Download citation
Download citation
link to html
The bis­(tri­fluoro­methane­sulfonyl)­imidate anion crystallizes with Rb as the title dioxane 1:2 solvate, Rb+·CF3SO2NSO2CF3-·2C4H8O2, with the anion in a transoid conformation, as opposed to the cisoid form typically seen when there are significant cation-anion interactions. The RbI cation is eight-coordinate, interacting with one anion in a chelating fashion and with two other anions through the remaining sulfonyl O atoms. The latter interactions link ion pairs through the formation of Rb2O2 dimers about inversion centers at (0, {1 \over 2}, 0) and ({1 \over 2}, {1 \over 2}, 0), forming extended columns which run parallel to the a axis of the unit cell. Rb-dioxane bridges crosslink these salt columns in the (010), (001) and (011) directions, resulting in a three-dimensional network solid. One dioxane solvent mol­ecule is disordered over two half-occupancy sites.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104005797/fr1471sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104005797/fr1471Isup2.hkl
Contains datablock I

CCDC reference: 241210

Comment top

Salts of bis(perfluoroalkanesulfonyl)imides, particularly the trifluoromethyl derivatives, have been found to serve as solutes for polymer electrolytes, leading to dramatically improved performance (Armand et al., 1990; Nowinski et al., 1994). This behavior is due in part to the remarkable acidity of these compounds (Koppel et al., 1994; DesMarteau, 1995). The resonance stabilization of the conjugate base anions of the acids results from extensive delocalization of charge over the SO2—N—SO2 framework. With cations offering no strong interactions, these anions have been found to give salts with good potential as ionic liquids (Golding et al., 1998). On the other hand, with metal cations they serve as multidentate ligands that bond to multiple metal centers to maximize electrostatic interaction (DesMarteau et al., 1989, 1992; Xue et al., 1997, 2002). These interactions result in the formation of ionic hydrophilic and perfluoroalkyl hydrophobic regions, which typically associate into layers consisting of an ionic core with perfluoroalkyl surfaces. This fluorine segregation effect (Dautel et al., 2002; Wolff et al., 1999) may provide a feasible driving force for the directed design of new solid state materials.

As we (Xue et al., 1997, 2002) and others (Zak & Ruzicka, 1998) have observed, bis(perfluoroalkanesulfonyl)imides can exist in two different conformations as the anion, either a transoid form with the perfluoroalkyl groups lying on opposite sides of the S—N—S plane (C—S···S—C dihedral angle of ~180°) or a cisoid form with the perfluoroalkyl groups lying on the same side of the S—N—S plane (C—S···S—C dihedral angle of ~0°). It has been our general experience that the transoid form is favored when there are only weak cation···anion interactions, but that the cisoid form is often found when the anion is chelated to a metal center. In a recent contribution (Xue et al., 2002), the anion was found in the cisoid form in anhydrous and hydrated salts of all the alkali metal cations except rubidium, which was determined as the monohydrate salt. Here, we report the structure of the title dioxane solvate, (I), of the rubidium salt and, like the monohydrate form, the anion has a transoid conformation [C—S···S—C dihedral angle of −147.2 (4)°]. \sch

The distances and angles within the anion of (I) agree well with those of other salts (DesMarteau et al., 1989, 1992; Xue et al., 1997, 2002; Haas et al., 1996; Mikami et al., 1998; Polyakov et al., 1999). The cation is eight-coordinate, with Rb···O contacts ranging from 2.897 (4) to 3.063 (4) Å. These contacts are also within previously reported ranges for rubidium salts of this (Xue et al., 2002; Zak et al., 1998) and similar anions (Juschke et al., 1997) and for rubidium dioxane solvates (Bryan et al., 1998, 1999; Neander et al., 2000; Edelmann et al., 1992).

The cation and anion of (I) sit upon general positions within the cell. The anion interacts with the cation through atoms O1 and O3 to form a chelate. Additional contacts through atom O2 about an inversion center at (0, 1/2, 0) and atom O4 about (1/2, 1/2, 0) link ion pairs into columns running up the a axis. Each of the dioxane molecules is situated about an inversion center and bridges salt columns in the (010), (001) and (011) directions, to form a three-dimensional network solid.

Reasons for the observed preference of the transoid conformation of the anion with Rb are not yet clear, but investigation into this interesting behavior will continue.

Experimental top

The title compound was synthesized by neutralization of a methanol solution of bis(trifluoromethandsulfonyl)imide in acid form with rubidium carbonate, followed by recrystallization from dioxane.

Refinement top

Dioxane 4 (atoms O8, C9 and C10) was disordered, with equally occupied alternative sites, C9' and C10', for the C atoms. Restraints were applied to the O—C, C—C, and cross-ring C—C, O—C and O—O contacts, and all the half-occupancy non-H atoms were refined with anisotropic displacement parameters. All H atoms were included in the structure-factor calculation as a riding model at optimized positions, with a C—H distance of 0.97 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: P3 Software (Siemens, 1989); cell refinement: P3 Software; data reduction: SHELXTL (Sheldrick, 2000); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of Rb[CF3SO2NSO2CF3] and four bridging dioxane molecules. Only one component of the disordered dioxane molecule (atoms O8, C9, C10) is shown, and H atoms have been omitted. Displacement ellipsoids are shown at the 30% probability level. [Symmetry codes: (A) −x, 1 − y, −z; (B) 1 − x, 1 − y, −z; (C) 1 − x, 2 − y, −z; (D) 1 − x, 1 − y, 1 − z; (E) 1 − x, 2 − y, 1 − z; (F) 2 − x, 2 − y, 1 − z.]
[Figure 2] Fig. 2. A packing diagram for (I), viewed down the a axis. S atoms are shown as 50% probability displacement ellipsoids, RbI ions as large open circles, N atoms as solid circles, O atoms as partially shaded circles and C atoms as small open circles. H atoms are not shown.
Rubidium bis(trifluoromethanesulfonyl)imidate dioxane disolvate top
Crystal data top
[Rb(C2F6NO4S2)]·2C4H8O2Z = 2
Mr = 541.83F(000) = 540
Triclinic, P1Dx = 1.768 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.732 (4) ÅCell parameters from 50 reflections
b = 11.310 (4) Åθ = 11.7–17.8°
c = 11.638 (4) ŵ = 2.73 mm1
α = 94.61 (3)°T = 295 K
β = 113.08 (3)°Parallelepiped, colorless
γ = 115.24 (3)°0.41 × 0.37 × 0.26 mm
V = 1017.7 (8) Å3
Data collection top
Nicolet R3mV
diffractometer
2092 reflections with I > 2σ(I)
Radiation source: sealed X-ray tubeRint = 0.027
Graphite monochromatorθmax = 25.1°, θmin = 2.0°
ω/2θ scansh = 110
Absorption correction: empirical (using intensity measurements) via ψ scan
(P3 Software; Siemens, 1989)
k = 1213
Tmin = 0.342, Tmax = 0.492l = 1213
3805 measured reflections3 standard reflections every 97 reflections
3576 independent reflections intensity decay: 0.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0032P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.004
3576 reflectionsΔρmax = 0.36 e Å3
272 parametersΔρmin = 0.29 e Å3
17 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0148 (4)
Crystal data top
[Rb(C2F6NO4S2)]·2C4H8O2γ = 115.24 (3)°
Mr = 541.83V = 1017.7 (8) Å3
Triclinic, P1Z = 2
a = 9.732 (4) ÅMo Kα radiation
b = 11.310 (4) ŵ = 2.73 mm1
c = 11.638 (4) ÅT = 295 K
α = 94.61 (3)°0.41 × 0.37 × 0.26 mm
β = 113.08 (3)°
Data collection top
Nicolet R3mV
diffractometer
2092 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements) via ψ scan
(P3 Software; Siemens, 1989)
Rint = 0.027
Tmin = 0.342, Tmax = 0.4923 standard reflections every 97 reflections
3805 measured reflections intensity decay: 0.0%
3576 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03717 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.00Δρmax = 0.36 e Å3
3576 reflectionsΔρmin = 0.29 e Å3
272 parameters
Special details top

Experimental. Empirical absorption correction was made based on ψ scans of six reflections (P3 Software; Siemens, 1989).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rb10.46063 (7)0.72582 (5)0.20998 (5)0.05530 (19)
S10.23225 (17)0.33945 (12)0.05608 (12)0.0566 (4)
S20.05932 (18)0.47957 (13)0.16469 (12)0.0610 (4)
F10.0149 (5)0.0948 (3)0.1048 (4)0.1271 (15)
F20.1988 (5)0.1770 (3)0.0861 (4)0.1161 (13)
F30.0231 (6)0.2509 (4)0.0410 (4)0.1433 (18)
F40.2720 (7)0.5780 (5)0.2583 (5)0.175 (2)
F50.0780 (7)0.6332 (4)0.3143 (3)0.151 (2)
F60.0110 (7)0.4317 (4)0.4015 (3)0.153 (2)
O10.3509 (4)0.4519 (3)0.0590 (3)0.0664 (10)
O20.2961 (5)0.2712 (3)0.1121 (4)0.0850 (12)
O30.1759 (5)0.5980 (3)0.0537 (3)0.0762 (11)
O40.1204 (5)0.4287 (4)0.2181 (4)0.0985 (14)
O50.5583 (5)0.9821 (4)0.1248 (3)0.0790 (11)
O60.8263 (5)0.9252 (5)0.4049 (4)0.0918 (13)
O70.4447 (6)0.9312 (5)0.3744 (4)0.140 (2)
O80.5239 (8)0.5916 (6)0.4292 (5)0.1274 (19)
N10.0916 (6)0.3555 (4)0.1651 (4)0.0816 (15)
C10.0991 (9)0.2084 (6)0.0066 (7)0.0821 (18)
C20.1120 (12)0.5313 (7)0.2913 (7)0.107 (3)
C30.6649 (7)1.0213 (6)0.0632 (5)0.0778 (17)
H3A0.74400.98620.09180.093*
H3B0.73241.12030.08900.093*
C40.5595 (8)0.9676 (6)0.0811 (5)0.0834 (18)
H4A0.63420.99590.12120.100*
H4B0.49590.86830.10750.100*
C50.9167 (8)0.8604 (6)0.4636 (7)0.105 (2)
H5A0.96610.84120.41160.126*
H5B0.83890.77430.46860.126*
C61.0576 (9)0.9515 (8)0.5987 (6)0.103 (2)
H6A1.00720.96930.65050.124*
H6B1.11820.90500.64050.124*
C70.3300 (8)0.9096 (8)0.4247 (7)0.147 (4)
H7A0.23240.81730.38190.176*
H7B0.28760.97350.41000.176*
C80.4236 (12)0.9305 (8)0.5657 (8)0.138 (3)
H8A0.34530.90850.60270.166*
H8B0.47310.87120.58040.166*
C90.604 (3)0.6334 (10)0.5686 (15)0.162 (12)0.50
H9A0.64650.72960.60570.194*0.50
H9B0.71830.65000.58930.194*0.50
C100.483 (4)0.5331 (18)0.6064 (18)0.204 (16)0.50
H10A0.36430.51200.57220.245*0.50
H10B0.53660.56300.70110.245*0.50
C9'0.483 (3)0.6076 (16)0.5339 (17)0.154 (12)0.50
H9C0.36730.57580.52230.185*0.50
H9D0.52650.70390.57170.185*0.50
C10'0.581 (3)0.5546 (14)0.6315 (8)0.181 (15)0.50
H10C0.59270.58100.71760.217*0.50
H10D0.69470.58600.63880.217*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0521 (3)0.0521 (3)0.0447 (3)0.0179 (3)0.0182 (2)0.0068 (2)
S10.0588 (9)0.0422 (7)0.0628 (9)0.0185 (7)0.0313 (8)0.0126 (7)
S20.0633 (10)0.0568 (9)0.0462 (7)0.0245 (8)0.0181 (7)0.0100 (7)
F10.102 (3)0.056 (2)0.162 (4)0.000 (2)0.054 (3)0.023 (2)
F20.154 (4)0.089 (3)0.129 (3)0.064 (3)0.077 (3)0.066 (2)
F30.164 (4)0.133 (4)0.226 (5)0.081 (3)0.163 (4)0.077 (3)
F40.169 (5)0.168 (5)0.218 (6)0.053 (4)0.154 (5)0.061 (4)
F50.255 (6)0.102 (3)0.096 (3)0.093 (4)0.074 (3)0.054 (2)
F60.271 (6)0.105 (3)0.064 (2)0.082 (4)0.075 (3)0.024 (2)
O10.063 (2)0.051 (2)0.057 (2)0.0219 (19)0.0134 (18)0.0033 (17)
O20.092 (3)0.072 (3)0.107 (3)0.040 (2)0.066 (3)0.012 (2)
O30.090 (3)0.061 (2)0.052 (2)0.041 (2)0.011 (2)0.0025 (18)
O40.051 (3)0.114 (3)0.095 (3)0.031 (2)0.019 (2)0.010 (3)
O50.080 (3)0.109 (3)0.076 (3)0.062 (3)0.041 (2)0.051 (2)
O60.046 (3)0.096 (3)0.082 (3)0.026 (3)0.000 (2)0.003 (2)
O70.093 (4)0.135 (4)0.109 (4)0.005 (3)0.050 (3)0.053 (3)
O80.180 (6)0.111 (5)0.094 (4)0.067 (5)0.068 (4)0.063 (3)
N10.098 (4)0.046 (3)0.060 (3)0.036 (3)0.003 (3)0.004 (2)
C10.082 (5)0.065 (4)0.110 (5)0.039 (4)0.051 (4)0.037 (4)
C20.172 (8)0.071 (5)0.076 (5)0.056 (6)0.062 (6)0.029 (4)
C30.069 (4)0.087 (4)0.087 (4)0.046 (4)0.036 (4)0.034 (4)
C40.088 (5)0.110 (5)0.077 (4)0.062 (4)0.046 (4)0.032 (4)
C50.067 (5)0.089 (5)0.113 (6)0.028 (4)0.018 (4)0.006 (4)
C60.085 (5)0.139 (7)0.079 (5)0.060 (5)0.028 (4)0.032 (5)
C70.061 (5)0.177 (8)0.102 (6)0.010 (5)0.042 (5)0.043 (5)
C80.171 (9)0.114 (7)0.140 (7)0.055 (7)0.102 (7)0.032 (6)
C90.19 (3)0.103 (15)0.101 (15)0.004 (14)0.066 (15)0.011 (12)
C100.36 (5)0.18 (3)0.20 (3)0.16 (3)0.22 (3)0.09 (2)
C9'0.32 (4)0.118 (16)0.20 (2)0.17 (2)0.21 (3)0.115 (16)
C10'0.30 (3)0.062 (13)0.055 (10)0.014 (15)0.059 (14)0.024 (9)
Geometric parameters (Å, º) top
Rb1—O32.897 (4)O8—C91.426 (14)
Rb1—O12.942 (3)O8—C10'vi1.443 (14)
Rb1—O62.983 (4)O8—C9'1.444 (14)
Rb1—O72.984 (5)C3—C41.482 (6)
Rb1—O2i2.993 (4)C3—H3A0.9700
Rb1—O53.023 (4)C3—H3B0.9700
Rb1—O4ii3.060 (4)C4—H4A0.9700
Rb1—O83.063 (4)C4—H4B0.9700
S1—O11.416 (3)C5—C61.502 (7)
S1—O21.433 (3)C5—H5A0.9700
S1—N11.550 (4)C5—H5B0.9700
S1—C11.814 (6)C6—H6A0.9700
S2—O41.417 (4)C6—H6B0.9700
S2—O31.424 (3)C7—C81.469 (8)
S2—N11.563 (4)C7—H7A0.9700
S2—C21.803 (7)C7—H7B0.9700
F1—C11.319 (6)C8—H8A0.9700
F2—C11.329 (6)C8—H8B0.9700
F3—C11.291 (7)C9—C101.486 (17)
F4—C21.283 (9)C9—H9A0.9700
F5—C21.348 (8)C9—H9B0.9699
F6—C21.310 (7)C10—H10A0.9700
O5—C31.424 (6)C10—H10B0.9700
O5—C4iii1.429 (6)C9'—C10'1.521 (17)
O6—C6iv1.388 (7)C9'—H9C0.9700
O6—C51.391 (7)C9'—H9D0.9700
O7—C71.398 (7)C10'—H10C0.9700
O7—C8v1.411 (8)C10'—H10D0.9700
O8—C10vi1.402 (16)
O3—Rb1—O159.33 (10)F4—C2—F6112.0 (8)
O3—Rb1—O6152.44 (12)F4—C2—F5107.2 (7)
O1—Rb1—O6122.85 (12)F6—C2—F5105.8 (6)
O3—Rb1—O7113.61 (13)F4—C2—S2113.0 (6)
O1—Rb1—O7156.31 (13)F6—C2—S2110.7 (5)
O6—Rb1—O774.68 (13)F5—C2—S2107.8 (6)
O3—Rb1—O2i90.85 (11)O5—C3—C4110.9 (5)
O1—Rb1—O2i67.40 (10)O5—C3—H3A109.5
O6—Rb1—O2i68.50 (11)C4—C3—H3A109.5
O7—Rb1—O2i136.21 (13)O5—C3—H3B109.5
O3—Rb1—O584.12 (11)C4—C3—H3B109.5
O1—Rb1—O5126.37 (10)H3A—C3—H3B108.0
O6—Rb1—O573.60 (13)O5iii—C4—C3110.1 (5)
O7—Rb1—O571.22 (14)O5iii—C4—H4A109.6
O2i—Rb1—O576.24 (11)C3—C4—H4A109.6
O3—Rb1—O4ii70.18 (11)O5iii—C4—H4B109.6
O1—Rb1—O4ii82.65 (11)C3—C4—H4B109.6
O6—Rb1—O4ii135.93 (12)H4A—C4—H4B108.2
O7—Rb1—O4ii73.86 (13)O6—C5—C6109.4 (5)
O2i—Rb1—O4ii149.87 (10)O6—C5—Rb147.6 (3)
O5—Rb1—O4ii122.64 (11)C6—C5—Rb1146.8 (4)
O3—Rb1—O8126.86 (13)O6—C5—H5A109.8
O1—Rb1—O879.78 (14)C6—C5—H5A109.8
O6—Rb1—O877.52 (15)O6—C5—H5B109.8
O7—Rb1—O890.00 (18)C6—C5—H5B109.8
O2i—Rb1—O8103.99 (16)H5A—C5—H5B108.2
O5—Rb1—O8148.77 (14)O6iv—C6—C5111.4 (5)
O4ii—Rb1—O872.43 (15)O6iv—C6—H6A109.3
O1—S1—O2118.8 (2)C5—C6—H6A109.3
O1—S1—N1116.9 (2)O6iv—C6—H6B109.3
O2—S1—N1110.3 (2)C5—C6—H6B109.3
O1—S1—C1104.8 (3)H6A—C6—H6B108.0
O2—S1—C1102.9 (3)O7—C7—C8107.7 (6)
N1—S1—C1100.0 (3)O7—C7—H7A110.2
O4—S2—O3119.4 (2)C8—C7—H7A110.2
O4—S2—N1108.6 (3)O7—C7—H7B110.2
O3—S2—N1117.9 (2)C8—C7—H7B110.2
O4—S2—C2105.4 (4)H7A—C7—H7B108.5
O3—S2—C2104.0 (3)O7v—C8—C7108.3 (7)
N1—S2—C298.3 (3)O7v—C8—H8A110.0
S1—O1—Rb1148.5 (2)C7—C8—H8A110.0
S1—O2—Rb1i151.6 (2)O7v—C8—H8B110.0
S2—O3—Rb1148.4 (2)C7—C8—H8B110.0
S2—O4—Rb1ii151.1 (2)H8A—C8—H8B108.4
C3—O5—C4iii109.3 (4)O8—C9—C10107.0 (12)
C3—O5—Rb1123.7 (3)O8—C9—H9A113.0
C4iii—O5—Rb1119.9 (3)C10—C9—H9A117.2
C6iv—O6—C5107.9 (5)O8—C9—H9B100.1
C6iv—O6—Rb1130.2 (4)C10—C9—H9B126.0
C5—O6—Rb1112.2 (4)H9A—C9—H9B92.1
C7—O7—C8v106.9 (5)O8vi—C10—C9106.5 (13)
C7—O7—Rb1128.9 (5)O8vi—C10—H10A105.9
C8v—O7—Rb1123.4 (5)C9—C10—H10A121.9
C10vi—O8—C9105.7 (12)O8vi—C10—H10B106.9
C9—O8—C10'vi114.7 (6)C9—C10—H10B106.9
C10vi—O8—C9'115.0 (7)H10A—C10—H10B107.8
C10'vi—O8—C9'101.2 (11)O8—C9'—C10'102.6 (11)
C10vi—O8—Rb1114.4 (8)O8—C9'—H9C124.7
C9—O8—Rb1137.3 (7)C10'—C9'—H9C113.0
C10'vi—O8—Rb1107.0 (5)O8—C9'—H9D109.5
C9'—O8—Rb1124.4 (6)C10'—C9'—H9D110.5
S1—N1—S2128.6 (3)H9C—C9'—H9D96.2
F3—C1—F1110.5 (6)O8vi—C10'—C9'102.1 (12)
F3—C1—F2107.8 (6)O8vi—C10'—H10C112.0
F1—C1—F2106.8 (5)C9'—C10'—H10C112.7
F3—C1—S1111.4 (4)O8vi—C10'—H10D109.7
F1—C1—S1111.2 (5)C9'—C10'—H10D110.9
F2—C1—S1108.9 (5)H10C—C10'—H10D109.3
O2—S1—O1—Rb1140.8 (4)O3—Rb1—O8—C10vi50.9 (14)
N1—S1—O1—Rb14.6 (5)O1—Rb1—O8—C10vi12.4 (13)
C1—S1—O1—Rb1105.0 (4)O6—Rb1—O8—C10vi114.8 (13)
O3—Rb1—O1—S15.3 (4)O7—Rb1—O8—C10vi170.9 (13)
O6—Rb1—O1—S1152.9 (4)O2i—Rb1—O8—C10vi51.0 (13)
O7—Rb1—O1—S173.6 (5)O5—Rb1—O8—C10vi137.5 (13)
O2i—Rb1—O1—S1110.7 (4)O4ii—Rb1—O8—C10vi97.9 (13)
O5—Rb1—O1—S159.5 (4)O3—Rb1—O8—C9150.6 (15)
O4ii—Rb1—O1—S165.9 (4)O1—Rb1—O8—C9170.9 (15)
O8—Rb1—O1—S1139.3 (4)O6—Rb1—O8—C943.7 (15)
O1—S1—O2—Rb1i50.4 (5)O7—Rb1—O8—C930.6 (15)
N1—S1—O2—Rb1i88.5 (5)O2i—Rb1—O8—C9107.5 (15)
C1—S1—O2—Rb1i165.5 (5)O5—Rb1—O8—C921.0 (16)
O4—S2—O3—Rb1126.6 (4)O4ii—Rb1—O8—C9103.6 (15)
N1—S2—O3—Rb18.8 (6)O3—Rb1—O8—C10'vi17.1 (13)
C2—S2—O3—Rb1116.3 (5)O1—Rb1—O8—C10'vi21.3 (12)
O1—Rb1—O3—S27.8 (4)O6—Rb1—O8—C10'vi148.5 (12)
O6—Rb1—O3—S2110.9 (4)O7—Rb1—O8—C10'vi137.2 (12)
O7—Rb1—O3—S2146.7 (4)O2i—Rb1—O8—C10'vi84.7 (12)
O2i—Rb1—O3—S270.7 (4)O5—Rb1—O8—C10'vi171.2 (12)
O5—Rb1—O3—S2146.8 (4)O4ii—Rb1—O8—C10'vi64.1 (12)
O4ii—Rb1—O3—S285.4 (4)C5—Rb1—O8—C10'vi134.4 (13)
O8—Rb1—O3—S237.5 (5)O3—Rb1—O8—C9'100.0 (12)
O3—S2—O4—Rb1ii76.1 (5)O1—Rb1—O8—C9'138.5 (12)
N1—S2—O4—Rb1ii63.1 (5)O6—Rb1—O8—C9'94.3 (12)
C2—S2—O4—Rb1ii167.6 (5)O7—Rb1—O8—C9'20.0 (12)
O3—Rb1—O5—C388.2 (4)O2i—Rb1—O8—C9'158.1 (12)
O1—Rb1—O5—C343.7 (4)O5—Rb1—O8—C9'71.6 (12)
O6—Rb1—O5—C375.4 (4)O4ii—Rb1—O8—C9'53.0 (12)
O7—Rb1—O5—C3154.4 (4)O1—S1—N1—S21.4 (5)
O2i—Rb1—O5—C34.1 (4)O2—S1—N1—S2141.2 (4)
O4ii—Rb1—O5—C3150.1 (4)C1—S1—N1—S2110.9 (4)
O8—Rb1—O5—C398.5 (5)O4—S2—N1—S1136.9 (4)
O3—Rb1—O5—C4iii59.4 (4)O3—S2—N1—S13.0 (5)
O1—Rb1—O5—C4iii103.9 (4)C2—S2—N1—S1113.7 (5)
O6—Rb1—O5—C4iii137.0 (4)O1—S1—C1—F358.3 (6)
O7—Rb1—O5—C4iii58.0 (4)O2—S1—C1—F3176.8 (5)
O2i—Rb1—O5—C4iii151.7 (4)N1—S1—C1—F363.1 (6)
O4ii—Rb1—O5—C4iii2.5 (4)O1—S1—C1—F1177.9 (4)
O8—Rb1—O5—C4iii113.9 (4)O2—S1—C1—F153.1 (5)
O3—Rb1—O6—C6iv25.5 (6)N1—S1—C1—F160.6 (5)
O1—Rb1—O6—C6iv111.2 (5)O1—S1—C1—F260.5 (5)
O7—Rb1—O6—C6iv86.4 (5)O2—S1—C1—F264.4 (5)
O2i—Rb1—O6—C6iv69.5 (5)N1—S1—C1—F2178.1 (4)
O5—Rb1—O6—C6iv11.9 (5)O4—S2—C2—F4178.8 (6)
O4ii—Rb1—O6—C6iv132.2 (5)O3—S2—C2—F454.8 (7)
O8—Rb1—O6—C6iv179.8 (5)N1—S2—C2—F466.8 (6)
O3—Rb1—O6—C5115.7 (4)O4—S2—C2—F652.3 (7)
O1—Rb1—O6—C530.1 (4)O3—S2—C2—F6178.7 (6)
O7—Rb1—O6—C5132.4 (4)N1—S2—C2—F659.7 (7)
O2i—Rb1—O6—C571.8 (4)O4—S2—C2—F563.0 (6)
O5—Rb1—O6—C5153.1 (4)O3—S2—C2—F563.5 (6)
O4ii—Rb1—O6—C586.6 (4)N1—S2—C2—F5174.9 (5)
O8—Rb1—O6—C538.9 (4)C4iii—O5—C3—C458.4 (6)
O3—Rb1—O7—C769.9 (6)Rb1—O5—C3—C492.1 (4)
O1—Rb1—O7—C72.8 (8)O5—C3—C4—O5iii58.9 (6)
O6—Rb1—O7—C7138.0 (6)C6iv—O6—C5—C658.6 (7)
O2i—Rb1—O7—C7171.4 (6)Rb1—O6—C5—C6151.5 (4)
O5—Rb1—O7—C7144.4 (6)C6iv—O6—C5—Rb1149.9 (6)
O4ii—Rb1—O7—C710.7 (6)O6—C5—C6—O6iv60.8 (8)
O8—Rb1—O7—C761.0 (6)C8v—O7—C7—C863.8 (9)
O3—Rb1—O7—C8v121.8 (6)Rb1—O7—C7—C8106.0 (6)
O1—Rb1—O7—C8v171.1 (5)O7—C7—C8—O7v64.7 (9)
O6—Rb1—O7—C8v30.2 (6)C10vi—O8—C9—C1067 (2)
O2i—Rb1—O7—C8v3.2 (7)Rb1—O8—C9—C10133.6 (12)
O5—Rb1—O7—C8v47.3 (6)O8—C9—C10—O8vi67 (2)
O4ii—Rb1—O7—C8v179.0 (6)Rb1—O8—C9'—C10'165.4 (9)
O8—Rb1—O7—C8v107.3 (6)O8—C9'—C10'—O8vi75.4 (17)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1, y+2, z; (iv) x+2, y+2, z+1; (v) x+1, y+2, z+1; (vi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Rb(C2F6NO4S2)]·2C4H8O2
Mr541.83
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.732 (4), 11.310 (4), 11.638 (4)
α, β, γ (°)94.61 (3), 113.08 (3), 115.24 (3)
V3)1017.7 (8)
Z2
Radiation typeMo Kα
µ (mm1)2.73
Crystal size (mm)0.41 × 0.37 × 0.26
Data collection
DiffractometerNicolet R3mV
diffractometer
Absorption correctionEmpirical (using intensity measurements) via ψ scan
(P3 Software; Siemens, 1989)
Tmin, Tmax0.342, 0.492
No. of measured, independent and
observed [I > 2σ(I)] reflections
3805, 3576, 2092
Rint0.027
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.061, 1.00
No. of reflections3576
No. of parameters272
No. of restraints17
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.29

Computer programs: P3 Software (Siemens, 1989), P3 Software, SHELXTL (Sheldrick, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
S1—O11.416 (3)S2—O41.417 (4)
S1—O21.433 (3)S2—O31.424 (3)
S1—N11.550 (4)S2—N11.563 (4)
S1—C11.814 (6)S2—C21.803 (7)
O1—S1—O2118.8 (2)O4—S2—C2105.4 (4)
O1—S1—C1104.8 (3)O3—S2—C2104.0 (3)
O2—S1—C1102.9 (3)N1—S2—C298.3 (3)
N1—S1—C1100.0 (3)S1—N1—S2128.6 (3)
O4—S2—O3119.4 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds