Download citation
Download citation
link to html
The crystal structure of the title compound, [Co(C4H2O4)(C7H6N2)3]n, consists of polymeric chains of the CoII complex. Two maleate dianions and three benz­imidazole ligands coordinate to the CoII atom with a distorted octahedral geometry. The maleate dianions bridge neighbouring CoII atoms via both terminal carboxylic acid groups, one of which is monodentate and the other bidentate, to form a helical structure of alternating maleate dianions and CoII atoms, with a pitch height of 9.2667 (17) Å. The absolute structure has been determined, and the crystal contains only right-handed helices. Intrahelical N—H...O hydrogen bonds stabilize the helical structure, while interhelical N—H...O hydrogen bonds link neighbouring helices to form the supramolecular structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103017785/fr1433sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103017785/fr1433Isup2.hkl
Contains datablock I

CCDC reference: 224488

Comment top

Helical metal complexes have received much attention in coordination chemistry and material science (Munakata et al., 1999) and much effort has been devoted to the preparation of helical complexes by careful design of ligands (Erxleben, 2001; Ezuhara et al., 1999). Dicarboxylates have been shown to be potential helicating ligands when their terminal carboxylic acid groups are twisted by an appropriate angle with respect to each other (Hu et al., 2001). As part of a series of studies of helical metal complexes, we present here the structure of the title complex, (I), a polymeric CoII complex bridged by a maleate dianion. \sch

The coordination environment around the CoII atom in (I) is illustrated in Fig. 1. Two carboxyl groups from maleate dianions, related by a twofold screw axis, coordinate to the CoII atom in the equatorial coordination plane. The O1,O2 carboxyl group coordinates monodentately, while the O3i,O4i carboxyl group chelates to the CoII atom in a bidentate fashion [symmetry code (i): x − 1/2, 1/2 − y, −z]. Atoms O1, O3i, O4i and Co are essentially coplanar, with a maximum atomic deviation of 0.0401 (12) Å (Co), but atom O2 is out of this mean plane by 1.120 (4) Å. Thus, the O1,O2 and O3,O4 carboxyl groups are twisted with respect to each other by a dihedral angle of 34.6 (4)°. Three benzimidazole molecules coordinate to the CoII atom to complete the distorted octahedral coordination geometry (Table 1), with the N21 benzimidazole located in the equatorial plane, while the N11 and N31 benzimizadoles are in the axial direction. The distortion of the octahedron is manifested by the larger coordinate bond angles in the equatorial plane, with O1—Co—N23 114.27 (11)° and N23—Co—O3i 99.82 (10)°. This is due to weak C22—H22···O2 and C24—H24···O3i hydrogen bonding (Fig. 1 and Table 2).

With the aid of both terminal carboxyl groups, the maleate dianion bridges adjacent CoII atoms related by a twofold screw axis. This results in a helical polymeric molecular chain of alternating maleate dianions and CoII atoms, extending along the a axis (Fig. 2). The helix has a pitch height of 9.2667 (17) Å and the repeat unit of the helix backbone includes two CoII atoms and two maleate dianions. In the same helix, the adjacent equatorial coordination planes are inclined towards each other, with a dihedral angle of 59.00 (7)°. A search of the Cambridge Crystallographic Database indicates that this is the first helical metal complex with maleate as the helicating ligand (Allen, 2002).

The absolute structure of (I) was determined, and the crystal contains only right-handed helices. At present, we do not understand whether the opposite enantiomer was simultaneously generated in the preparation process, with conglomerate crystallization.

Besides the weak C—H···O hydrogen bonding mentioned above, a classical hydrogen-bonding network occurs in the crystal of (I). Within the same helix, N—H···O hydrogen bonds between the carboxylate and the axial benzimidazole stabilize the helical structure. Neighbouring helices link to each other via N—H···O hydrogen bonds between the equatorial benzimidazole ligand and the carboxylate group of the adjacent helix, to form the supramolecular structure shown in Fig. 2. The hydrogen-bonding parameters are listed in Table 2.

Experimental top

An aqueous solution (5 ml) containing maleic acid (0.23 g, 2 mmol) and sodium carbonate (0.21 g, 2 mmol) was mixed with an aqueous solution (5 ml) of CoCl2·6H2O (0.48 g, 2 mmol). After refluxing the solution for 30 min, an ethanol solution (5 ml) of benzimidazole (0.47 g, 4 mmol) was added dropwise to the aqueous solution. The mixture was refluxed for a further 2 h and then filtered. The filtrate was kept at room temperature and pink single crystals of (I) were obtained after 5 d.

Refinement top

H atoms were placed in calculated positions, with C—H = 0.93 Å and N—H = 0.86 Å, and were included in the final cycles of refinement in a riding model, with Uiso(H) = 1.2Ueq of the carrier atom.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Molecular Structure Corporation & Rigaku Corporation, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and XP (Siemens, 1994); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The coordination environment around the CoII atom in (I) with 30% probability displacement ellipsoids [symmetry code (i): x − 1/2, 1/2 − y, −z].
[Figure 2] Fig. 2. The molecular packing diagram for (I). Dashed lines indicate the hydrogen bonding and H atoms have been omitted for clarity.
catena-Poly[[tris(1H-benzimidazole-κN3)cobalt(II)]-µ-maleato-κ3O,O':O''] top
Crystal data top
[Co(C4H2O4)(C7H6N2)3]F(000) = 1084
Mr = 527.40Dx = 1.477 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2abCell parameters from 21868 reflections
a = 9.2667 (17) Åθ = 1.7–27.4°
b = 12.1242 (15) ŵ = 0.77 mm1
c = 21.099 (19) ÅT = 298 K
V = 2371 (2) Å3Prism, pink
Z = 40.29 × 0.19 × 0.11 mm
Data collection top
Rigaku R-AXIS Rapid
diffractometer
5413 independent reflections
Radiation source: fine-focus sealed tube4569 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 1.9°
ω scansh = 1210
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1515
Tmin = 0.788, Tmax = 0.922l = 2527
22026 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0706P)2 + 0.0433P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
5413 reflectionsΔρmax = 0.35 e Å3
325 parametersΔρmin = 0.59 e Å3
0 restraintsAbsolute structure: Flack (1983), 2338 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.019 (16)
Crystal data top
[Co(C4H2O4)(C7H6N2)3]V = 2371 (2) Å3
Mr = 527.40Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.2667 (17) ŵ = 0.77 mm1
b = 12.1242 (15) ÅT = 298 K
c = 21.099 (19) Å0.29 × 0.19 × 0.11 mm
Data collection top
Rigaku R-AXIS Rapid
diffractometer
5413 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4569 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 0.922Rint = 0.051
22026 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.114Δρmax = 0.35 e Å3
S = 1.09Δρmin = 0.59 e Å3
5413 reflectionsAbsolute structure: Flack (1983), 2338 Friedel pairs
325 parametersAbsolute structure parameter: 0.019 (16)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.47553 (4)0.27408 (3)0.112641 (18)0.03299 (12)
O10.5592 (2)0.37952 (19)0.04278 (10)0.0396 (5)
O20.7496 (3)0.4364 (2)0.09848 (10)0.0491 (6)
O30.8609 (3)0.3841 (2)0.13193 (10)0.0408 (5)
O40.8843 (2)0.33189 (19)0.03307 (10)0.0403 (5)
N110.8640 (3)0.1152 (2)0.06410 (13)0.0459 (7)
H110.92370.09830.03440.055*
N130.6678 (3)0.1819 (2)0.11031 (13)0.0389 (6)
N210.5567 (3)0.4430 (3)0.28687 (13)0.0477 (7)
H210.60130.49350.30770.057*
N230.4956 (3)0.3350 (2)0.20653 (11)0.0402 (6)
N310.0464 (3)0.3993 (2)0.09310 (14)0.0452 (7)
H310.04490.38680.09100.054*
N330.2794 (3)0.3674 (2)0.10667 (13)0.0383 (6)
C10.6727 (3)0.4370 (3)0.05116 (14)0.0335 (6)
C20.7031 (4)0.5207 (3)0.00014 (15)0.0391 (7)
H20.66430.59060.00660.047*
C30.7781 (4)0.5075 (3)0.05283 (16)0.0376 (7)
H30.78960.56850.07910.045*
C40.8450 (3)0.4018 (3)0.07299 (14)0.0325 (6)
C120.7391 (4)0.1671 (3)0.05724 (15)0.0408 (7)
H120.70490.19100.01810.049*
C140.7376 (5)0.1277 (4)0.22220 (17)0.0589 (11)
H140.65660.15640.24230.071*
C150.8449 (6)0.0754 (5)0.2556 (2)0.0826 (16)
H150.83580.06910.29930.099*
C160.9660 (5)0.0319 (5)0.2265 (2)0.0847 (17)
H161.03490.00380.25110.102*
C170.9870 (4)0.0399 (4)0.1626 (2)0.0644 (11)
H171.06870.01100.14310.077*
C180.8803 (4)0.0934 (3)0.12806 (16)0.0422 (8)
C190.7562 (4)0.1357 (3)0.15640 (15)0.0403 (7)
C220.5805 (4)0.4137 (3)0.22590 (15)0.0447 (8)
H220.65040.44640.20040.054*
C240.2983 (4)0.2336 (4)0.26540 (17)0.0565 (10)
H240.27010.18870.23190.068*
C250.2316 (5)0.2272 (4)0.32345 (19)0.0718 (13)
H250.15740.17650.32920.086*
C260.2720 (5)0.2946 (4)0.37396 (19)0.0703 (13)
H260.22450.28740.41260.084*
C270.3801 (4)0.3712 (3)0.36810 (17)0.0518 (9)
H270.40680.41680.40150.062*
C280.4476 (4)0.3767 (3)0.30915 (15)0.0416 (8)
C290.4088 (4)0.3092 (3)0.25871 (14)0.0396 (7)
C320.1485 (3)0.3258 (3)0.10643 (16)0.0415 (7)
H320.12920.25190.11480.050*
C340.3578 (4)0.5656 (3)0.0915 (2)0.0549 (10)
H340.45560.55410.09870.066*
C350.3046 (5)0.6689 (4)0.0785 (3)0.0731 (14)
H350.36780.72850.07750.088*
C360.1584 (6)0.6869 (4)0.0670 (3)0.0764 (14)
H360.12700.75790.05760.092*
C370.0604 (5)0.6034 (3)0.0691 (2)0.0594 (11)
H370.03710.61570.06140.071*
C380.1132 (4)0.4986 (3)0.08331 (15)0.0426 (8)
C390.2599 (4)0.4791 (3)0.09322 (15)0.0381 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0368 (2)0.0344 (2)0.02779 (17)0.00136 (17)0.00068 (17)0.00090 (17)
O10.0351 (12)0.0424 (13)0.0411 (12)0.0019 (9)0.0010 (10)0.0064 (9)
O20.0414 (12)0.0707 (18)0.0352 (12)0.0090 (12)0.0010 (10)0.0053 (11)
O30.0499 (13)0.0426 (13)0.0300 (10)0.0005 (10)0.0026 (10)0.0008 (9)
O40.0464 (13)0.0383 (12)0.0363 (11)0.0043 (10)0.0037 (10)0.0054 (10)
N110.0479 (18)0.0520 (18)0.0379 (14)0.0084 (13)0.0086 (13)0.0032 (13)
N130.0456 (14)0.0407 (14)0.0303 (12)0.0035 (11)0.0017 (13)0.0018 (12)
N210.0504 (17)0.0568 (19)0.0358 (13)0.0090 (14)0.0036 (13)0.0123 (13)
N230.0416 (15)0.0463 (15)0.0326 (12)0.0021 (12)0.0004 (12)0.0069 (11)
N310.0342 (14)0.0489 (17)0.0526 (16)0.0001 (12)0.0065 (13)0.0036 (13)
N330.0382 (14)0.0381 (14)0.0386 (14)0.0001 (11)0.0021 (13)0.0039 (12)
C10.0327 (15)0.0344 (16)0.0334 (15)0.0005 (13)0.0082 (13)0.0042 (12)
C20.0427 (18)0.0300 (17)0.0447 (18)0.0006 (13)0.0048 (15)0.0017 (13)
C30.0436 (18)0.0262 (15)0.0431 (17)0.0038 (13)0.0056 (15)0.0026 (13)
C40.0339 (15)0.0309 (16)0.0327 (14)0.0034 (12)0.0036 (13)0.0008 (12)
C120.052 (2)0.0412 (18)0.0288 (14)0.0061 (16)0.0030 (14)0.0019 (13)
C140.052 (2)0.090 (3)0.0341 (17)0.003 (2)0.0026 (17)0.0139 (19)
C150.073 (3)0.133 (5)0.042 (2)0.008 (3)0.005 (2)0.032 (3)
C160.055 (3)0.136 (5)0.064 (3)0.020 (3)0.006 (2)0.041 (3)
C170.042 (2)0.089 (3)0.062 (2)0.010 (2)0.0055 (19)0.019 (2)
C180.0381 (17)0.050 (2)0.0390 (17)0.0042 (14)0.0011 (14)0.0078 (14)
C190.0403 (17)0.047 (2)0.0338 (15)0.0048 (15)0.0015 (14)0.0053 (14)
C220.0451 (18)0.056 (2)0.0327 (15)0.0115 (16)0.0018 (14)0.0022 (15)
C240.064 (2)0.060 (2)0.0450 (18)0.018 (2)0.0102 (17)0.0120 (18)
C250.080 (3)0.075 (3)0.060 (2)0.030 (3)0.020 (2)0.010 (2)
C260.086 (3)0.083 (3)0.0415 (19)0.006 (3)0.024 (2)0.006 (2)
C270.066 (2)0.057 (2)0.0328 (16)0.0015 (19)0.0040 (17)0.0058 (15)
C280.046 (2)0.0456 (19)0.0334 (15)0.0008 (15)0.0023 (14)0.0026 (13)
C290.0459 (17)0.0410 (18)0.0319 (15)0.0033 (14)0.0011 (14)0.0035 (13)
C320.0389 (15)0.0403 (17)0.0453 (18)0.0037 (13)0.0001 (15)0.0018 (15)
C340.049 (2)0.041 (2)0.075 (3)0.0045 (17)0.0129 (19)0.0123 (18)
C350.075 (3)0.038 (2)0.106 (4)0.006 (2)0.023 (3)0.001 (2)
C360.089 (3)0.046 (2)0.094 (4)0.009 (2)0.003 (3)0.013 (2)
C370.062 (3)0.055 (2)0.060 (2)0.0176 (19)0.006 (2)0.0026 (19)
C380.049 (2)0.0460 (19)0.0326 (15)0.0048 (15)0.0031 (15)0.0044 (14)
C390.0423 (17)0.0401 (18)0.0318 (14)0.0012 (14)0.0049 (13)0.0070 (13)
Geometric parameters (Å, º) top
Co—O12.100 (2)C14—C191.402 (5)
Co—N132.104 (3)C14—H140.93
Co—N232.122 (3)C15—C161.383 (7)
Co—N332.145 (3)C15—H150.93
Co—O3i2.230 (2)C16—C171.366 (6)
Co—O4i2.277 (2)C16—H160.93
O1—C11.274 (4)C17—C181.388 (5)
O2—C11.226 (4)C17—H170.93
O3—C41.270 (4)C18—C191.394 (5)
O4—C41.250 (4)C22—H220.93
N11—C121.325 (5)C24—C251.374 (5)
N11—C181.383 (5)C24—C291.382 (5)
N11—H110.86C24—H240.93
N13—C121.313 (4)C25—C261.394 (6)
N13—C191.390 (4)C25—H250.93
N21—C221.353 (4)C26—C271.371 (6)
N21—C281.374 (4)C26—H260.93
N21—H210.86C27—C281.394 (5)
N23—C221.303 (4)C27—H270.93
N23—C291.399 (4)C28—C291.390 (5)
N31—C321.331 (4)C32—H320.93
N31—C381.370 (5)C34—C351.374 (6)
N31—H310.86C34—C391.387 (5)
N33—C321.314 (4)C34—H340.93
N33—C391.395 (4)C35—C361.393 (7)
C1—C21.506 (4)C35—H350.93
C2—C31.326 (5)C36—C371.361 (7)
C2—H20.93C36—H360.93
C3—C41.486 (4)C37—C381.394 (5)
C3—H30.93C37—H370.93
C12—H120.93C38—C391.396 (5)
C14—C151.373 (6)
O1—Co—N1389.66 (10)C16—C15—H15118.8
O1—Co—N23114.27 (11)C17—C16—C15121.7 (4)
N13—Co—N2397.60 (11)C17—C16—H16119.1
O1—Co—N3387.16 (10)C15—C16—H16119.1
N13—Co—N33175.29 (11)C16—C17—C18116.7 (4)
N23—Co—N3386.88 (11)C16—C17—H17121.6
O1—Co—O3i145.87 (9)C18—C17—H17121.6
N13—Co—O3i87.21 (10)C17—C18—N11132.7 (3)
N23—Co—O3i99.82 (10)C17—C18—C19122.3 (3)
N33—Co—O3i93.49 (9)N11—C18—C19104.9 (3)
O1—Co—O4i87.88 (10)N13—C19—C18109.6 (3)
N13—Co—O4i89.86 (10)N13—C19—C14130.4 (3)
N23—Co—O4i156.52 (9)C18—C19—C14120.0 (3)
N33—Co—O4i86.56 (10)N23—C22—N21113.1 (3)
O3i—Co—O4i58.16 (9)N23—C22—H22123.5
C1—O1—Co122.7 (2)N21—C22—H22123.5
C4—O3—Coii91.26 (19)C25—C24—C29117.5 (4)
C4—O4—Coii89.66 (18)C25—C24—H24121.2
C12—N11—C18107.0 (3)C29—C24—H24121.2
C12—N11—H11126.5C24—C25—C26121.8 (4)
C18—N11—H11126.5C24—C25—H25119.1
C12—N13—C19104.2 (3)C26—C25—H25119.1
C12—N13—Co121.3 (2)C27—C26—C25121.6 (4)
C19—N13—Co134.2 (2)C27—C26—H26119.2
C22—N21—C28107.0 (3)C25—C26—H26119.2
C22—N21—H21126.5C26—C27—C28116.1 (3)
C28—N21—H21126.5C26—C27—H27121.9
C22—N23—C29105.3 (3)C28—C27—H27121.9
C22—N23—Co126.9 (2)N21—C28—C29105.8 (3)
C29—N23—Co127.3 (2)N21—C28—C27131.6 (3)
C32—N31—C38107.4 (3)C29—C28—C27122.6 (3)
C32—N31—H31126.3C24—C29—C28120.3 (3)
C38—N31—H31126.3C24—C29—N23130.9 (3)
C32—N33—C39104.6 (3)C28—C29—N23108.8 (3)
C32—N33—Co125.4 (2)N33—C32—N31113.6 (3)
C39—N33—Co129.3 (2)N33—C32—H32123.2
O2—C1—O1126.1 (3)N31—C32—H32123.2
O2—C1—C2118.5 (3)C35—C34—C39117.4 (4)
O1—C1—C2115.1 (3)C35—C34—H34121.3
C3—C2—C1128.3 (3)C39—C34—H34121.3
C3—C2—H2115.9C34—C35—C36121.8 (4)
C1—C2—H2115.9C34—C35—H35119.1
C2—C3—C4124.3 (3)C36—C35—H35119.1
C2—C3—H3117.8C37—C36—C35121.8 (4)
C4—C3—H3117.8C37—C36—H36119.1
O4—C4—O3120.7 (3)C35—C36—H36119.1
O4—C4—C3120.9 (3)C36—C37—C38116.8 (4)
O3—C4—C3118.3 (3)C36—C37—H37121.6
N13—C12—N11114.3 (3)C38—C37—H37121.6
N13—C12—H12122.9N31—C38—C39105.6 (3)
N11—C12—H12122.9N31—C38—C37132.5 (4)
C15—C14—C19116.8 (4)C39—C38—C37121.9 (4)
C15—C14—H14121.6C34—C39—N33130.9 (3)
C19—C14—H14121.6C34—C39—C38120.3 (3)
C14—C15—C16122.4 (4)N33—C39—C38108.7 (3)
C14—C15—H15118.8
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O1ii0.862.072.892 (4)158
N21—H21···O3iii0.861.992.813 (5)161
N31—H31···O2iv0.862.002.789 (5)151
C22—H22···O20.932.343.124 (5)141
C24—H24···O3i0.932.443.210 (5)141
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x+3/2, y+1, z+1/2; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[Co(C4H2O4)(C7H6N2)3]
Mr527.40
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)9.2667 (17), 12.1242 (15), 21.099 (19)
V3)2371 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.29 × 0.19 × 0.11
Data collection
DiffractometerRigaku R-AXIS Rapid
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.788, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
22026, 5413, 4569
Rint0.051
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.09
No. of reflections5413
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.59
Absolute structureFlack (1983), 2338 Friedel pairs
Absolute structure parameter0.019 (16)

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, CrystalStructure (Molecular Structure Corporation & Rigaku Corporation, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and XP (Siemens, 1994), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Co—O12.100 (2)O2—C11.226 (4)
Co—N132.104 (3)O3—C41.270 (4)
Co—N232.122 (3)O4—C41.250 (4)
Co—N332.145 (3)C1—C21.506 (4)
Co—O3i2.230 (2)C2—C31.326 (5)
Co—O4i2.277 (2)C3—C41.486 (4)
O1—C11.274 (4)
O1—Co—N1389.66 (10)N23—Co—O3i99.82 (10)
O1—Co—N23114.27 (11)N33—Co—O3i93.49 (9)
N13—Co—N2397.60 (11)O1—Co—O4i87.88 (10)
O1—Co—N3387.16 (10)N13—Co—O4i89.86 (10)
N13—Co—N33175.29 (11)N23—Co—O4i156.52 (9)
N23—Co—N3386.88 (11)N33—Co—O4i86.56 (10)
O1—Co—O3i145.87 (9)O3i—Co—O4i58.16 (9)
N13—Co—O3i87.21 (10)
Symmetry code: (i) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O1ii0.862.072.892 (4)158
N21—H21···O3iii0.861.992.813 (5)161
N31—H31···O2iv0.862.002.789 (5)151
C22—H22···O20.932.343.124 (5)141
C24—H24···O3i0.932.443.210 (5)141
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x+3/2, y+1, z+1/2; (iv) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds