Download citation
Download citation
link to html
In the centrosymmetric title complex, [Ni(C7H7N4O3)2(C5H5N)2], the coordination geometry about the Ni2+ ion is octahedral, with two deprotonated 1-methyl-3-(p-nitro­phenyl)­triazenide 1-oxide ions, viz. [O2N­C6H4­NNN(O)­CH3], acting as bidentate ligands (four-electron donors). Two neutral pyridine (py) mol­ecules complete the coordination sphere in positions trans to each other. The triazenide 1-oxide ligand is almost planar, the largest interplanar angle of 8.80 (12)° being between the phenyl ring of the p-nitro­phenyl group and the plane defined by the N3O moiety. The Ni—Ntriazenide, Ni—O and Ni—Npy distances are 2.0794 (16), 2.0427 (13) and 2.1652 (18) Å, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102019820/fr1398sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102019820/fr1398Isup2.hkl
Contains datablock I

CCDC reference: 201259

Comment top

Despite the fact that complexes of triazene N-oxides have been widely investigated in recent decades, the structure of nickel(II) complexes involving deprotonated 1,3-disubstituted triazenide 1-oxide ligands, viz. [RNNN(O)R]-, continue to attract interest (Dutta & Sharma, 1981; Ciunik et al., 1991). However, only two examples of six-coordinate nickel(II) complexes with triazenide 1-oxide as a ligand have been reported in the literature. In these examples, the triazenide 1-oxide ligand is incorporated as part of a larger chelating group (Karmakar et al., 1993a,b). As part of our investigations of the synthesis and characterization of metal complexes incorporating triazene 1-oxide derivatives, we report here the structure of the title complex, (I), which is a centrosymmetric hexacoordinated mononuclear NiII complex, with deprotonated 1-methyl-3-(p-nitrophenyl)triazenide 1-oxide ions and neutral pyridine molecules as ligands. Compound (I) is the first example of a triazenide 1-oxide complex with a hexacoordinated Ni2+ ion and two different kinds of ligands (Fig. 1).

Deviations from the normal N—N and N—Caryl bond lengths underline the delocalization of the π electrons over the N—NN chain of the N13—N12—N11—O1 group and the p-nitrophenyl substituent. The bond length N13—N12 [1.332 (2) Å] is longer than a normal double bond (1.24 Å), N12—N11 [1.273 (2) Å] is shorter than a normal single bond (1.44 Å) (International Tables for X-ray Crystallography, 1985, Vol. III, p. 270) and N13—C11 [1.391 (3) Å] is shorter than expected for an N—Caryl single bond. The N—N bond lengths in complex (I) are almost identical to those of non-coordinated triazene 1-oxide molecules; N13—N12 = 1.323 (2), 1.327 (4) and 1.332 (4) Å, and N12—N11 = 1.263 (2), 1.264 (3) and 1.270 (4) Å (Samanta et al., 1997, 1998).

A typical feature of the coordinated deprotonated triazenide 1-oxide ligand is the lengthening of the N—O bond (comparative values for neutral non-coordinated triazene 1-oxides are given in square brackets): N11—O1 = 1.329 (2) Å [1.288 (3) and 1.288 (2) Å; Samanta et al., 1997, 1998]. The N—N and N—O bond lengths in (I) are also in good agreement with those found in bis[1-ethyl-3-(p-nitrophenyl)triazenido 1-oxide]nickel(II) (Ciunik et al., 1991), hereafter (II) [N—N = 1.260 (3) and 1.337 (2) Å, and N—O = 1.340 (3) Å], while the bonds Ni1—N13 of 2.0794 (16) Å [1.871 (2) Å in (II)] and Ni1—O1 of 2.0427 (13) Å [1.828 (3) Å in (II)] are significantly longer (Ciunik et al., 1991). These significant differences between the Ni—N and Ni—O bond distances of both complexes can be explained by the expansion of the coordination number of the Ni2+ ion from four in (II) to six in (I) and the steric demand of the two additional axial pyridine ligands in (I). This observation is in good agreement with the Ni—N and Ni—O bond distances observed in other NiII complexes with octahedral coordination, such as [{H3CN(O)NNC6H4S(CH2)3SC6H4NN(O)NCH3}Ni] [Ni—N = 1.984 (8) and 1.993 (8) Å, and Ni—O = 2.060 (7) and 2.075 (8) Å] and [{nPrN(O)NNC6H4SMe}2Ni] [Ni—N = 1.972 (4) and 1.970 (4) Å and Ni—O = 2.048 (4) and 2.051 (4) Å] (Karmakar et al., 1993a,b).

Due to the strong π-acidity of the nitro group, which favours the delocalization of the π electrons and the conjugation between the C11–C16 phenyl ring and the NNNO moiety, the triazenide 1-oxide ligand shows only a slight deviation from planarity [the angles between the C11–C16 phenyl ring and the O11/N1/O12 and N13/N12/N11/O1 planes are 5.5 (4) and 8.80 (12)°, respectively]. In addition to this electronic effect, steric interactions involving the axial pyridine ligands can also be associated with the small interplanar angle of 8.80 (12)°. In contrast, the related four-coordinated nickel complex, (II), shows a deviation from planarity for the ligand, characterized by an N12—N13—C11—C16 torsion anle of 27.5 (3)° (Ciunik et al., 1991). The C11–C16 phenyl ring (r.m.s. = 0.0068 Å) and the N21/C22–C2 pyridine ring (r.m.s. = 0.0031 Å) are planar within experimental error. The Ni1—N21 bond distance of 2.1652 (18) may be compared with the values found in the related complex cis-[Ni{O2NC6H4NC(OEt)NC(O)C6H5}2(C5H5N)2] (Ni—Npy = 2.150 and 2.131 Å; Beyer et al., 1999). The nitro O atoms show a large thermal motion, indicated by their elongated displacement ellipsoids (Fig. 1). Split peaks for these atoms were not observed, and consequently a disorder model was not used.

Experimental top

[NiCl2(PPh3)2] (654 mg, 1 mmol) was dissolved, with heating, in a mixture of methanol (50 ml) and ethyl acetate (25 ml). A solution of 1-methyl-3-(p-nitrophenyl)triazene 1-oxide (392 mg, 2 mmol) in methanol (25 ml) and triethylamine (5 ml) was added under continuous stirring and heating. After 10 min, pyridine (5 ml) was added to the reaction mixture, which changed colour to deep red. Stirring was continued for 1 h. Red plate-shaped crystals of complex (I), suitable for X-ray analysis, were obtained by slow evaporation of the solvents at room temperature (yield: 91 mg, 15%; m.p. 498 K).

Refinement top

The positional parameters of the H atoms were obtained geometrically with fixed C—H distances (0.93 Å for Csp2 and 0.96 Å for Csp3) and refined as riding atoms on their respective C atoms with a isotropic temperature factor of 1.2 times the value of the attached Csp2 and 1.5 times of the value of the attached Csp3 atom, respectively. The methyl group was refined as a rigid group with the rotation around the N11—C1 bond as a free variable.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Perspective view of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
(I) top
Crystal data top
[Ni(C7H7N4O3)2(C5H5N)2]F(000) = 628
Mr = 607.22Dx = 1.506 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.473 (2) Åθ = 2.0–25.0°
b = 14.961 (3) ŵ = 0.78 mm1
c = 8.569 (2) ÅT = 294 K
β = 94.028 (10)°Prism, red
V = 1339.4 (5) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Enraf-Nonius CAD-4
diffractometer
1888 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
θ/2θ scansh = 1212
Absorption correction: ψ scan
(Spek, 1990)
k = 1517
Tmin = 0.799, Tmax = 0.926l = 1010
8301 measured reflections3 standard reflections every 60 min
2373 independent reflections intensity decay: <1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0333P)2 + 0.4419P]
where P = (Fo2 + 2Fc2)/3
2373 reflections(Δ/σ)max < 0.001
188 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Ni(C7H7N4O3)2(C5H5N)2]V = 1339.4 (5) Å3
Mr = 607.22Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.473 (2) ŵ = 0.78 mm1
b = 14.961 (3) ÅT = 294 K
c = 8.569 (2) Å0.30 × 0.20 × 0.10 mm
β = 94.028 (10)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
1888 reflections with I > 2σ(I)
Absorption correction: ψ scan
(Spek, 1990)
Rint = 0.036
Tmin = 0.799, Tmax = 0.9263 standard reflections every 60 min
8301 measured reflections intensity decay: <1%
2373 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
2373 reflectionsΔρmin = 0.25 e Å3
188 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Mean-plane data from final SHELXL refinemente run:-

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

6.8993 (0.0073) x + 1.4234 (0.0141) y - 6.7760 (0.0048) z = 0.8488 (0.0106)

* -0.0089 (0.0016) C11 * 0.0010 (0.0016) C12 * 0.0076 (0.0016) C13 * -0.0081 (0.0017) C14 * -0.0001 (0.0017) C15 * 0.0086 (0.0017) C16

Rms deviation of fitted atoms = 0.0068

- 7.4104 (0.0075) x + 0.6649 (0.0205) y + 6.4544 (0.0053) z = 0.1639 (0.0175)

Angle to previous plane (with approximate e.s.d.) = 8.80 (0.12)

* -0.0030 (0.0005) N13 * 0.0063 (0.0011) N12 * -0.0066 (0.0012) N11 * 0.0034 (0.0006) O1

Rms deviation of fitted atoms = 0.0051

6.7324 (0.0391) x + 2.8434 (0.0403) y - 6.7301 (0.0210) z = 1.8962 (0.0305)

Angle to previous plane (with approximate e.s.d.) = 14.13 (0.40)

* 0.0000 (0.0000) O11 * 0.0000 (0.0000) N1 * 0.0000 (0.0000) O12

Rms deviation of fitted atoms = 0.0000

6.8993 (0.0073) x + 1.4234 (0.0141) y - 6.7760 (0.0048) z = 0.8488 (0.0106)

Angle to previous plane (with approximate e.s.d.) = 5.52 (0.43)

* -0.0089 (0.0016) C11 * 0.0010 (0.0016) C12 * 0.0076 (0.0016) C13 * -0.0081 (0.0017) C14 * -0.0001 (0.0017) C15 * 0.0086 (0.0017) C16

Rms deviation of fitted atoms = 0.0068

- 2.1139 (0.0104) x + 14.6376 (0.0030) y + 0.5107 (0.0088) z = 6.5018 (0.0095)

Angle to previous plane (with approximate e.s.d.) = 85.76 (0.08)

* -0.0030 (0.0015) N21 * 0.0003 (0.0017) C22 * 0.0037 (0.0018) C23 * -0.0051 (0.0019) C24 * 0.0024 (0.0018) C25 * 0.0016 (0.0017) C26

Rms deviation of fitted atoms = 0.0031

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.03241 (13)
O10.60940 (14)0.56821 (9)0.66704 (16)0.0376 (3)
O110.02789 (18)0.73477 (14)0.0008 (2)0.0755 (6)
O120.0165 (2)0.86365 (14)0.0997 (3)0.0993 (8)
N10.0386 (2)0.78362 (16)0.0879 (3)0.0595 (6)
N110.59752 (17)0.65562 (11)0.6428 (2)0.0388 (4)
N120.51464 (17)0.69104 (12)0.5460 (2)0.0403 (4)
N130.44106 (16)0.63173 (11)0.4662 (2)0.0358 (4)
N210.64413 (16)0.52527 (11)0.3362 (2)0.0367 (4)
C10.6857 (3)0.71331 (17)0.7350 (3)0.0581 (7)
H1A0.67120.77440.70410.087*
H1B0.77210.69690.71760.087*
H1C0.67180.70670.84390.087*
C110.34630 (19)0.67329 (14)0.3701 (2)0.0359 (5)
C120.2651 (2)0.61908 (15)0.2746 (3)0.0438 (5)
H120.27820.55760.27470.053*
C130.1663 (2)0.65466 (16)0.1805 (3)0.0461 (6)
H130.11360.61770.11680.055*
C140.1461 (2)0.74590 (16)0.1814 (3)0.0442 (5)
C150.2251 (2)0.80148 (16)0.2724 (3)0.0495 (6)
H150.21110.86290.27100.059*
C160.3250 (2)0.76616 (15)0.3653 (3)0.0461 (6)
H160.37890.80400.42550.055*
C220.6116 (2)0.52614 (16)0.1831 (3)0.0485 (6)
H220.52670.51500.14990.058*
C230.6970 (2)0.54260 (18)0.0715 (3)0.0550 (7)
H230.66980.54290.03420.066*
C240.8221 (2)0.55843 (17)0.1183 (3)0.0532 (6)
H240.88200.56890.04530.064*
C250.8576 (2)0.55860 (18)0.2750 (3)0.0542 (6)
H250.94200.56990.31050.065*
C260.7665 (2)0.54176 (16)0.3791 (3)0.0456 (6)
H260.79170.54190.48530.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0364 (2)0.0295 (2)0.0305 (2)0.00083 (16)0.00346 (14)0.00118 (16)
O10.0461 (8)0.0289 (8)0.0368 (8)0.0024 (6)0.0048 (6)0.0010 (6)
O110.0591 (12)0.0746 (14)0.0885 (15)0.0037 (10)0.0256 (11)0.0165 (11)
O120.0965 (17)0.0580 (14)0.136 (2)0.0248 (12)0.0460 (15)0.0118 (14)
N10.0497 (13)0.0601 (15)0.0672 (15)0.0059 (11)0.0059 (11)0.0201 (12)
N110.0467 (11)0.0323 (10)0.0365 (10)0.0043 (8)0.0027 (8)0.0012 (8)
N120.0488 (11)0.0325 (10)0.0392 (10)0.0029 (8)0.0002 (9)0.0005 (8)
N130.0386 (10)0.0336 (10)0.0348 (10)0.0007 (8)0.0013 (8)0.0002 (8)
N210.0403 (10)0.0337 (10)0.0353 (10)0.0025 (7)0.0026 (8)0.0011 (7)
C10.0675 (17)0.0437 (14)0.0598 (16)0.0148 (12)0.0188 (13)0.0042 (12)
C110.0395 (12)0.0365 (12)0.0323 (11)0.0033 (9)0.0063 (9)0.0038 (9)
C120.0463 (13)0.0352 (13)0.0492 (13)0.0032 (10)0.0013 (11)0.0030 (10)
C130.0425 (13)0.0483 (14)0.0466 (14)0.0024 (10)0.0026 (10)0.0061 (11)
C140.0402 (13)0.0470 (14)0.0456 (13)0.0069 (10)0.0031 (10)0.0127 (11)
C150.0544 (15)0.0369 (13)0.0570 (15)0.0086 (11)0.0015 (12)0.0069 (11)
C160.0510 (14)0.0372 (13)0.0496 (14)0.0033 (10)0.0010 (11)0.0006 (11)
C220.0452 (13)0.0609 (15)0.0386 (13)0.0122 (11)0.0035 (10)0.0022 (11)
C230.0650 (17)0.0628 (17)0.0366 (13)0.0167 (13)0.0006 (12)0.0014 (12)
C240.0541 (15)0.0557 (15)0.0509 (15)0.0150 (12)0.0109 (12)0.0033 (12)
C250.0416 (13)0.0659 (17)0.0548 (16)0.0107 (12)0.0012 (12)0.0029 (13)
C260.0430 (13)0.0529 (14)0.0398 (13)0.0031 (11)0.0039 (11)0.0008 (11)
Geometric parameters (Å, º) top
Ni1—O12.0427 (13)C12—C131.374 (3)
Ni1—N132.0794 (16)C12—H120.9300
Ni1—N212.1652 (18)C13—C141.382 (3)
O1—N111.329 (2)C13—H130.9300
O11—N11.226 (3)C14—C151.376 (3)
O12—N11.225 (3)C15—C161.374 (3)
N1—C141.449 (3)C15—H150.9300
N11—N121.273 (2)C16—H160.9300
N11—C11.455 (3)C22—C231.377 (3)
N12—N131.332 (2)C22—H220.9300
N13—C111.391 (3)C23—C241.364 (3)
N21—C261.331 (3)C23—H230.9300
N21—C221.332 (3)C24—C251.367 (3)
C1—H1A0.9600C24—H240.9300
C1—H1B0.9600C25—C261.375 (3)
C1—H1C0.9600C25—H250.9300
C11—C121.398 (3)C26—H260.9300
C11—C161.407 (3)
O1i—Ni1—O1180H1B—C1—H1C109.5
O1i—Ni1—N13103.27 (6)N13—C11—C12117.82 (19)
O1—Ni1—N1376.73 (6)N13—C11—C16124.32 (19)
O1i—Ni1—N13i76.73 (6)C12—C11—C16117.84 (19)
O1—Ni1—N13i103.27 (6)C13—C12—C11121.4 (2)
N13—Ni1—N13i180C13—C12—H12119.3
O1i—Ni1—N2190.88 (6)C11—C12—H12119.3
O1—Ni1—N2189.12 (6)C12—C13—C14119.3 (2)
N13—Ni1—N2187.59 (7)C12—C13—H13120.4
N13i—Ni1—N2192.41 (7)C14—C13—H13120.4
O1i—Ni1—N21i89.12 (6)C15—C14—C13120.9 (2)
O1—Ni1—N21i90.88 (6)C15—C14—N1119.4 (2)
N13—Ni1—N21i92.41 (7)C13—C14—N1119.7 (2)
N13i—Ni1—N21i87.59 (7)C16—C15—C14119.9 (2)
N21—Ni1—N21i180C16—C15—H15120.0
N11—O1—Ni1109.92 (11)C14—C15—H15120.0
O12—N1—O11122.0 (2)C15—C16—C11120.6 (2)
O12—N1—C14118.6 (2)C15—C16—H16119.7
O11—N1—C14119.4 (2)C11—C16—H16119.7
N12—N11—O1124.29 (16)N21—C22—C23123.5 (2)
N12—N11—C1118.95 (18)N21—C22—H22118.2
O1—N11—C1116.76 (17)C23—C22—H22118.2
N11—N12—N13113.61 (17)C24—C23—C22118.9 (2)
N12—N13—C11111.66 (17)C24—C23—H23120.5
N12—N13—Ni1113.86 (13)C22—C23—H23120.5
C11—N13—Ni1134.31 (14)C23—C24—C25118.6 (2)
C26—N21—C22116.4 (2)C23—C24—H24120.7
C26—N21—Ni1123.71 (15)C25—C24—H24120.7
C22—N21—Ni1119.89 (15)C24—C25—C26118.9 (2)
N11—C1—H1A109.5C24—C25—H25120.5
N11—C1—H1B109.5C26—C25—H25120.5
H1A—C1—H1B109.5N21—C26—C25123.6 (2)
N11—C1—H1C109.5N21—C26—H26118.2
H1A—C1—H1C109.5C25—C26—H26118.2
N13—Ni1—O1—N1110.38 (12)N12—N13—C11—C12177.47 (18)
N13i—Ni1—O1—N11169.62 (12)Ni1—N13—C11—C122.7 (3)
N21—Ni1—O1—N1177.35 (13)N12—N13—C11—C164.0 (3)
N21i—Ni1—O1—N11102.65 (13)Ni1—N13—C11—C16178.82 (16)
Ni1—O1—N11—N1210.5 (2)N13—C11—C12—C13177.6 (2)
Ni1—O1—N11—C1169.79 (17)C16—C11—C12—C130.9 (3)
O1—N11—N12—N131.6 (3)C11—C12—C13—C140.6 (4)
C1—N11—N12—N13178.7 (2)C12—C13—C14—C151.5 (4)
N11—N12—N13—C11175.80 (17)C12—C13—C14—N1177.2 (2)
N11—N12—N13—Ni18.3 (2)O12—N1—C14—C154.3 (4)
O1i—Ni1—N13—N12169.55 (13)O11—N1—C14—C15176.3 (2)
O1—Ni1—N13—N1210.45 (13)O12—N1—C14—C13174.4 (3)
N21—Ni1—N13—N1279.21 (14)O11—N1—C14—C135.1 (4)
N21i—Ni1—N13—N12100.79 (14)C13—C14—C15—C160.7 (4)
O1i—Ni1—N13—C115.1 (2)N1—C14—C15—C16177.9 (2)
O1—Ni1—N13—C11174.9 (2)C14—C15—C16—C110.9 (4)
N21—Ni1—N13—C1195.48 (19)N13—C11—C16—C15176.8 (2)
N21i—Ni1—N13—C1184.52 (19)C12—C11—C16—C151.7 (3)
O1i—Ni1—N21—C26155.89 (17)C26—N21—C22—C230.2 (4)
O1—Ni1—N21—C2624.11 (17)Ni1—N21—C22—C23179.28 (19)
N13—Ni1—N21—C26100.86 (17)N21—C22—C23—C240.4 (4)
N13i—Ni1—N21—C2679.14 (17)C22—C23—C24—C250.9 (4)
O1i—Ni1—N21—C2225.12 (18)C23—C24—C25—C260.8 (4)
O1—Ni1—N21—C22154.88 (18)C22—N21—C26—C250.4 (3)
N13—Ni1—N21—C2278.13 (18)Ni1—N21—C26—C25179.37 (18)
N13i—Ni1—N21—C22101.87 (18)C24—C25—C26—N210.2 (4)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C7H7N4O3)2(C5H5N)2]
Mr607.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)10.473 (2), 14.961 (3), 8.569 (2)
β (°) 94.028 (10)
V3)1339.4 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(Spek, 1990)
Tmin, Tmax0.799, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
8301, 2373, 1888
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.076, 1.03
No. of reflections2373
No. of parameters188
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.25

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Ni1—O12.0427 (13)N1—C141.449 (3)
Ni1—N132.0794 (16)N11—N121.273 (2)
Ni1—N212.1652 (18)N11—C11.455 (3)
O1—N111.329 (2)N12—N131.332 (2)
O11—N11.226 (3)N13—C111.391 (3)
O12—N11.225 (3)
O1i—Ni1—O1180N11—O1—Ni1109.92 (11)
O1—Ni1—N1376.73 (6)O12—N1—O11122.0 (2)
N13—Ni1—N13i180N12—N11—O1124.29 (16)
O1—Ni1—N2189.12 (6)N11—N12—N13113.61 (17)
N13—Ni1—N2187.59 (7)N12—N13—Ni1113.86 (13)
N21—Ni1—N21i180
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds