Download citation
Download citation
link to html
The structure of the title compound, 1-ethyl-6-fluoro-1,4-di­hydro-4-oxo-7-(piperazin-4-ium-1-yl)-1,8-naphthyridine-3-carb­oxylate trihydrate, C15H17FN4O3·3H2O, has a zwitterion of enoxacin and three water mol­ecules in the asymmetric unit. The zwitterions form sheets lying parallel to each other and are hydrogen bonded in a head-to-tail manner. The crystal structure is stabilized by the involvement of O and H atoms from all the water mol­ecules in strong hydrogen bonds. The naphthyridine ring system is essentially planar, with the carboxyl­ate group lying out of this plane at an angle of 26.13 (6)° and the ethyl group oriented at approximately right angles to this plane. The piperazinium ring adopts a chair conformation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104004500/fr1468sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104004500/fr1468Isup2.hkl
Contains datablock I

CCDC reference: 237949

Comment top

Enoxacin belongs to the second generation fluoroquinolone antimicrobial agents (Smith, 2000). Its structure-activity relationship (Koga et al., 1980; Domagala et al., 1986; Domagala, 1994; Gootz & Brighty, 1996) and pharmacokinetics (Wise et al., 1986) have been extensively studied. Like other quinolone antimicrobials, it exerts its action by inhibiting enzyme DNA-gyrase, which is responsible for the continuous introduction of negative supercoils into DNA (Alfred et al., 1996; Gootz et al., 1994). Enoxacin, the naphthyridone analogue of norfloxacin, possesses roughly similar antibacterial activity but improved bioavailability over the latter (Gaja, 1992; Child et al., 1995). There are a number of reported drug interactions of enoxacin with milk, food, antacids and H2-receptor antagonists. Drug interactions have been reported when enoxacin is co-administered with magnesium and aluminium hydroxide, resulting in decreased levels of enoxacin in plasma and urine (Jaehde et al., 1994). There is additional evidence of the formation of complexes with Mg and Ca cations at pH 7.4, the binding sites being first the carbonyl and carboxyl groups, then the N4 piperazinyl atom (Lecomte & Chenon, 1996). In this paper, we report the structure of enoxacin trihydrate, (I). \sch

The structure of (I) is composed of a zwitterionic molecule of enoxacin (Fig. 1) and three molecules of water of solvation in an asymmetric unit, forming a strong network of hydrogen bonds (Fig. 2). The zwitterion is composed of an essentially planar naphthyridine ring system [maximum deviation for C6 0.0269 (10) Å], which is substituted with ethyl, fluoro, oxo, carboxyl and piperazinium groups. The carboxylate group lies out of the plane of the naphthyridine ring system, with an angle 26.13 (6)° between the mean planes formed by the two entities. The ethyl group attached to N1 is oriented approximately at a right angle to the plane of the naphthyridine ring [80.80 (11)°]. The piperazinium ring adopts a chair conformation, with puckering parameters (Cremer & Pople, 1975) Q = 0.571 (1) Å, θ = 175.4 (1)° and ϕ = 357 (2)°.

The zwitterions are stacked in the form of sheets lying parallel to each other and are hydrogen-bonded via a piperazinium ammonium H atom and a carboxylate moiety in a head-to-tail manner. The crystal structure of (I) is further strengthened by the involvement of the other ammonium H atom in a hydrogen bond with a hydration water molecule, which is also hydrogen-bonded to another zwitterion through its carbonyl function. As a matter of fact, the O and H atoms of all water molecules are involved in strong hydrogen bonding; details of the hydrogen bonding are given in Table 2.

A search of the Cambridge Structural Database (Version 1.6, 2003 release; Allen, 2002) yielded only one entry containing the piperazinyl-oxo-naphthyridine-carboxylate moiety, namely nalidixic acid (Datta et al., 1995), while there are 32 structures in the database containing the quinoline ring system instead of the naphthyridine ring system.

Experimental top

Enoxacin was a gift from Rhone-Poulenc Rohrer Pakistan (Pvt) LTD, Wah Cant., Pakistan. It was recrystallized from dimethylformamide, affording colourless needles of (I) [m.p. 497–498 K (decomposes)].

Refinement top

The H atoms were located from a difference Fourier synthesis and were allowed to refine with isotropic displacement parameters. The final difference map was free of any chemically significant features.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A drawing of the zwitterion of (I), with displacement ellipsoids plotted at the 50% probability level.
[Figure 2] Fig. 2. A drawing of the unit cell of (I), showing the hydrogen bonding (dashed lines).
1-Ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-1,8-naphthyridine- 3-carboxylic acid trihydrate top
Crystal data top
C15H17FN4O3·3H2OF(000) = 792
Mr = 374.37Dx = 1.439 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7267 reflections
a = 13.618 (3) Åθ = 3.1–27.5°
b = 7.2963 (13) ŵ = 0.12 mm1
c = 18.316 (5) ÅT = 173 K
β = 108.282 (12)°Needle, colourless
V = 1728.0 (7) Å30.32 × 0.06 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
3945 independent reflections
Radiation source: fine-focus sealed tube3146 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.023
ω and ϕ scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1717
Tmin = 0.95, Tmax = 0.99k = 89
7267 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036All H-atom parameters refined
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.3941P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3945 reflectionsΔρmax = 0.27 e Å3
328 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (2)
Crystal data top
C15H17FN4O3·3H2OV = 1728.0 (7) Å3
Mr = 374.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.618 (3) ŵ = 0.12 mm1
b = 7.2963 (13) ÅT = 173 K
c = 18.316 (5) Å0.32 × 0.06 × 0.05 mm
β = 108.282 (12)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3945 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
3146 reflections with I > 2.0σ(I)
Tmin = 0.95, Tmax = 0.99Rint = 0.023
7267 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.097All H-atom parameters refined
S = 1.04Δρmax = 0.27 e Å3
3945 reflectionsΔρmin = 0.21 e Å3
328 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.29770 (6)0.27964 (12)0.53436 (4)0.0289 (2)
O10.67934 (7)0.19112 (14)0.66058 (5)0.0257 (2)
O20.91105 (7)0.03255 (13)0.56589 (5)0.0258 (2)
O51.06737 (9)0.22321 (15)0.53753 (7)0.0332 (3)
H0511.0188 (18)0.155 (3)0.5526 (13)0.064 (6)*
H0521.0873 (18)0.152 (3)0.5065 (14)0.065 (7)*
O60.89926 (10)0.40362 (17)0.42202 (7)0.0435 (3)
H0610.9024 (17)0.521 (4)0.4338 (13)0.066 (7)*
H0620.953 (2)0.345 (4)0.4603 (15)0.083 (8)*
O30.89070 (7)0.18629 (14)0.66493 (5)0.0268 (2)
N10.62254 (8)0.18047 (14)0.42644 (6)0.0184 (2)
N20.44810 (8)0.23710 (14)0.40407 (6)0.0180 (2)
N30.27088 (8)0.27278 (14)0.37190 (6)0.0190 (2)
N40.08989 (9)0.36270 (16)0.24593 (7)0.0234 (3)
H410.1121 (14)0.479 (3)0.2330 (10)0.042 (5)*
H420.0214 (16)0.336 (3)0.2116 (11)0.045 (5)*
O40.17460 (8)0.67580 (13)0.20501 (6)0.0266 (2)
H0410.1484 (17)0.758 (3)0.1656 (13)0.054 (6)*
H0420.2061 (18)0.736 (3)0.2489 (13)0.057 (6)*
C10.71860 (10)0.15107 (17)0.47545 (7)0.0183 (3)
C20.74411 (9)0.15115 (16)0.55405 (7)0.0174 (3)
C30.66554 (9)0.18642 (16)0.59000 (7)0.0178 (3)
C40.56202 (9)0.21544 (16)0.53554 (7)0.0172 (2)
C50.47566 (10)0.24360 (17)0.56079 (7)0.0192 (3)
C60.38046 (10)0.26461 (17)0.50840 (7)0.0197 (3)
C70.36631 (9)0.26157 (16)0.42782 (7)0.0174 (3)
C80.54200 (9)0.21219 (15)0.45582 (7)0.0166 (2)
C90.60532 (11)0.18860 (19)0.34258 (7)0.0231 (3)
C100.60074 (14)0.3837 (2)0.31392 (9)0.0346 (4)
C110.85649 (9)0.11979 (17)0.59828 (7)0.0189 (3)
C120.19312 (10)0.40322 (18)0.38136 (8)0.0230 (3)
C130.08697 (10)0.3612 (2)0.32636 (8)0.0241 (3)
C140.16531 (11)0.2232 (2)0.23734 (8)0.0266 (3)
C150.27263 (10)0.26361 (19)0.29235 (8)0.0237 (3)
H10.7706 (12)0.133 (2)0.4508 (8)0.020 (4)*
H50.4829 (13)0.246 (2)0.6137 (10)0.029 (4)*
H9A0.6615 (12)0.119 (2)0.3338 (8)0.023 (4)*
H9B0.5389 (14)0.121 (2)0.3164 (10)0.035 (4)*
H10A0.6620 (16)0.451 (3)0.3421 (11)0.052 (6)*
H10B0.5983 (14)0.383 (3)0.2597 (12)0.049 (5)*
H10C0.5383 (15)0.449 (3)0.3179 (10)0.045 (5)*
H12A0.1904 (13)0.399 (2)0.4336 (10)0.033 (4)*
H12B0.2137 (11)0.531 (2)0.3700 (8)0.024 (4)*
H13A0.0643 (13)0.241 (2)0.3359 (9)0.028 (4)*
H13B0.0369 (12)0.457 (2)0.3308 (9)0.030 (4)*
H14A0.1411 (13)0.098 (2)0.2476 (9)0.032 (4)*
H14B0.1658 (13)0.228 (2)0.1862 (10)0.026 (4)*
H15A0.3195 (12)0.164 (2)0.2887 (9)0.024 (4)*
H15B0.2999 (12)0.380 (2)0.2794 (9)0.026 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0160 (4)0.0485 (5)0.0229 (4)0.0049 (3)0.0072 (3)0.0009 (3)
O10.0180 (5)0.0418 (6)0.0149 (4)0.0010 (4)0.0018 (4)0.0002 (4)
O20.0177 (5)0.0321 (5)0.0266 (5)0.0041 (4)0.0056 (4)0.0033 (4)
O50.0354 (6)0.0288 (5)0.0396 (6)0.0055 (4)0.0176 (5)0.0084 (4)
O60.0525 (8)0.0321 (6)0.0329 (6)0.0033 (5)0.0055 (5)0.0062 (5)
O30.0159 (5)0.0368 (6)0.0220 (5)0.0045 (4)0.0022 (4)0.0063 (4)
N10.0146 (5)0.0249 (5)0.0146 (5)0.0002 (4)0.0029 (4)0.0002 (4)
N20.0140 (5)0.0206 (5)0.0171 (5)0.0006 (4)0.0016 (4)0.0003 (4)
N30.0136 (5)0.0231 (5)0.0171 (5)0.0035 (4)0.0000 (4)0.0012 (4)
N40.0146 (5)0.0250 (6)0.0249 (6)0.0019 (4)0.0021 (4)0.0043 (4)
O40.0291 (6)0.0269 (5)0.0210 (5)0.0038 (4)0.0040 (4)0.0005 (4)
C10.0132 (6)0.0210 (6)0.0197 (6)0.0001 (4)0.0036 (5)0.0003 (4)
C20.0132 (6)0.0194 (6)0.0171 (6)0.0001 (4)0.0011 (5)0.0001 (4)
C30.0157 (6)0.0189 (6)0.0167 (6)0.0012 (4)0.0018 (5)0.0001 (4)
C40.0149 (6)0.0182 (6)0.0164 (6)0.0008 (4)0.0020 (5)0.0004 (4)
C50.0186 (6)0.0229 (6)0.0155 (6)0.0002 (5)0.0042 (5)0.0013 (4)
C60.0151 (6)0.0242 (6)0.0206 (6)0.0010 (5)0.0065 (5)0.0017 (5)
C70.0149 (6)0.0163 (6)0.0187 (6)0.0000 (4)0.0018 (5)0.0009 (4)
C80.0140 (6)0.0175 (6)0.0166 (6)0.0001 (4)0.0024 (5)0.0002 (4)
C90.0195 (7)0.0341 (7)0.0145 (6)0.0019 (5)0.0035 (5)0.0025 (5)
C100.0424 (10)0.0414 (9)0.0226 (7)0.0074 (7)0.0139 (7)0.0078 (6)
C110.0153 (6)0.0185 (6)0.0212 (6)0.0005 (4)0.0034 (5)0.0023 (4)
C120.0158 (6)0.0254 (7)0.0244 (7)0.0054 (5)0.0016 (5)0.0024 (5)
C130.0141 (6)0.0284 (7)0.0267 (7)0.0014 (5)0.0018 (5)0.0038 (5)
C140.0216 (7)0.0308 (7)0.0216 (7)0.0014 (5)0.0017 (5)0.0025 (5)
C150.0176 (6)0.0314 (7)0.0186 (6)0.0033 (5)0.0006 (5)0.0002 (5)
Geometric parameters (Å, º) top
F1—C61.3581 (15)C2—C31.445 (2)
O1—C31.2471 (16)C2—C111.508 (2)
O2—C111.2593 (16)C3—C41.465 (2)
O5—H0510.94 (2)C4—C81.399 (2)
O5—H0520.87 (3)C4—C51.407 (2)
O6—H0610.88 (3)C5—C61.358 (2)
O6—H0620.94 (3)C5—H50.94 (2)
O3—C111.259 (2)C6—C71.428 (2)
N1—C11.351 (2)C9—C101.512 (2)
N1—C81.384 (2)C9—H9A0.97 (2)
N1—C91.481 (2)C9—H9B1.01 (2)
N2—C71.329 (2)C10—H10A0.97 (2)
N2—C81.344 (2)C10—H10B0.98 (2)
N3—C71.382 (2)C10—H10C1.00 (2)
N3—C151.466 (2)C12—C131.512 (2)
N3—C121.474 (2)C12—H12A0.97 (2)
N4—C131.486 (2)C12—H12B1.02 (2)
N4—C141.489 (2)C13—H13A0.96 (2)
N4—H410.96 (2)C13—H13B1.00 (2)
N4—H420.97 (2)C14—C151.521 (2)
O4—H0410.92 (2)C14—H14A1.01 (2)
O4—H0420.90 (2)C14—H14B0.94 (2)
C1—C21.371 (2)C15—H15A0.98 (2)
C1—H10.96 (2)C15—H15B0.99 (2)
H051—O5—H052105 (2)N1—C9—C10111.96 (11)
H061—O6—H062107 (2)N1—C9—H9A105.9 (9)
C1—N1—C8119.23 (10)C10—C9—H9A112.7 (9)
C1—N1—C9120.05 (11)N1—C9—H9B107.4 (10)
C8—N1—C9120.64 (10)C10—C9—H9B111.3 (10)
C7—N2—C8119.81 (11)H9A—C9—H9B107.3 (13)
C7—N3—C15115.41 (10)C9—C10—H10A111.0 (12)
C7—N3—C12119.64 (10)C9—C10—H10B109.3 (12)
C15—N3—C12112.49 (10)H10A—C10—H10B107.0 (16)
C13—N4—C14109.48 (10)C9—C10—H10C111.7 (11)
C13—N4—H41111.2 (11)H10A—C10—H10C109.3 (17)
C14—N4—H41107.4 (11)H10B—C10—H10C108.4 (15)
C13—N4—H42108.9 (11)O3—C11—O2123.91 (11)
C14—N4—H42110.4 (11)O3—C11—C2117.84 (11)
H41—N4—H42109.5 (15)O2—C11—C2118.23 (11)
H041—O4—H042109.8 (19)N3—C12—C13111.27 (11)
N1—C1—C2124.82 (12)N3—C12—H12A110.2 (10)
N1—C1—H1114.3 (9)C13—C12—H12A109.1 (10)
C2—C1—H1120.8 (9)N3—C12—H12B108.4 (8)
C1—C2—C3119.92 (11)C13—C12—H12B108.6 (8)
C1—C2—C11116.38 (11)H12A—C12—H12B109.4 (13)
C3—C2—C11123.66 (11)N4—C13—C12109.99 (11)
O1—C3—C2125.81 (11)N4—C13—H13A107.3 (10)
O1—C3—C4120.12 (11)C12—C13—H13A110.9 (10)
C2—C3—C4114.06 (11)N4—C13—H13B107.9 (9)
C8—C4—C5115.85 (11)C12—C13—H13B109.8 (9)
C8—C4—C3122.64 (11)H13A—C13—H13B110.7 (14)
C5—C4—C3121.49 (11)N4—C14—C15110.40 (11)
C6—C5—C4119.69 (12)N4—C14—H14A108.9 (9)
C6—C5—H5119.6 (10)C15—C14—H14A110.8 (9)
C4—C5—H5120.7 (10)N4—C14—H14B107.7 (10)
C5—C6—F1118.36 (11)C15—C14—H14B110.3 (10)
C5—C6—C7121.20 (12)H14A—C14—H14B108.7 (13)
F1—C6—C7120.37 (11)N3—C15—C14110.81 (12)
N2—C7—N3117.09 (11)N3—C15—H15A108.3 (9)
N2—C7—C6119.04 (11)C14—C15—H15A108.8 (9)
N3—C7—C6123.77 (11)N3—C15—H15B108.9 (9)
N2—C8—N1116.30 (11)C14—C15—H15B111.3 (9)
N2—C8—C4124.38 (11)H15A—C15—H15B108.6 (13)
N1—C8—C4119.32 (11)
C8—N1—C1—C20.47 (18)F1—C6—C7—N30.17 (18)
C9—N1—C1—C2176.19 (11)C7—N2—C8—N1177.54 (10)
N1—C1—C2—C30.68 (19)C7—N2—C8—C42.07 (18)
N1—C1—C2—C11178.60 (11)C1—N1—C8—N2178.83 (10)
C1—C2—C3—O1179.57 (12)C9—N1—C8—N24.53 (16)
C11—C2—C3—O11.81 (19)C1—N1—C8—C40.81 (17)
C1—C2—C3—C41.36 (16)C9—N1—C8—C4175.84 (11)
C11—C2—C3—C4179.12 (11)C5—C4—C8—N21.25 (17)
O1—C3—C4—C8179.83 (11)C3—C4—C8—N2179.59 (11)
C2—C3—C4—C81.04 (16)C5—C4—C8—N1178.36 (11)
O1—C3—C4—C51.92 (18)C3—C4—C8—N10.02 (17)
C2—C3—C4—C5177.21 (11)C1—N1—C9—C1098.51 (14)
C8—C4—C5—C60.30 (17)C8—N1—C9—C1078.11 (15)
C3—C4—C5—C6178.06 (11)C1—C2—C11—O3152.93 (12)
C4—C5—C6—F1175.79 (11)C3—C2—C11—O324.90 (18)
C4—C5—C6—C70.99 (19)C1—C2—C11—O225.47 (17)
C8—N2—C7—N3175.30 (10)C3—C2—C11—O2156.70 (12)
C8—N2—C7—C61.27 (17)C7—N3—C12—C13165.17 (11)
C15—N3—C7—N22.43 (15)C15—N3—C12—C1354.49 (15)
C12—N3—C7—N2141.67 (12)C14—N4—C13—C1259.33 (14)
C15—N3—C7—C6178.83 (11)N3—C12—C13—N456.81 (15)
C12—N3—C7—C641.93 (17)C13—N4—C14—C1559.20 (15)
C5—C6—C7—N20.21 (18)C7—N3—C15—C14164.02 (11)
F1—C6—C7—N2176.50 (11)C12—N3—C15—C1453.87 (14)
C5—C6—C7—N3176.55 (11)N4—C14—C15—N356.25 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H051···O20.94 (2)1.80 (3)2.726 (2)170 (2)
O5—H052···O2i0.87 (3)1.89 (3)2.740 (2)162 (2)
O6—H061···O5ii0.88 (3)1.95 (3)2.821 (2)171 (2)
O6—H062···O50.94 (3)1.96 (3)2.900 (2)178 (2)
N4—H41···O40.96 (2)1.82 (2)2.767 (2)169 (2)
N4—H42···O3iii0.97 (2)1.72 (2)2.676 (2)168 (2)
O4—H041···O6iv0.92 (2)1.86 (2)2.779 (2)173 (2)
O4—H042···O1v0.90 (2)1.96 (2)2.809 (2)157 (2)
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1, z+1; (iii) x1, y+1/2, z1/2; (iv) x+1, y+1/2, z+1/2; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H17FN4O3·3H2O
Mr374.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)13.618 (3), 7.2963 (13), 18.316 (5)
β (°) 108.282 (12)
V3)1728.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.32 × 0.06 × 0.05
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.95, 0.99
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
7267, 3945, 3146
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.04
No. of reflections3945
No. of parameters328
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.27, 0.21

Computer programs: COLLECT (Nonius, 1998), HKL DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SAPI91 (Fan, 1991), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
F1—C61.3581 (15)N2—C71.329 (2)
O1—C31.2471 (16)N2—C81.344 (2)
O2—C111.2593 (16)N3—C71.382 (2)
O3—C111.259 (2)N3—C151.466 (2)
N1—C11.351 (2)N3—C121.474 (2)
N1—C81.384 (2)N4—C131.486 (2)
N1—C91.481 (2)N4—C141.489 (2)
C1—N1—C8119.23 (10)C7—N3—C15115.41 (10)
C1—N1—C9120.05 (11)C7—N3—C12119.64 (10)
C8—N1—C9120.64 (10)C15—N3—C12112.49 (10)
C7—N2—C8119.81 (11)C13—N4—C14109.48 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H051···O20.94 (2)1.80 (3)2.726 (2)170 (2)
O5—H052···O2i0.87 (3)1.89 (3)2.740 (2)162 (2)
O6—H061···O5ii0.88 (3)1.95 (3)2.821 (2)171 (2)
O6—H062···O50.94 (3)1.96 (3)2.900 (2)178 (2)
N4—H41···O40.96 (2)1.82 (2)2.767 (2)169 (2)
N4—H42···O3iii0.97 (2)1.72 (2)2.676 (2)168 (2)
O4—H041···O6iv0.92 (2)1.86 (2)2.779 (2)173 (2)
O4—H042···O1v0.90 (2)1.96 (2)2.809 (2)157 (2)
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1, z+1; (iii) x1, y+1/2, z1/2; (iv) x+1, y+1/2, z+1/2; (v) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds