550.85190.068 (3)*
H220.89070.79601.02050.068 (3)*
H230.99720.83121.15030.068 (3)*
H240.95200.96071.18960.068 (3)*
H250.81141.05201.10070.068 (3)*
H260.67471.13341.00950.068 (3)*
H270.53481.21140.90560.068 (3)*
H280.46591.15710.78180.068 (3)*
H290.52191.02410.76470.068 (3)*
H30.640 (5)0.843 (3)0.6300 (17)0.068 (3)*
H40.91580.85560.49890.068 (3)*
H51.21490.87660.53330.068 (3)*
H61.35230.88780.66350.068 (3)*
H71.18400.88110.75950.068 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0418 (2)0.0430 (2)0.0473 (2)0.0053 (2)0.01502 (17)0.0073 (2)
O20.0523 (15)0.0558 (16)0.0467 (15)0.0032 (13)0.0169 (12)0.0076 (13)
C70.0363 (19)0.062 (2)0.0435 (19)0.0057 (19)0.0053 (15)0.0025 (19)
O120.0444 (14)0.0398 (15)0.0573 (16)0.0058 (11)0.0120 (12)0.0012 (12)
N210.0437 (17)0.0447 (18)0.0468 (18)0.0034 (13)0.0142 (14)0.0004 (14)
C60.033 (2)0.091 (3)0.059 (2)0.007 (2)0.0121 (18)0.005 (2)
O110.0319 (15)0.0613 (17)0.0737 (19)0.0014 (12)0.0104 (12)0.0043 (14)
O10.0342 (15)0.088 (2)0.0712 (19)0.0011 (14)0.0176 (13)0.0119 (16)
C20.0361 (18)0.0331 (19)0.0420 (19)0.0009 (14)0.0082 (15)0.0014 (15)
N300.0426 (18)0.0457 (17)0.0480 (19)0.0036 (14)0.0158 (15)0.0012 (15)
C130.047 (2)0.045 (2)0.061 (2)0.0014 (18)0.0149 (18)0.0090 (18)
C120.038 (2)0.041 (2)0.039 (2)0.0053 (16)0.0108 (15)0.0051 (15)
C40.064 (3)0.072 (3)0.040 (2)0.004 (2)0.0091 (19)0.005 (2)
C110.046 (2)0.052 (2)0.0329 (19)0.0006 (18)0.0100 (16)0.0023 (16)
C170.044 (2)0.051 (2)0.049 (2)0.0005 (18)0.0128 (17)0.0028 (18)
C140.069 (3)0.037 (2)0.084 (3)0.002 (2)0.019 (2)0.008 (2)
C50.059 (3)0.094 (3)0.053 (2)0.009 (3)0.027 (2)0.002 (2)
C30.042 (2)0.046 (2)0.044 (2)0.0015 (16)0.0027 (17)0.0060 (16)
C10.043 (2)0.033 (2)0.057 (2)0.0056 (16)0.0164 (18)0.0027 (17)
C320.0370 (19)0.043 (2)0.046 (2)0.0136 (15)0.0173 (16)0.0085 (16)
C160.037 (2)0.070 (3)0.058 (3)0.009 (2)0.0130 (18)0.005 (2)
C310.041 (2)0.040 (2)0.056 (2)0.0052 (16)0.0237 (18)0.0036 (18)
C280.082 (3)0.066 (3)0.091 (4)0.020 (3)0.029 (3)0.030 (3)
C250.070 (3)0.061 (3)0.051 (3)0.013 (2)0.012 (2)0.010 (2)
C230.064 (3)0.084 (4)0.059 (3)0.006 (3)0.003 (2)0.020 (3)
C290.059 (3)0.064 (3)0.063 (3)0.002 (2)0.019 (2)0.009 (2)
C260.075 (3)0.051 (3)0.084 (3)0.002 (2)0.038 (3)0.015 (2)
C270.095 (4)0.044 (3)0.105 (4)0.010 (3)0.045 (3)0.003 (3)
C150.058 (3)0.057 (3)0.073 (3)0.021 (2)0.021 (2)0.017 (2)
C240.078 (3)0.091 (4)0.049 (3)0.030 (3)0.005 (2)0.013 (3)
C220.061 (3)0.062 (3)0.059 (3)0.004 (2)0.014 (2)0.003 (2)
O30.0462 (16)0.085 (2)0.0584 (18)0.0147 (15)0.0025 (14)0.0069 (17)
O130.0478 (18)0.0500 (17)0.123 (3)0.0084 (14)0.0087 (18)0.0131 (18)
Geometric parameters (Å, º) top
Zn—O22.019 (3)C3—O31.352 (4)
Zn—O122.040 (3)C32—C251.378 (5)
Zn—N212.071 (3)C32—C311.468 (5)
Zn—N302.099 (3)C16—C151.367 (6)
Zn—O112.313 (3)C31—C261.393 (5)
Zn—O12.366 (3)C28—C271.356 (7)
O2—C11.261 (4)C28—C291.364 (6)
O2—C25i3.147 (5)C25—C241.351 (6)
C7—C61.367 (5)C23—C241.365 (6)
C7—C21.392 (5)C23—C221.387 (6)
O12—C111.260 (4)C26—C271.372 (7)
N21—C221.322 (5)C7—H70.9300
N21—C321.351 (4)C6—H60.9300
C6—C51.379 (6)C4—H40.9300
O11—C111.267 (4)C17—H170.9300
O1—C11.254 (4)C14—H140.9300
C2—C31.388 (5)C5—H50.9300
C2—C11.484 (5)C16—H160.9300
N30—C291.334 (5)C28—H280.9300
N30—C311.341 (4)C25—H250.9300
C13—O131.360 (5)C23—H230.9300
C13—C141.374 (5)C29—H290.9300
C13—C121.385 (5)C26—H260.9300
C12—C171.393 (5)C27—H270.9300
C12—C111.483 (5)C15—H150.9300
C4—C51.354 (6)C24—H240.9300
C4—C31.390 (5)C22—H220.9300
C17—C161.379 (5)O3—H30.921 (19)
C14—C151.367 (6)O13—H130.897 (19)
O2—Zn—O12146.17 (10)O1—C1—Zn67.9 (2)
O2—Zn—N21102.49 (12)O2—C1—Zn52.02 (17)
O12—Zn—N21105.02 (11)C2—C1—Zn171.2 (3)
O2—Zn—N30104.49 (11)N21—C32—C25120.2 (4)
O12—Zn—N3099.83 (11)N21—C32—C31115.5 (3)
N21—Zn—N3078.86 (12)C25—C32—C31124.3 (3)
O2—Zn—O1197.74 (9)C15—C16—C17119.7 (4)
O12—Zn—O1159.96 (9)N30—C31—C26120.5 (4)
N21—Zn—O1196.67 (11)N30—C31—C32116.5 (3)
N30—Zn—O11157.76 (10)C26—C31—C32123.0 (4)
O2—Zn—O158.89 (10)C27—C28—C29118.7 (5)
O12—Zn—O193.68 (10)C24—C25—C32119.9 (4)
N21—Zn—O1161.04 (10)C24—C23—C22118.0 (4)
N30—Zn—O1101.28 (11)N30—C29—C28122.6 (4)
O11—Zn—O189.95 (10)C27—C26—C31118.8 (4)
C1—O2—Zn98.5 (2)C28—C27—C26120.1 (4)
C1—O2—C25i135.0 (2)C14—C15—C16121.0 (4)
Zn—O2—C25i104.98 (12)C25—C24—C23120.2 (4)
C6—C7—C2120.9 (3)N21—C22—C23122.0 (4)
C11—O12—Zn96.2 (2)C6—C7—H7119.6
C22—N21—C32119.6 (3)C2—C7—H7119.6
C22—N21—Zn125.3 (3)C7—C6—H6120.4
C32—N21—Zn115.1 (2)C5—C6—H6120.4
C7—C6—C5119.2 (4)C5—C4—H4119.9
C11—O11—Zn83.6 (2)C3—C4—H4119.9
C1—O1—Zn82.7 (2)C16—C17—H17119.9
C3—C2—C7119.0 (3)C12—C17—H17119.9
C3—C2—C1120.6 (3)C15—C14—H14120.1
C7—C2—C1120.3 (3)C13—C14—H14120.1
C29—N30—C31119.3 (3)C4—C5—H5119.4
C29—N30—Zn126.8 (3)C6—C5—H5119.4
C31—N30—Zn113.9 (2)C15—C16—H16120.2
O13—C13—C14117.6 (4)C17—C16—H16120.2
O13—C13—C12121.9 (3)C27—C28—H28120.6
C14—C13—C12120.6 (4)C29—C28—H28120.6
C13—C12—C17118.7 (3)C24—C25—H25120.1
C13—C12—C11122.0 (3)C32—C25—H25120.1
C17—C12—C11119.2 (3)C24—C23—H23121.0
C5—C4—C3120.2 (4)C22—C23—H23121.0
O12—C11—O11120.0 (3)N30—C29—H29118.7
O12—C11—C12120.6 (3)C28—C29—H29118.7
O11—C11—C12119.4 (3)C27—C26—H26120.6
O12—C11—Zn53.84 (17)C31—C26—H26120.6
O11—C11—Zn66.3 (2)C28—C27—H27120.0
C12—C11—Zn173.4 (3)C26—C27—H27120.0
C16—C17—C12120.2 (4)C14—C15—H15119.5
C15—C14—C13119.8 (4)C16—C15—H15119.5
C4—C5—C6121.1 (4)C25—C24—H24119.9
O3—C3—C2122.5 (3)C23—C24—H24119.9
O3—C3—C4118.0 (3)N21—C22—H22119.0
C2—C3—C4119.5 (3)C23—C22—H22119.0
O1—C1—O2119.9 (3)C3—O3—H3107 (3)
O1—C1—C2120.2 (3)C13—O13—H13109 (3)
O2—C1—C2119.9 (3)
C1—C2—C3—O34.0 (5)O2—C1—C2—C3179.5 (3)
Zn—O1—C1—C2176.0 (3)Zn—O12—C11—C12175.9 (3)
Zn—O2—C1—C2175.8 (3)Zn—O11—C11—C12176.3 (3)
Zn—O1—C1—O21.3 (3)O12—C11—C12—C172.7 (5)
Zn—O2—C1—O11.6 (4)O12—C11—C12—C13179.2 (3)
O1—C1—C2—C7174.4 (3)O11—C11—C12—C17177.3 (3)
O1—C1—C2—C32.1 (5)O11—C11—C12—C130.9 (5)
O2—C1—C2—C72.9 (5)
Symmetry code: (i) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.92 (2)1.75 (3)2.577 (4)148 (4)
O13—H13···O110.90 (2)1.81 (3)2.588 (4)144 (4)
C6—H6···O1ii0.932.533.403 (5)157
C7—H7···O12ii0.932.583.383 (5)144
C17—H17···O2iii0.932.493.342 (5)152
C26—H26···O12iv0.932.553.351 (6)144
C5—H5···Cg4v0.932.933.749 (4)148
C15—H15···Cg3vi0.932.823.626 (6)146
Symmetry codes: (ii) x+1, y, z; (iii) x1, y, z; (iv) x+1, y+2, z+2; (v) x1, y+1/2, z+1/2; (vi) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C7H5O3)2(C10H8N2)]
Mr495.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.642 (4), 16.635 (3), 17.354 (3)
β (°) 101.20 (2)
V3)2164 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.45 × 0.35 × 0.10
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
via multi-scan (SADABS; Sheldrick, 1996; Blessing, 1995)
Tmin, Tmax0.854, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
7380, 3783, 2350
Rint0.056
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 0.99
No. of reflections3783
No. of parameters305
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.27

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), CAMERON (Watkin et al., 1996), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Zn—O22.019 (3)Zn—O12.366 (3)
Zn—O122.040 (3)O2—C11.261 (4)
Zn—N212.071 (3)O1—C11.254 (4)
Zn—N302.099 (3)C3—O31.352 (4)
Zn—O112.313 (3)
O2—Zn—O12146.17 (10)N30—Zn—O11157.76 (10)
O2—Zn—N21102.49 (12)O2—Zn—O158.89 (10)
O12—Zn—N21105.02 (11)O12—Zn—O193.68 (10)
O2—Zn—N30104.49 (11)N21—Zn—O1161.04 (10)
O12—Zn—N3099.83 (11)N30—Zn—O1101.28 (11)
N21—Zn—N3078.86 (12)O11—Zn—O189.95 (10)
O2—Zn—O1197.74 (9)C1—O2—Zn98.5 (2)
O12—Zn—O1159.96 (9)C1—O1—Zn82.7 (2)
N21—Zn—O1196.67 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.92 (2)1.75 (3)2.577 (4)148 (4)
O13—H13···O110.90 (2)1.81 (3)2.588 (4)144 (4)
C6—H6···O1i0.932.533.403 (5)157
C7—H7···O12i0.932.583.383 (5)144
C17—H17···O2ii0.932.493.342 (5)152
C26—H26···O12iii0.932.553.351 (6)144
C5—H5···Cg4iv0.932.933.749 (4)148
C15—H15···Cg3v0.932.823.626 (6)146
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y+2, z+2; (iv) x1, y+1/2, z+1/2; (v) x+1, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds