Download citation
Download citation
link to html
The structure of the title compound, C18H20ClN3O5, displays the characteristic features of azo­benzene derivatives. Intramolecular N—H...O, weak intramolecular C—H...O, and intermolecular O—H...O and C—H...O interactions influence the conformation of the mol­ecules and the crystal packing. Intermolecular hydrogen bonds link the mol­ecules into infinite chains, and the title compound adopts the keto–amine tautomeric form. The azo­benzene moiety of the mol­ecule has a trans configuration. The mol­ecule is not planar, and the dihedral angle between the two phenyl rings is 35.6 (2)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010302941X/fr1451sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010302941X/fr1451Isup2.hkl
Contains datablock I

CCDC reference: 233135

Comment top

Schiff bases have been used extensively as ligands in the field of coordination chemistry (Calligaris et al., 1972; Garnovski et al., 1993). The Schiff base compounds can be classified by their photochromic and thermochromic characteristics (Cohen et al., 1964; Moustakali et al., 1978; Hadjoudis et al., 1987). Azo compounds are the most widely used class of dyes because of their versatile application in various fields, such as the dyeing of textiles and fibres, the colouring of different materials, and high-technology areas, such as electro-optical devices and ink-jet printers. The crystal and molecular structures of the title compound, (I), have been investigated in order to determine the conformation and crystal packing, and to confirm the stereochemistry. Intramolecular hydrogen bonds between O and N atoms in these systems play a vital role in the formation of Schiff base compounds in the solid state by proton transfer from the hydroxy O atom to the imine N atom (Hadjoudis et al., 1987; Elerman et al., 1997). X-ray structure determination reveals that the keto tautomer is favoured over the enol tautomer. X-ray structure analyses revealed the NH forms of N-(3-hydroxysalicylidene) isopropylamine (Pizzala et al., 2000), 4-[(3-chlorophenyl)diazenyl] −2-{[tris-(hydroxymethyl)methyl]aminomethylene}-cyclohexa-3,5-dien-1(2H)-one (Odabaşoǧlu et al., 2003), 2-[(2-hydroxy-4-nitrophenyl)- aminomethylene]cyclohexa-3,5-dien-1(2H)-one (Ersanlı et al., 2003) and 5-nitro-N-salicylideneethylamine (Krygowski et al., 1997), while the OH tautomers have been observed in the crystals of 5-chloro-2- [(2-hydroxybenzylidenene)aminomethyl]phenol (Kevran et al., 1996), 3-tert- butyl-2'-chloro-2-hydroxy-5-methyl-azobenzene (Işık et al., 1998) and 2-hydroxy-5-tert-butylazobenzene (Candan et al., 1999). Transfer of the H atoms in Schiff bases from the O to the N atom is associated with the shortening of the Car—O bond, which acquires a partial double-bond character as a result of a decrease in the electronegativity of the O atom. In the title compound, (I), the most sensitive bond distance for deciding the tautomer type is the Csp2—O bond distance. The O2—C10 bond length is consistent with an O=C double bond and is significantly shorter than those of phenols (1.362 Å), indicating significant π character (Allen et al., 1987).

Scheme

A view of a molecule of (I), with the atom-labelling scheme, is shown in Fig. 1. The N2—N1 and N2—C7 bond lengths indicate single-bond character, a result consistent with those found for other azobenzene derivatives studied recently (Işık et al., 1997, 1998; Odabaşoǧlu et al., 2003). Similar values have been observed in other trans-azo compounds (Özbey et al., 1993; 1994; 1995). The N=N bond length is indicative of significant double-bond character.

The dihedral angle between the C1—N1=N2—C7 azo moiety and the chloro- substituted ring is 27.0 (2)°, that between the azo group and the other aromatic ring is 8.7 (2)°, and that between the two rings is 35.6 (2)°.

In (I), a moderate intramolecular hydrogen bond occurs between atoms N3 and O2 [2.584 (2) Å; Jeffrey, 1997], the H atom being essentially bonded to the N atom. The sum of the van der Waals radii of O and N atoms (3.07 Å) is significantly longer than the intramolecular N···O hydrogen-bond length (Bondi, 1964).

Experimental top

A mixture of 2-chloroaniline (1 g, 8.8 mmol), water (50 ml) and concentrated hydrochloric acid (2.2 ml, 26.4 mmol) was heated with stirring until a clear solution was obtained. This solution was cooled to 273–278 K, and a solution of sodium nitrite (0.85 g, 12.3 mmol) in water was added dropwise while the temperature was maintained below 278 K. The resulting mixture was stirred for 30 min in an ice bath. o-Vanillin (1.19 g, 8.8 mmol) solution (pH 9) was added gradually to the solution of cooled 2-chlorobenzenediazonium chloride, prepared as described above, and the resulting mixture was stirred continually, at 273–278 K, for 60 min in an ice bath. The product was recrystallized from glacial acetic acid to obtain solid 3-(2-chlorophenylazo)-5-methoxysalicylaldehyde. To a solution of this solid (0.5 g, 1.7 mmol) in butan-1-ol (25 ml) was added a solution of tris(hydroxymethyl)aminomethane (0.2 g, 1.7 mmol) in butan-1-ol (15 ml). The mixture was stirred under reflux, and the water produced in the reaction was distilled out of the reaction mixture. The resulting red–brown precipitate was filtered off and recrystallized from ethyl alcohol. Crystals of (I) were obtained by slow evaporation from ethyl alcohol after 2 d (yield 90%).

Refinement top

All H-atom positions (except for the hydroxy H atoms and atom H33) were refined using a riding model, with Uiso(H) values equal to 1.2Ueq of the attached atom. The hydroxy H atoms and atom H33 were found in difference Fourier maps calculated at the end of the refinement, as peaks of small positive electron density, and their parameters were refined.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Fig. I. An ORTEP-3 (Farrugia, 1997) drawing of the title compound, with atomic labeling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Fig. II. An ORTEP-3 (Farrugia, 1997) packing diagram of (I). H atoms have been omitted for clarity.
4-[(2-Chlorophenyl)diazenyl]-6-methoxy-2- {[tris(hydroxymethyl)methyl]aminomethylene}cyclohexa-3,5-dien-1-one top
Crystal data top
C18H20ClN3O5F(000) = 824
Mr = 393.82Dx = 1.448 Mg m3
Monoclinic, P21/cMelting point: 224-226° C K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 15.4723 (2) ÅCell parameters from 5368 reflections
b = 10.5669 (8) Åθ = 2.3–30.5°
c = 11.1850 (8) ŵ = 0.25 mm1
β = 98.900 (3)°T = 133 K
V = 1806.7 (2) Å3Prism, orange
Z = 40.35 × 0.19 × 0.16 mm
Data collection top
Bruker SMART 1000CCD
diffractometer
5276 independent reflections
Radiation source: fine-focus sealed tube3951 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 8.192 pixels mm-1θmax = 30.0°, θmin = 1.3°
ω and ϕ scansh = 2121
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 1414
Tmin = 0.831, Tmax = 0.928l = 1515
35639 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.067P]
where P = (Fo2 + 2Fc2)/3
5276 reflections(Δ/σ)max = 0.001
261 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C18H20ClN3O5V = 1806.7 (2) Å3
Mr = 393.82Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.4723 (2) ŵ = 0.25 mm1
b = 10.5669 (8) ÅT = 133 K
c = 11.1850 (8) Å0.35 × 0.19 × 0.16 mm
β = 98.900 (3)°
Data collection top
Bruker SMART 1000CCD
diffractometer
5276 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3951 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 0.928Rint = 0.034
35639 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.42 e Å3
5276 reflectionsΔρmin = 0.21 e Å3
261 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.17702 (2)0.50620 (4)0.14115 (3)0.04180 (12)
C40.04437 (9)0.30864 (14)0.11298 (13)0.0319 (3)
H40.08250.26660.05070.038*
C50.06212 (8)0.30619 (13)0.23053 (13)0.0287 (3)
H50.11230.26300.24880.034*
C60.00628 (8)0.36718 (12)0.32153 (12)0.0239 (3)
H60.01850.36560.40220.029*
C10.06786 (8)0.43104 (11)0.29565 (11)0.0198 (2)
C20.08395 (8)0.43315 (12)0.17672 (12)0.0245 (3)
C30.02828 (9)0.37173 (14)0.08546 (13)0.0307 (3)
H30.04010.37310.00460.037*
N10.12842 (7)0.49224 (9)0.38653 (10)0.0205 (2)
N20.12865 (6)0.44267 (9)0.48903 (9)0.0193 (2)
C70.18727 (7)0.49659 (10)0.58496 (11)0.0173 (2)
C120.19520 (7)0.42639 (11)0.69433 (11)0.0195 (2)
H120.16200.35130.69780.023*
C110.25031 (8)0.46613 (11)0.79466 (11)0.0188 (2)
C100.29834 (7)0.58291 (10)0.79523 (10)0.0160 (2)
C90.29108 (7)0.64924 (10)0.68214 (10)0.0155 (2)
C80.23575 (7)0.60505 (10)0.57845 (11)0.0174 (2)
H80.23190.65000.50420.021*
O10.26768 (6)0.40444 (9)0.90236 (8)0.0279 (2)
C130.22787 (10)0.28384 (13)0.91100 (13)0.0329 (3)
H13A0.16410.29350.89820.040*
H13B0.24730.24800.99150.040*
H13C0.24480.22710.84930.040*
O20.34663 (5)0.62090 (8)0.89271 (7)0.01893 (18)
C140.34411 (7)0.75809 (10)0.67145 (10)0.0164 (2)
H140.33950.80080.59600.020*
N30.39832 (6)0.79955 (9)0.76274 (9)0.01575 (19)
H330.3973 (10)0.7510 (14)0.8319 (14)0.028 (4)*
C150.46023 (7)0.90552 (10)0.76787 (10)0.0153 (2)
C170.42536 (8)1.00483 (10)0.84818 (11)0.0177 (2)
H17A0.36621.03240.81080.021*
H17B0.42130.96810.92850.021*
O40.48310 (6)1.10958 (8)0.86121 (8)0.0236 (2)
H410.4752 (10)1.1527 (16)0.9227 (16)0.035 (4)*
C180.46958 (7)0.95870 (11)0.64351 (10)0.0177 (2)
H18A0.52461.00780.65010.021*
H18B0.47360.88760.58700.021*
O50.39821 (6)1.03812 (8)0.59536 (8)0.02044 (18)
H510.3753 (12)1.0068 (18)0.5382 (19)0.047 (6)*
C160.55074 (7)0.85470 (11)0.82473 (11)0.0184 (2)
H16A0.57560.80340.76430.022*
H16B0.59080.92660.84840.022*
O30.54412 (6)0.77884 (8)0.92880 (7)0.02004 (18)
H310.5665 (10)0.7058 (16)0.9227 (14)0.032 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0390 (2)0.0619 (3)0.0250 (2)0.02220 (17)0.00653 (15)0.00211 (16)
C40.0251 (6)0.0382 (7)0.0294 (8)0.0030 (6)0.0051 (5)0.0112 (6)
C50.0194 (6)0.0339 (7)0.0315 (8)0.0033 (5)0.0004 (5)0.0072 (6)
C60.0194 (6)0.0277 (6)0.0235 (7)0.0011 (5)0.0003 (5)0.0034 (5)
C10.0201 (5)0.0182 (5)0.0195 (6)0.0020 (4)0.0021 (4)0.0026 (4)
C20.0226 (6)0.0285 (7)0.0213 (7)0.0034 (5)0.0003 (5)0.0012 (5)
C30.0313 (7)0.0394 (7)0.0199 (7)0.0015 (6)0.0006 (5)0.0074 (6)
N10.0208 (5)0.0204 (5)0.0187 (5)0.0006 (4)0.0020 (4)0.0027 (4)
N20.0198 (5)0.0186 (5)0.0183 (5)0.0011 (4)0.0007 (4)0.0027 (4)
C70.0170 (5)0.0170 (5)0.0171 (6)0.0007 (4)0.0004 (4)0.0028 (4)
C120.0203 (5)0.0174 (5)0.0204 (6)0.0037 (4)0.0017 (4)0.0008 (4)
C110.0213 (5)0.0179 (5)0.0167 (6)0.0026 (4)0.0012 (4)0.0021 (4)
C100.0166 (5)0.0155 (5)0.0159 (6)0.0001 (4)0.0024 (4)0.0013 (4)
C90.0170 (5)0.0139 (5)0.0153 (6)0.0003 (4)0.0012 (4)0.0011 (4)
C80.0187 (5)0.0172 (5)0.0155 (6)0.0009 (4)0.0005 (4)0.0001 (4)
O10.0365 (5)0.0256 (5)0.0187 (5)0.0149 (4)0.0047 (4)0.0075 (3)
C130.0410 (8)0.0268 (7)0.0281 (7)0.0166 (6)0.0040 (6)0.0095 (5)
O20.0216 (4)0.0192 (4)0.0148 (4)0.0042 (3)0.0010 (3)0.0003 (3)
C140.0196 (5)0.0147 (5)0.0146 (5)0.0009 (4)0.0018 (4)0.0001 (4)
N30.0190 (5)0.0132 (4)0.0149 (5)0.0023 (3)0.0025 (4)0.0001 (3)
C150.0186 (5)0.0124 (5)0.0144 (5)0.0026 (4)0.0012 (4)0.0004 (4)
C170.0230 (5)0.0148 (5)0.0151 (6)0.0011 (4)0.0021 (4)0.0005 (4)
O40.0355 (5)0.0152 (4)0.0206 (5)0.0058 (3)0.0056 (4)0.0044 (3)
C180.0222 (5)0.0162 (5)0.0144 (6)0.0025 (4)0.0022 (4)0.0000 (4)
O50.0277 (5)0.0171 (4)0.0147 (4)0.0006 (3)0.0023 (3)0.0007 (3)
C160.0208 (5)0.0164 (5)0.0175 (6)0.0011 (4)0.0013 (4)0.0004 (4)
O30.0276 (4)0.0151 (4)0.0164 (4)0.0031 (3)0.0002 (3)0.0002 (3)
Geometric parameters (Å, º) top
Cl—C21.734 (2)C8—H80.9500
C4—C31.3820 (19)O1—C131.425 (2)
C4—C51.384 (2)C13—H13A0.9800
C4—H40.9500C13—H13B0.9800
C5—C61.3877 (18)C13—H13C0.9800
C5—H50.9500C14—N31.294 (2)
C6—C11.3991 (17)C14—H140.9500
C6—H60.9500N3—C151.469 (2)
C1—C21.3908 (18)N3—H330.93 (2)
C1—N11.427 (2)C15—C181.5277 (15)
C2—C31.3904 (18)C15—C171.5328 (15)
C3—H30.9500C15—C161.5422 (16)
N1—N21.260 (2)C17—O41.416 (2)
N2—C71.413 (2)C17—H17A0.9900
C7—C81.3779 (16)C17—H17B0.9900
C7—C121.4196 (17)O4—H410.85 (2)
C12—C111.3662 (16)C18—O51.425 (2)
C12—H120.9500C18—H18A0.9900
C11—O11.360 (2)C18—H18B0.9900
C11—C101.440 (2)O5—H510.76 (2)
C10—O21.287 (2)C16—O31.430 (2)
C10—C91.435 (2)C16—H16A0.9900
C9—C81.4102 (16)C16—H16B0.9900
C9—C141.429 (2)O3—H310.85 (2)
C3—C4—C5120.6 (1)O1—C13—H13A109.5
C3—C4—H4119.7O1—C13—H13B109.5
C5—C4—H4119.7H13A—C13—H13B109.5
C4—C5—C6119.7 (1)O1—C13—H13C109.5
C4—C5—H5120.2H13A—C13—H13C109.5
C6—C5—H5120.2H13B—C13—H13C109.5
C5—C6—C1120.6 (1)N3—C14—C9121.2 (2)
C5—C6—H6119.7N3—C14—H14119.4
C1—C6—H6119.7C9—C14—H14119.4
C2—C1—C6118.7 (1)C14—N3—C15128.9 (2)
C2—C1—N1118.6 (2)C14—N3—H33112.2 (9)
C6—C1—N1122.7 (2)C15—N3—H33118.9 (9)
C3—C2—C1120.8 (1)N3—C15—C18113.5 (1)
C3—C2—Cl118.8 (2)N3—C15—C17104.97 (9)
C1—C2—Cl120.3 (2)C18—C15—C17111.9 (1)
C4—C3—C2119.6 (1)N3—C15—C16107.2 (1)
C4—C3—H3120.2C18—C15—C16107.2 (1)
C2—C3—H3120.2C17—C15—C16112.1 (1)
N2—N1—C1111.7 (2)O4—C17—C15108.8 (1)
N1—N2—C7115.7 (2)O4—C17—H17A109.9
C8—C7—N2125.9 (1)C15—C17—H17A109.9
C8—C7—C12120.3 (1)O4—C17—H17B109.9
N2—C7—C12113.8 (1)C15—C17—H17B109.9
C11—C12—C7120.5 (1)H17A—C17—H17B108.3
C11—C12—H12119.8C17—O4—H41109.6 (11)
C7—C12—H12119.8O5—C18—C15112.6 (1)
O1—C11—C12126.4 (1)O5—C18—H18A109.1
O1—C11—C10112.1 (1)C15—C18—H18A109.1
C12—C11—C10121.5 (1)O5—C18—H18B109.1
O2—C10—C9123.4 (2)C15—C18—H18B109.1
O2—C10—C11120.2 (2)H18A—C18—H18B107.8
C9—C10—C11116.4 (1)C18—O5—H51107.2 (15)
C8—C9—C14118.8 (1)O3—C16—C15110.9 (1)
C8—C9—C10121.2 (1)O3—C16—H16A109.5
C14—C9—C10119.9 (1)C15—C16—H16A109.5
C7—C8—C9119.9 (1)O3—C16—H16B109.5
C7—C8—H8120.1C15—C16—H16B109.5
C9—C8—H8120.1H16A—C16—H16B108.1
C11—O1—C13117.4 (1)C16—O3—H31111.2 (11)
C3—C4—C5—C60.3 (2)C11—C10—C9—C83.47 (16)
C4—C5—C6—C10.1 (2)O2—C10—C9—C144.91 (17)
C5—C6—C1—C20.61 (18)C11—C10—C9—C14172.99 (10)
C5—C6—C1—N1178.30 (12)N2—C7—C8—C9179.17 (10)
C6—C1—C2—C30.85 (19)C12—C7—C8—C92.39 (17)
N1—C1—C2—C3178.10 (12)C14—C9—C8—C7176.73 (10)
C6—C1—C2—Cl177.69 (9)C10—C9—C8—C70.24 (17)
N1—C1—C2—Cl1.26 (16)C12—C11—O1—C132.93 (19)
C5—C4—C3—C20.0 (2)C10—C11—O1—C13176.51 (11)
C1—C2—C3—C40.5 (2)C8—C9—C14—N3177.40 (10)
Cl—C2—C3—C4177.42 (11)C10—C9—C14—N30.86 (16)
C2—C1—N1—N2152.61 (11)C9—C14—N3—C15177.18 (10)
C6—C1—N1—N226.29 (15)C14—N3—C15—C189.94 (16)
C1—N1—N2—C7179.57 (9)C14—N3—C15—C17112.55 (12)
N1—N2—C7—C87.63 (17)C14—N3—C15—C16128.08 (12)
N1—N2—C7—C12170.89 (10)N3—C15—C17—O4178.20 (9)
C8—C7—C12—C110.62 (17)C18—C15—C17—O458.33 (12)
N2—C7—C12—C11179.24 (10)C16—C15—C17—O462.16 (12)
C7—C12—C11—O1176.04 (11)N3—C15—C18—O577.66 (11)
C7—C12—C11—C103.35 (18)C17—C15—C18—O540.89 (13)
O1—C11—C10—O23.77 (16)C16—C15—C18—O5164.20 (9)
C12—C11—C10—O2176.75 (11)N3—C15—C16—O345.18 (12)
O1—C11—C10—C9174.20 (10)C18—C15—C16—O3167.31 (9)
C12—C11—C10—C95.27 (16)C17—C15—C16—O369.50 (11)
O2—C10—C9—C8178.63 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···O5i0.85 (2)1.88 (2)2.723 (1)173.1 (15)
O4—H41···O3ii0.85 (2)1.88 (2)2.719 (1)170.2 (16)
O5—H51···O1iii0.76 (2)2.28 (2)2.785 (1)125.5 (18)
O5—H51···O2iii0.76 (2)2.11 (2)2.835 (1)161.2 (19)
C14—H14···O2iii0.952.443.376 (1)169
C18—H18A···O2iv0.992.433.398 (1)165
N3—H33···O20.93 (2)1.77 (2)2.584 (2)144.4 (14)
C16—H16B···O40.992.572.941 (1)102
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+2, z+2; (iii) x, y+3/2, z1/2; (iv) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H20ClN3O5
Mr393.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)133
a, b, c (Å)15.4723 (2), 10.5669 (8), 11.1850 (8)
β (°) 98.900 (3)
V3)1806.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.35 × 0.19 × 0.16
Data collection
DiffractometerBruker SMART 1000CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.831, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
35639, 5276, 3951
Rint0.034
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.04
No. of reflections5276
No. of parameters261
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.21

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cl—C21.734 (2)C9—C141.429 (2)
C1—N11.427 (2)O1—C131.425 (2)
N1—N21.260 (2)C14—N31.294 (2)
N2—C71.413 (2)N3—C151.469 (2)
C11—O11.360 (2)C17—O41.416 (2)
C11—C101.440 (2)C18—O51.425 (2)
C10—O21.287 (2)C16—O31.430 (2)
C10—C91.435 (2)
C2—C1—N1118.6 (2)N1—N2—C7115.7 (2)
C6—C1—N1122.7 (2)O2—C10—C9123.4 (2)
C3—C2—Cl118.8 (2)O2—C10—C11120.2 (2)
C1—C2—Cl120.3 (2)N3—C14—C9121.2 (2)
N2—N1—C1111.7 (2)C14—N3—C15128.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···O5i0.85 (2)1.88 (2)2.723 (1)173.1 (15)
O4—H41···O3ii0.85 (2)1.88 (2)2.719 (1)170.2 (16)
O5—H51···O1iii0.76 (2)2.28 (2)2.785 (1)125.5 (18)
O5—H51···O2iii0.76 (2)2.11 (2)2.835 (1)161.2 (19)
C14—H14···O2iii0.952.443.376 (1)169
C18—H18A···O2iv0.992.433.398 (1)165
N3—H33···O20.93 (2)1.77 (2)2.584 (2)144.4 (14)
C16—H16B···O40.992.572.941 (1)102
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+2, z+2; (iii) x, y+3/2, z1/2; (iv) x+1, y+1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds