organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­phenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one

aDepartment of Chemistry, Pennsylvania State University, University Park, PA 16802, USA, and bPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
*Correspondence e-mail: ljs43@psu.edu

(Received 17 January 2014; accepted 17 March 2014; online 22 March 2014)

In the title compound, C20H15NOS, the dihedral angle between the phenyl rings is 74.25 (6)°. The six-membered 1,3-thia­zine ring has an envelope conformation with the C atom at the 2-position forming the flap. The crystal structure features weak C—H⋯O inter­actions, which lead to the formation of a tape motif along [110].

Related literature

For other preparations of the title compound, see: Ponci et al. (1963[Ponci, R., Baruffini, A. & Gialdi, F. (1963). Il Farmaco Ed. Sci. 18, 653-657.]); Kollenz & Ziegler (1970[Kollenz, G. & Ziegler, E. (1970). Monatsh. Chem. 101, 97-101.]); Oae & Numata (1974[Oae, S. & Numata, T. (1974). Tetrahedron, 30, 2641-2646.]); Badea et al. (1998[Badea, F., Costea, I., Iordache, F., Simion, A. & Simion, C. (1998). Rev. Roum. Chim. 43, 675-678.]). For previously published methods for the preparation of 1,3-thiazin-4-ones by condensation of an imine with a thio­acid, see: Kamel et al. (2010[Kamel, M. M., Ali, H. I., Anwar, M. M., Mohamed, N. A. & Soliman, A. M. M. (2010). Eur. J. Med. Chem. 45, 572-580.]); Zarghi et al. (2009[Zarghi, A., Zebardast, T., Daraie, B. & Hedayati, M. (2009). Bioorg. Med. Chem. 17, 5369-5373.]); Zhou et al. (2008[Zhou, H., Liu, A., Li, X., Ma, X., Feng, W., Zhang, W. & Yan, B. (2008). J. Comb. Chem. 10, 303-312.]); Srivastava et al. (2002[Srivastava, T., Haq, W. & Katti, S. B. (2002). Tetrahedron, 58, 7619-7624.]). For the synthesis and crystal structures of related compounds, see: Yennawar & Silverberg (2013[Yennawar, H. P. & Silverberg, L. J. (2013). Acta Cryst. E69, o1659.], 2014[Yennawar, H. P. & Silverberg, L. J. (2014). Acta Cryst. E70, o133.]); Yennawar et al. (2013[Yennawar, H. P., Silverberg, L. J., Minehan, M. J. & Tierney, J. (2013). Acta Cryst. E69, o1679.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15NOS

  • Mr = 317.39

  • Monoclinic, C 2/c

  • a = 14.799 (4) Å

  • b = 9.606 (3) Å

  • c = 22.492 (6) Å

  • β = 98.736 (5)°

  • V = 3160.1 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 298 K

  • 0.18 × 0.16 × 0.05 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.990

  • 14747 measured reflections

  • 3956 independent reflections

  • 3300 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.127

  • S = 1.06

  • 3956 reflections

  • 208 parameters

  • H-atom parameters not refined

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1i 0.93 2.82 3.422 (2) 124
C15—H15⋯O1ii 0.93 2.69 3.477 (2) 142
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) -x, -y, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: XSHELL in SHELXTL (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; software used to prepare material for publication: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

We report here the crystal structure (Fig. 1) of the title compound, which has two phenyl rings connected to the central thiazine ring and a third phenyl ring fused to the thiazine ring. We have recently reported the synthesis and crystal structures of three related compounds: (i) 2-(3-nitrophenyl)-3-phenyl-2,3-dihydro-4H-1,3-benzothiazin-4-one (Yennawar, Silverberg, Minehan and Tierney, 2013) (ii) 2,3-diphenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one (Yennawar & Silverberg, 2014) and (iii) 6,7-diphenyl-5-thia-7-azaspiro[2.6]nonan-8-one (Yennawar & Silverberg, 2013). In order to more directly compare the structure of the benzothiazinone ring to the thiazinone and thiazepanone, we have obtained the crystal structure of the title compound, which, like the latter two compounds does not have a substituent on the C-phenyl ring. In the present structure, the dihedral angle between the phenyl rings is 74.25 (6)° - almost perpendicular and within the range of 60–90° in the three other compounds we have reported (see above). The thiazine ring has an envelope conformation with the 2-carbon forming the flap. In the crystal packing (Fig 2), molecules are linked by weak C—H···O interactions (Table 1).

The title compound has been synthesized previously (Ponci et al., 1963; Kollenz & Ziegler, 1970; Oae & Numata, 1974; Badea et al., 1998), but not by condensation of N-benzylideneaniline with thiosalicylic acid. In our hands, this reaction was not successfully accomplished in refluxing toluene or xylenes, with sodium sulfate in dioxane (Kamel et al., 2010), with p-toluenesulfonic acid in refluxing toluene (Zarghi et al., 2009), or with N,N'-dicyclohexylcarbodiimide (DCC) in THF (Zhou et al., 2008; Srivastava et al., 2002). The title molecule was finally synthesized by condensation in the presence of 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphorinane-2,4,6-trioxide (T3P) and pyridine, as per our previous reports.

Related literature top

For other preparations of the title compound, see: Ponci et al. (1963); Kollenz & Ziegler (1970); Oae & Numata (1974); Badea et al. (1998). For previously published methods for the preparation of thiazinones by condensation of an imine with a thioacid, see: Kamel et al. (2010); Zarghi et al. (2009); Zhou et al. (2008); Srivastava et al. (2002). For the synthesis and crystal structures of related compounds, see: Yennawar & Silverberg (2013, 2014); Yennawar et al. (2013).

Experimental top

A two-necked 25 ml roundbottom flask was oven-dried, cooled under N2, and charged with a stir bar and N-benzylideneaniline (1.02 g, 6 mmol). Tetrahydrofuran (2.3 ml) was added, the solid dissolved, and the solution was stirred. Pyridine (1.95 ml, 24 mmol) was added and then thiosalicylic acid (0.931 g, 6 mmol) was added. Finally, 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphorinane-2,4,6-trioxatriphosphorinane-2,4,6-trioxide in 2-methyltetrahydrofuran (50 weight percent; 7.1 ml, 12 mmol) was added. The reaction was stirred at room temperature for 21 h, then poured into a separatory funnel and extracted three times with ethyl acetate. The organic was washed with saturated sodium bicarbonate, water and saturated sodium chloride. The solution was concentrated in vacuo, and then the solid was slurried in hot hexanes. After cooling in ice, the solid was collected by vacuum filtration and rinsed with cold hexanes to give a light orange solid (0.8697 g, m.p. 129–133°C). The solid was then recrystallized from ethanol, yielding solid that was still impure by TLC and melting point [0.5921 g, m.p. 132–134°C (lit. 138–140°C; Ponci et al., 1963)]. Rf = 0.33 (20% EtOAc/hexanes). Crystals for X-ray crystallography were grown by slow evaporation from toluene.

Refinement top

The C-bound H atoms were geometrically placed with C—H = 0.93–0.97 Å, and refined as riding with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XSHELL in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: ORTEP-3 for Windows (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title comound. Thermal ellipsoids are drawn at 50% probability.
[Figure 2] Fig. 2. Crystal packing. C—H···O interactions are shown as dashed lines.
2,3-Diphenyl-2,3-dihydro-4H-1,3-benzothiazin-4-one top
Crystal data top
C20H15NOSF(000) = 1328
Mr = 317.39Dx = 1.334 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 14.799 (4) ÅCell parameters from 4538 reflections
b = 9.606 (3) Åθ = 2.5–28.0°
c = 22.492 (6) ŵ = 0.21 mm1
β = 98.736 (5)°T = 298 K
V = 3160.1 (15) Å3Block, colourless
Z = 80.18 × 0.16 × 0.05 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3956 independent reflections
Radiation source: fine-focus sealed tube3300 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.34 pixels mm-1θmax = 28.4°, θmin = 1.8°
ϕ and ω scansh = 1819
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1212
Tmin = 0.963, Tmax = 0.990l = 3030
14747 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters not refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0565P)2 + 1.8423P]
where P = (Fo2 + 2Fc2)/3
3956 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C20H15NOSV = 3160.1 (15) Å3
Mr = 317.39Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.799 (4) ŵ = 0.21 mm1
b = 9.606 (3) ÅT = 298 K
c = 22.492 (6) Å0.18 × 0.16 × 0.05 mm
β = 98.736 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3956 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3300 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.990Rint = 0.021
14747 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.127H-atom parameters not refined
S = 1.06Δρmax = 0.28 e Å3
3956 reflectionsΔρmin = 0.25 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.03935 (11)0.32561 (17)0.11547 (7)0.0434 (4)
C20.01411 (11)0.46594 (17)0.13594 (7)0.0434 (4)
C30.04910 (12)0.58978 (17)0.11600 (7)0.0460 (4)
C40.18665 (11)0.42745 (15)0.09649 (7)0.0406 (3)
H40.23010.40220.06950.049*
C50.24251 (10)0.45006 (15)0.15831 (7)0.0377 (3)
C60.23025 (12)0.37177 (17)0.20814 (8)0.0469 (4)
H60.18480.30410.20480.056*
C70.28512 (13)0.3933 (2)0.26298 (8)0.0557 (4)
H70.27590.34080.29630.067*
C80.35351 (13)0.4925 (2)0.26842 (9)0.0559 (4)
H80.39030.50690.30520.067*
C90.36669 (12)0.56958 (17)0.21908 (9)0.0519 (4)
H90.41310.63570.22250.062*
C100.31166 (11)0.54979 (16)0.16442 (8)0.0442 (4)
H100.32080.60340.13140.053*
C110.14103 (11)0.18738 (16)0.06409 (7)0.0393 (3)
C120.21265 (16)0.1052 (2)0.08852 (9)0.0657 (6)
H120.24920.13170.12410.079*
C130.23063 (18)0.0177 (2)0.06018 (10)0.0759 (7)
H130.27950.07330.07670.091*
C140.17703 (15)0.05742 (19)0.00829 (9)0.0592 (5)
H140.18820.14120.01000.071*
C150.10730 (15)0.0256 (2)0.01663 (9)0.0670 (6)
H150.07150.00050.05250.080*
C160.08922 (14)0.1488 (2)0.01100 (8)0.0603 (5)
H160.04170.20570.00650.072*
C170.05168 (12)0.4728 (2)0.17424 (8)0.0514 (4)
H170.07530.39090.18770.062*
C180.08209 (14)0.5990 (2)0.19226 (9)0.0619 (5)
H180.12530.60230.21820.074*
C190.04820 (14)0.7204 (2)0.17166 (10)0.0660 (6)
H190.06960.80560.18340.079*
C200.01695 (14)0.7175 (2)0.13392 (9)0.0583 (5)
H200.03940.80020.12040.070*
N10.12016 (9)0.31448 (13)0.09313 (6)0.0408 (3)
O10.01007 (9)0.22507 (14)0.11818 (6)0.0617 (4)
S10.13067 (3)0.58704 (5)0.06672 (2)0.05412 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0430 (9)0.0427 (8)0.0451 (8)0.0043 (7)0.0089 (7)0.0052 (7)
C20.0396 (8)0.0446 (9)0.0443 (8)0.0026 (7)0.0007 (6)0.0060 (7)
C30.0447 (9)0.0441 (9)0.0454 (8)0.0056 (7)0.0049 (7)0.0001 (7)
C40.0427 (8)0.0361 (7)0.0449 (8)0.0027 (6)0.0124 (6)0.0006 (6)
C50.0369 (8)0.0311 (7)0.0464 (8)0.0018 (6)0.0104 (6)0.0028 (6)
C60.0459 (9)0.0435 (8)0.0521 (9)0.0045 (7)0.0107 (7)0.0021 (7)
C70.0616 (11)0.0576 (11)0.0474 (9)0.0031 (9)0.0071 (8)0.0055 (8)
C80.0561 (11)0.0523 (10)0.0555 (10)0.0068 (9)0.0038 (8)0.0108 (8)
C90.0457 (9)0.0382 (8)0.0700 (11)0.0023 (7)0.0033 (8)0.0101 (8)
C100.0457 (9)0.0332 (7)0.0552 (9)0.0018 (6)0.0119 (7)0.0009 (7)
C110.0436 (8)0.0360 (7)0.0396 (7)0.0032 (6)0.0111 (6)0.0018 (6)
C120.0748 (14)0.0642 (12)0.0528 (10)0.0207 (10)0.0070 (9)0.0110 (9)
C130.1004 (18)0.0631 (13)0.0624 (12)0.0353 (12)0.0069 (12)0.0007 (10)
C140.0841 (14)0.0400 (9)0.0607 (11)0.0032 (9)0.0341 (10)0.0072 (8)
C150.0679 (13)0.0740 (14)0.0582 (11)0.0013 (11)0.0070 (9)0.0278 (10)
C160.0606 (11)0.0658 (12)0.0513 (10)0.0133 (10)0.0021 (8)0.0166 (9)
C170.0438 (9)0.0568 (10)0.0531 (9)0.0044 (8)0.0058 (7)0.0069 (8)
C180.0518 (11)0.0707 (13)0.0622 (11)0.0164 (9)0.0056 (9)0.0137 (10)
C190.0635 (12)0.0582 (11)0.0713 (12)0.0262 (10)0.0057 (10)0.0156 (10)
C200.0636 (12)0.0425 (9)0.0630 (11)0.0104 (8)0.0094 (9)0.0011 (8)
N10.0424 (7)0.0363 (6)0.0447 (7)0.0045 (5)0.0101 (5)0.0051 (5)
O10.0595 (8)0.0514 (7)0.0800 (9)0.0190 (6)0.0296 (7)0.0166 (6)
S10.0616 (3)0.0450 (2)0.0554 (3)0.0003 (2)0.0080 (2)0.01415 (18)
Geometric parameters (Å, º) top
C1—O11.218 (2)C10—H100.9300
C1—N11.370 (2)C11—C121.368 (2)
C1—C21.490 (2)C11—C161.368 (2)
C2—C171.396 (2)C11—N11.4401 (19)
C2—C31.398 (2)C12—C131.386 (3)
C3—C201.397 (2)C12—H120.9300
C3—S11.7587 (19)C13—C141.362 (3)
C4—N11.4590 (19)C13—H130.9300
C4—C51.521 (2)C14—C151.356 (3)
C4—S11.8211 (16)C14—H140.9300
C4—H40.9800C15—C161.382 (3)
C5—C61.384 (2)C15—H150.9300
C5—C101.393 (2)C16—H160.9300
C6—C71.385 (2)C17—C181.376 (3)
C6—H60.9300C17—H170.9300
C7—C81.382 (3)C18—C191.377 (3)
C7—H70.9300C18—H180.9300
C8—C91.373 (3)C19—C201.378 (3)
C8—H80.9300C19—H190.9300
C9—C101.381 (2)C20—H200.9300
C9—H90.9300
O1—C1—N1121.37 (15)C12—C11—N1120.90 (15)
O1—C1—C2121.40 (15)C16—C11—N1119.66 (15)
N1—C1—C2117.23 (14)C11—C12—C13119.86 (18)
C17—C2—C3119.01 (16)C11—C12—H12120.1
C17—C2—C1117.65 (15)C13—C12—H12120.1
C3—C2—C1123.24 (15)C14—C13—C12120.3 (2)
C20—C3—C2119.70 (17)C14—C13—H13119.8
C20—C3—S1119.44 (14)C12—C13—H13119.8
C2—C3—S1120.83 (13)C15—C14—C13119.79 (18)
N1—C4—C5114.97 (12)C15—C14—H14120.1
N1—C4—S1109.96 (11)C13—C14—H14120.1
C5—C4—S1111.69 (10)C14—C15—C16120.32 (18)
N1—C4—H4106.6C14—C15—H15119.8
C5—C4—H4106.6C16—C15—H15119.8
S1—C4—H4106.6C11—C16—C15120.21 (18)
C6—C5—C10118.58 (15)C11—C16—H16119.9
C6—C5—C4122.85 (14)C15—C16—H16119.9
C10—C5—C4118.51 (14)C18—C17—C2120.88 (19)
C5—C6—C7120.57 (16)C18—C17—H17119.6
C5—C6—H6119.7C2—C17—H17119.6
C7—C6—H6119.7C17—C18—C19119.67 (19)
C8—C7—C6120.27 (17)C17—C18—H18120.2
C8—C7—H7119.9C19—C18—H18120.2
C6—C7—H7119.9C18—C19—C20120.95 (18)
C9—C8—C7119.51 (17)C18—C19—H19119.5
C9—C8—H8120.2C20—C19—H19119.5
C7—C8—H8120.2C19—C20—C3119.77 (19)
C8—C9—C10120.57 (17)C19—C20—H20120.1
C8—C9—H9119.7C3—C20—H20120.1
C10—C9—H9119.7C1—N1—C11119.46 (13)
C9—C10—C5120.50 (16)C1—N1—C4122.85 (13)
C9—C10—H10119.8C11—N1—C4117.68 (12)
C5—C10—H10119.8C3—S1—C495.64 (7)
C12—C11—C16119.43 (16)
O1—C1—C2—C1718.8 (2)N1—C11—C16—C15178.59 (18)
N1—C1—C2—C17161.54 (14)C14—C15—C16—C110.6 (3)
O1—C1—C2—C3157.41 (17)C3—C2—C17—C180.1 (3)
N1—C1—C2—C322.2 (2)C1—C2—C17—C18176.35 (16)
C17—C2—C3—C200.9 (2)C2—C17—C18—C190.9 (3)
C1—C2—C3—C20175.31 (15)C17—C18—C19—C201.0 (3)
C17—C2—C3—S1178.93 (12)C18—C19—C20—C30.2 (3)
C1—C2—C3—S12.7 (2)C2—C3—C20—C190.8 (3)
N1—C4—C5—C61.3 (2)S1—C3—C20—C19178.82 (14)
S1—C4—C5—C6124.86 (14)O1—C1—N1—C119.4 (2)
N1—C4—C5—C10175.80 (13)C2—C1—N1—C11170.25 (13)
S1—C4—C5—C1058.01 (16)O1—C1—N1—C4171.62 (16)
C10—C5—C6—C70.6 (2)C2—C1—N1—C48.8 (2)
C4—C5—C6—C7177.72 (15)C12—C11—N1—C1114.62 (19)
C5—C6—C7—C80.7 (3)C16—C11—N1—C166.1 (2)
C6—C7—C8—C90.0 (3)C12—C11—N1—C466.3 (2)
C7—C8—C9—C100.7 (3)C16—C11—N1—C4113.00 (18)
C8—C9—C10—C50.7 (3)C5—C4—N1—C175.41 (18)
C6—C5—C10—C90.1 (2)S1—C4—N1—C151.67 (17)
C4—C5—C10—C9177.16 (14)C5—C4—N1—C11105.55 (15)
C16—C11—C12—C131.6 (3)S1—C4—N1—C11127.37 (12)
N1—C11—C12—C13179.11 (19)C20—C3—S1—C4148.70 (14)
C11—C12—C13—C140.4 (4)C2—C3—S1—C433.26 (15)
C12—C13—C14—C151.8 (4)N1—C4—S1—C356.83 (12)
C13—C14—C15—C161.3 (3)C5—C4—S1—C372.06 (12)
C12—C11—C16—C152.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.932.823.422 (2)124
C15—H15···O1ii0.932.693.477 (2)142
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.932.823.422 (2)123.6
C15—H15···O1ii0.932.693.477 (2)142.4
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z.
 

Acknowledgements

We acknowledge NSF funding (CHEM-0131112) for the X-ray diffractometer, and are thankful to Dr John Tierney for intellectual contributions and to Euticals Inc. for the gift of T3P in 2-methyl­tetra­hydro­furan. RVB, DJC, and ASC acknowledge summer inter­nship support from SP Controls Inc.

References

First citationBadea, F., Costea, I., Iordache, F., Simion, A. & Simion, C. (1998). Rev. Roum. Chim. 43, 675–678.  CAS Google Scholar
First citationBruker (2001). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKamel, M. M., Ali, H. I., Anwar, M. M., Mohamed, N. A. & Soliman, A. M. M. (2010). Eur. J. Med. Chem. 45, 572–580.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKollenz, G. & Ziegler, E. (1970). Monatsh. Chem. 101, 97–101.  CrossRef CAS Web of Science Google Scholar
First citationOae, S. & Numata, T. (1974). Tetrahedron, 30, 2641–2646.  CrossRef CAS Web of Science Google Scholar
First citationPonci, R., Baruffini, A. & Gialdi, F. (1963). Il Farmaco Ed. Sci. 18, 653–657.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, T., Haq, W. & Katti, S. B. (2002). Tetrahedron, 58, 7619–7624.  Web of Science CrossRef CAS Google Scholar
First citationYennawar, H. P. & Silverberg, L. J. (2013). Acta Cryst. E69, o1659.  CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P. & Silverberg, L. J. (2014). Acta Cryst. E70, o133.  CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P., Silverberg, L. J., Minehan, M. J. & Tierney, J. (2013). Acta Cryst. E69, o1679.  CSD CrossRef IUCr Journals Google Scholar
First citationZarghi, A., Zebardast, T., Daraie, B. & Hedayati, M. (2009). Bioorg. Med. Chem. 17, 5369–5373.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhou, H., Liu, A., Li, X., Ma, X., Feng, W., Zhang, W. & Yan, B. (2008). J. Comb. Chem. 10, 303–312.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds