Download citation
Download citation
link to html
In the title o-carborane derivative, C9H18B10S, the methyl and phenyl­sulfanyl groups are connected to the C atoms of the carborane cage. The Ccage-Ccage distance is 1.708 (4) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102012982/fr1379sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102012982/fr1379Isup2.hkl
Contains datablock I

CCDC reference: 195627

Comment top

In 1,2-dicarba-closo-dodecaboranes, the Ccage—Ccage or C1—C2 bond length is considerably influenced by the number of substituents and atom species connected to the cluster C atoms. These distances are shortest for the 1,2-H2 compounds [1.57 (1)–1.634 (3) Å; Šubrtová et al., 1980; Novák et al., 1983], while much longer distances [1.799 (3)–1.858 (5) Å] are observed for the 1,2-S2-substituted compounds (Llop et al., 2002; Teixidor, Romerosa et al., 1990; Teixidor, Viñas et al., 1990). Continuing our studies of the elongation of the C1—C2 distance caused by different Ccage substituents (Kivekäs et al., 1994, 1995, 1998; Sillanpää et al., 1996), and in order to prepare new ligands or ligand precursors for complexation, we have now synthesized and characterized the title compound, (I), and determined its crystal structure. \sch

In (I), the phenylsulfanyl and methyl groups are connected to the cluster C atoms of the 1,2-dicarba-closo-dodecaborane moiety. The phenyl group is oriented away from atom B3, and in order to reduce the repulsion between the phenyl group and the carborane cage, the S atom is moved slightly from its idealized radial position towards atom B3. As a consequence, the B3—C1—S angle is significantly smaller [113.19 (18)°] than the B6—C1—S angle [122.48 (19)°], and the C13—C2—C1—S torsion angle is -5.3 (3)°. Thus, variation of the C13—C2—X angles [116.8 (3)–121.7 (3)°] (X is Ccage or B) is less than that of the S—C1—X angles. The contribution of the phenylsulfanyl and methyl substituents on the cluster C atoms to the C1—C2 bond is indicated by the bond distance of 1.708 (4) Å.

Comparison of (I) with the relevant sulfido-substituted monoanion [2-Me-1-S—C2B10H10]- (Kivekäs et al., 1999) reveals two marked differences. The C1—C2 distance is significantly shorter in (I) than in the latter compound [1.792 (5) Å], but the C1—S distance in (I) [1.784 (3) Å] is significantly longer than in the latter compound [1.735 (4) Å].

The observed C1—C2 distance in (I) is in line with our earlier results obtained for neutral 1,2-disubstituted o-carboranes. The distance is slightly longer than that in compounds with aliphatic C atoms connected to both cluster C atoms [1.670 (3) and 1.684 (6) Å; Kivekäs et al., 1998; Holbray et al., 1993], but is much shorter than the corresponding distance in 1,2-S2 substituted closo compounds [1.799 (3)–1.858 (5) Å; Llop et al., 2002; Teixidor, Romerosa et al., 1990; Teixidor, Viñas et al., 1990].

The C1—C2 distance in (I) is comparable with the corresponding distance of 1.702 (6) Å in 1-Me-2-PPh2—C2B10H10 (Kivekäs et al., 1994), thus indicating that the contribution of one Me and one SPh substitutent to the lengthening of the C1—C2 distance is equivalent to that of Me and PPh2 substituents.

Experimental top

Reaction of 1-Me-1,2-C2B10H11 in diethyl ether with a solution of n-butyllithium in hexane, and subsequent reaction with phenyldisulfide in diethyl ether, resulted a white solid. After purification, the solid was recrystallized from dichloromethane-n-hexane and pale-yellow crystals of (I) were obtained. Full details of the synthesis, and the spectral data and elemental analysis, are given in the archived CIF.

Refinement top

The methyl group was refined as a rotating group, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C). The other H atoms were refined using a riding model, with B—H = 1.10 Å and C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(B or C), starting from idealized positions.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1995); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990b); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the structure of (I) with displacement ellipsoids at the 20% probability level. H atoms are shown as small spheres of arbitrary radii.
2-Methyl-1-phenylsulfanyl-1,2-dicarba-closo-dodecaborane(12) top
Crystal data top
C9H18B10SF(000) = 552
Mr = 266.39Dx = 1.162 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 7.2391 (14) Åθ = 10.1–15.9°
b = 17.2093 (11) ŵ = 0.19 mm1
c = 12.3461 (10) ÅT = 296 K
β = 98.066 (10)°Prism, pale yellow
V = 1522.9 (3) Å30.38 × 0.26 × 0.24 mm
Z = 4
Data collection top
Rigaku AFC-5S
diffractometer
1708 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω/2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 020
Tmin = 0.943, Tmax = 0.956l = 1414
2906 measured reflections3 standard reflections every 150 reflections
2681 independent reflections intensity decay: <1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.458P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2681 reflectionsΔρmax = 0.20 e Å3
183 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0060 (16)
Crystal data top
C9H18B10SV = 1522.9 (3) Å3
Mr = 266.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2391 (14) ŵ = 0.19 mm1
b = 17.2093 (11) ÅT = 296 K
c = 12.3461 (10) Å0.38 × 0.26 × 0.24 mm
β = 98.066 (10)°
Data collection top
Rigaku AFC-5S
diffractometer
1708 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.020
Tmin = 0.943, Tmax = 0.9563 standard reflections every 150 reflections
2906 measured reflections intensity decay: <1%
2681 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
2681 reflectionsΔρmin = 0.22 e Å3
183 parameters
Special details top

Experimental. Before use, 1-Me-1,2-C2B10H11 (Katchem) was sublimed. A 1.7 M solution of n-butyllithium in hexane (Aldrich) was used as recieved. Diethyl ether was distilled from sodium benzophenone prior to use. A solution containing diethyl ether (30 ml) and 1-Me-1,2-C2B10H11 (1.0 g, 6.5 mmol) was cooled to 273 K during the addition (10 min, dropwise) of n-butyllitium (4.2 ml, 6.5 mmol). After stirring for 30 min at 273 K, the mixture was left to stand at room temperature for 30 min, then cooled again to 273 K before adding a diethyl ether solution (10 ml) of phenyldisulfide (1.4 g, 6.5 mmol). A white solid precipitated. The ice-bath was removed and the mixture was stirred for 30 min at room temperature. The ether mixture was washed twice with water containing KCl (50 ml). The organic layer was dried (anhydrous MgSO4, 24 h) and evaporated to yield the analytically pure white solid, (I) (yield 0.95 g, 76%). Recrystallization from dichloromethane-n-hexane (1/1) gave pale-yellow crystals of (I). Analysis calculated for C9H18B10S: C 40.58, H 6.81, S 12.03%; found: C 40.76, H 6.51, S 11.62%. Spectroscopic data: IR (KBr, ν, cm-1): 3064 (C—Haryl), 2939 (C—Halkyl), 2615, 2603, 2571, 2547 (B—H); 1H NMR (250.13 MHz, CDCl3, 298 K, TMS, δ, p.p.m.): 7.57–7.40 (m, 5H, C—Haryl), 3.50–0.50 (b s, B—H), 2.22 (s, 3H, CH3); 11B NMR (128.40 MHz, CDCl3, 298 K, BF3·OEt2, δ, p.p.m.): -3.8 [d, 1J(B, H) = 150 Hz, 1B], -5.0 [d, 1J(B, H) = 150 Hz, 1B], -8.8 (d, 2B), -10.0 [d, 1J(B, H) = 155 Hz, 6B]; 13C{1H} NMR (62.90 MHz, CDCl3, 298 K, TMS, δ, p.p.m.): 137.2, 131.3, 130.0, 129.5 (Caryl), 81.8 (Ccage), 79.4 (Ccage), 23.5 (CH3).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.81260 (11)0.15674 (4)0.46626 (6)0.0456 (3)
C10.7989 (4)0.24702 (15)0.5357 (2)0.0355 (7)
C20.9208 (4)0.32538 (16)0.4988 (2)0.0425 (7)
B30.6860 (5)0.3186 (2)0.4538 (3)0.0483 (9)
H30.62760.30920.36760.058*
B40.5835 (5)0.2773 (2)0.5623 (3)0.0494 (9)
H40.45610.24180.54690.059*
B50.7670 (5)0.2550 (2)0.6692 (3)0.0467 (9)
H50.75850.20510.72390.056*
B60.9812 (5)0.2832 (2)0.6255 (3)0.0422 (8)
H61.11220.25140.64980.051*
B70.7926 (5)0.4079 (2)0.5015 (3)0.0518 (9)
H70.80110.45770.44650.062*
B80.5795 (5)0.3791 (2)0.5436 (3)0.0542 (10)
H80.44860.41030.51640.065*
B90.6298 (5)0.3397 (2)0.6766 (3)0.0554 (10)
H90.53180.34550.73670.066*
B100.8761 (5)0.3426 (2)0.7162 (3)0.0518 (9)
H100.93860.34990.80200.062*
B110.9764 (5)0.3850 (2)0.6076 (3)0.0507 (9)
H111.10520.41970.62210.061*
B120.7593 (5)0.4202 (2)0.6385 (3)0.0510 (9)
H120.74580.47830.67370.061*
C131.0507 (5)0.3138 (2)0.4143 (3)0.0656 (10)
H13A0.99790.27630.36120.098*
H13B1.16920.29530.44960.098*
H13C1.06750.36230.37860.098*
C141.0032 (4)0.10757 (15)0.5436 (2)0.0386 (7)
C151.1771 (4)0.10842 (17)0.5087 (2)0.0492 (8)
H151.19480.13570.44600.059*
C161.3237 (5)0.06863 (19)0.5674 (3)0.0617 (9)
H161.44060.06940.54430.074*
C171.2979 (5)0.02790 (19)0.6596 (3)0.0670 (11)
H171.39770.00190.69940.080*
C181.1253 (5)0.02547 (19)0.6930 (3)0.0649 (10)
H181.10760.00310.75470.078*
C190.9777 (5)0.06527 (17)0.6356 (3)0.0513 (8)
H190.86090.06370.65870.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0470 (4)0.0381 (4)0.0479 (4)0.0022 (4)0.0064 (3)0.0083 (4)
C10.0334 (15)0.0341 (14)0.0381 (15)0.0041 (12)0.0020 (12)0.0003 (12)
C20.0462 (17)0.0389 (16)0.0437 (16)0.0070 (13)0.0104 (13)0.0017 (13)
B30.054 (2)0.0411 (19)0.046 (2)0.0039 (17)0.0098 (17)0.0015 (15)
B40.0349 (19)0.0402 (18)0.074 (3)0.0008 (15)0.0100 (18)0.0009 (18)
B50.054 (2)0.048 (2)0.0409 (19)0.0078 (17)0.0148 (17)0.0082 (16)
B60.0347 (18)0.0478 (19)0.0410 (19)0.0004 (16)0.0052 (15)0.0051 (16)
B70.064 (2)0.0344 (18)0.057 (2)0.0001 (17)0.0057 (19)0.0037 (16)
B80.042 (2)0.043 (2)0.075 (3)0.0074 (17)0.0014 (19)0.0023 (18)
B90.056 (2)0.054 (2)0.061 (2)0.008 (2)0.0235 (19)0.0004 (19)
B100.060 (2)0.054 (2)0.0402 (19)0.005 (2)0.0025 (17)0.0093 (17)
B110.048 (2)0.042 (2)0.061 (2)0.0116 (17)0.0017 (18)0.0136 (17)
B120.055 (2)0.0406 (19)0.057 (2)0.0040 (17)0.0051 (18)0.0097 (17)
C130.074 (3)0.064 (2)0.066 (2)0.008 (2)0.036 (2)0.0005 (18)
C140.0429 (17)0.0313 (14)0.0401 (15)0.0022 (12)0.0008 (13)0.0019 (12)
C150.0510 (19)0.0426 (17)0.055 (2)0.0044 (15)0.0102 (16)0.0050 (14)
C160.0434 (19)0.048 (2)0.093 (3)0.0040 (16)0.0052 (18)0.0012 (19)
C170.064 (2)0.0403 (18)0.088 (3)0.0073 (18)0.021 (2)0.0053 (18)
C180.083 (3)0.0464 (19)0.062 (2)0.002 (2)0.003 (2)0.0138 (16)
C190.058 (2)0.0407 (17)0.0564 (19)0.0033 (16)0.0119 (16)0.0014 (15)
Geometric parameters (Å, º) top
S—C11.784 (3)B7—B111.776 (5)
S—C141.778 (3)B7—H71.1000
C1—C21.708 (4)B8—B91.767 (5)
C1—B31.726 (4)B8—B121.772 (5)
C1—B41.718 (4)B8—H81.1000
C1—B51.702 (4)B9—B121.772 (5)
C1—B61.717 (4)B9—B101.782 (5)
C2—C131.513 (4)B9—H91.1000
C2—B111.694 (4)B10—B111.769 (5)
C2—B71.699 (4)B10—B121.785 (5)
C2—B31.716 (5)B10—H101.1000
C2—B61.724 (4)B11—B121.775 (5)
B3—B41.769 (5)B11—H111.1000
B3—B81.774 (5)B12—H121.1000
B3—B71.781 (5)C13—H13A0.9600
B3—H31.1000C13—H13B0.9600
B4—B81.768 (5)C13—H13C0.9600
B4—B91.769 (5)C14—C191.383 (4)
B4—B51.778 (5)C14—C151.387 (4)
B4—H41.1000C15—C161.380 (4)
B5—B101.761 (5)C15—H150.9300
B5—B91.774 (5)C16—C171.371 (5)
B5—B61.779 (5)C16—H160.9300
B5—H51.1000C17—C181.371 (5)
B6—B101.765 (5)C17—H170.9300
B6—B111.766 (5)C18—C191.379 (4)
B6—H61.1000C18—H180.9300
B7—B121.755 (5)C19—H190.9300
B7—B81.766 (5)
C14—S—C1104.33 (12)B8—B7—H7121.8
B5—C1—C2109.9 (2)B11—B7—H7121.8
B5—C1—B662.72 (19)B3—B7—H7121.8
C2—C1—B660.45 (17)B7—B8—B9107.9 (3)
B5—C1—B462.7 (2)B7—B8—B4108.5 (2)
C2—C1—B4109.2 (2)B9—B8—B460.1 (2)
B6—C1—B4113.7 (2)B7—B8—B1259.5 (2)
B5—C1—B3113.1 (2)B9—B8—B1260.1 (2)
C2—C1—B359.97 (18)B4—B8—B12108.2 (3)
B6—C1—B3112.2 (2)B7—B8—B360.4 (2)
B4—C1—B361.8 (2)B9—B8—B3107.8 (3)
C2—C1—S119.59 (18)B4—B8—B360.0 (2)
B3—C1—S113.19 (18)B12—B8—B3107.7 (3)
B5—C1—S124.1 (2)B7—B8—H8121.6
B4—C1—S117.93 (19)B9—B8—H8121.8
B6—C1—S122.48 (19)B4—B8—H8121.4
C13—C2—C1118.3 (2)B12—B8—H8121.9
C13—C2—B3116.8 (3)B3—B8—H8121.8
C13—C2—B6117.8 (3)B8—B9—B460.0 (2)
C13—C2—B7121.2 (3)B8—B9—B1260.1 (2)
C13—C2—B11121.7 (3)B4—B9—B12108.1 (3)
B11—C2—B763.1 (2)B8—B9—B5108.1 (3)
B11—C2—C1109.9 (2)B4—B9—B560.3 (2)
B7—C2—C1110.5 (2)B12—B9—B5107.9 (3)
B11—C2—B3114.4 (2)B8—B9—B10108.2 (3)
B7—C2—B362.9 (2)B4—B9—B10107.8 (2)
C1—C2—B360.53 (17)B12—B9—B1060.3 (2)
B11—C2—B662.19 (19)B5—B9—B1059.4 (2)
B7—C2—B6113.8 (2)B8—B9—H9121.6
C1—C2—B660.03 (17)B4—B9—H9121.7
B3—C2—B6112.3 (2)B12—B9—H9121.6
C2—B3—C159.50 (17)B5—B9—H9121.9
C2—B3—B4106.5 (2)B10—B9—H9121.9
C1—B3—B458.88 (18)B5—B10—B660.6 (2)
C2—B3—B8104.8 (2)B5—B10—B11108.5 (2)
C1—B3—B8105.3 (2)B6—B10—B1159.9 (2)
B4—B3—B859.9 (2)B5—B10—B960.1 (2)
C2—B3—B758.09 (19)B6—B10—B9108.3 (2)
C1—B3—B7105.9 (2)B11—B10—B9107.8 (3)
B4—B3—B7107.8 (3)B5—B10—B12107.9 (2)
B8—B3—B759.6 (2)B6—B10—B12107.8 (2)
C2—B3—H3123.5B11—B10—B1259.9 (2)
C1—B3—H3123.2B9—B10—B1259.6 (2)
B4—B3—H3121.8B5—B10—H10121.3
B8—B3—H3123.3B6—B10—H10121.5
B7—B3—H3122.5B11—B10—H10121.7
C1—B4—B8105.9 (2)B9—B10—H10121.8
C1—B4—B9105.1 (2)B12—B10—H10122.1
B8—B4—B960.0 (2)C2—B11—B659.74 (18)
C1—B4—B359.30 (18)C2—B11—B10105.9 (2)
B8—B4—B360.2 (2)B6—B11—B1059.9 (2)
B9—B4—B3107.9 (3)C2—B11—B12104.9 (2)
C1—B4—B558.23 (18)B6—B11—B12108.3 (3)
B8—B4—B5107.9 (3)B10—B11—B1260.5 (2)
B9—B4—B560.0 (2)C2—B11—B758.58 (19)
B3—B4—B5107.5 (2)B6—B11—B7108.2 (2)
C1—B4—H4124.1B10—B11—B7107.8 (3)
B8—B4—H4121.9B12—B11—B759.2 (2)
B9—B4—H4122.3C2—B11—H11124.0
B3—B4—H4121.5B6—B11—H11121.1
B5—B4—H4122.0B10—B11—H11122.0
C1—B5—B10105.8 (2)B12—B11—H11122.4
C1—B5—B9105.6 (2)B7—B11—H11122.0
B10—B5—B960.5 (2)B7—B12—B860.1 (2)
C1—B5—B459.12 (18)B7—B12—B9108.1 (3)
B10—B5—B4108.3 (2)B8—B12—B959.8 (2)
B9—B5—B459.7 (2)B7—B12—B1160.4 (2)
C1—B5—B659.05 (17)B8—B12—B11108.2 (3)
B10—B5—B659.8 (2)B9—B12—B11108.0 (2)
B9—B5—B6108.0 (3)B7—B12—B10108.0 (2)
B4—B5—B6107.9 (2)B8—B12—B10107.8 (3)
C1—B5—H5123.9B9—B12—B1060.1 (2)
B10—B5—H5121.9B11—B12—B1059.6 (2)
B9—B5—H5122.1B7—B12—H12121.5
B4—B5—H5121.6B8—B12—H12121.8
B6—B5—H5121.7B9—B12—H12121.7
C1—B6—C259.52 (17)B11—B12—H12121.7
C1—B6—B10105.0 (2)B10—B12—H12121.9
C2—B6—B10104.8 (2)C2—C13—H13A109.5
C1—B6—B11106.2 (2)C2—C13—H13B109.5
C2—B6—B1158.06 (19)H13A—C13—H13B109.5
B10—B6—B1160.2 (2)C2—C13—H13C109.5
C1—B6—B558.23 (18)H13A—C13—H13C109.5
C2—B6—B5105.6 (2)H13B—C13—H13C109.5
B10—B6—B559.6 (2)C19—C14—C15119.5 (3)
B11—B6—B5107.8 (3)C19—C14—S120.6 (2)
C1—B6—H6123.4C15—C14—S119.9 (2)
C2—B6—H6123.8C16—C15—C14119.8 (3)
B10—B6—H6123.2C16—C15—H15120.1
B11—B6—H6122.0C14—C15—H15120.1
B5—B6—H6122.4C17—C16—C15120.3 (3)
C2—B7—B12105.6 (2)C17—C16—H16119.8
C2—B7—B8105.9 (2)C15—C16—H16119.8
B12—B7—B860.4 (2)C18—C17—C16120.1 (3)
C2—B7—B1158.30 (19)C18—C17—H17119.9
B12—B7—B1160.3 (2)C16—C17—H17119.9
B8—B7—B11108.4 (3)C17—C18—C19120.2 (3)
C2—B7—B359.03 (18)C17—C18—H18119.9
B12—B7—B3108.1 (3)C19—C18—H18119.9
B8—B7—B360.0 (2)C18—C19—C14120.1 (3)
B11—B7—B3107.3 (2)C18—C19—H19120.0
C2—B7—H7124.1C14—C19—H19120.0
B12—B7—H7121.9
C13—C2—C1—S5.3 (3)C1—S—C14—C1599.0 (2)
C2—C1—S—C1490.4 (2)C1—S—C14—C1984.2 (2)

Experimental details

Crystal data
Chemical formulaC9H18B10S
Mr266.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.2391 (14), 17.2093 (11), 12.3461 (10)
β (°) 98.066 (10)
V3)1522.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.38 × 0.26 × 0.24
Data collection
DiffractometerRigaku AFC-5S
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.943, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
2906, 2681, 1708
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.135, 1.03
No. of reflections2681
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.22

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1995), MSC/AFC Diffractometer Control Software, TEXSAN for Windows (Molecular Structure Corporation, 1997), SHELXS97 (Sheldrick, 1990a), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1990b), SHELXL97.

Selected geometric parameters (Å, º) top
S—C11.784 (3)C1—B41.718 (4)
S—C141.778 (3)C1—B51.702 (4)
C1—C21.708 (4)C1—B61.717 (4)
C1—B31.726 (4)C2—C131.513 (4)
C14—S—C1104.33 (12)C13—C2—C1118.3 (2)
C2—C1—S119.59 (18)C13—C2—B3116.8 (3)
B3—C1—S113.19 (18)C13—C2—B6117.8 (3)
B5—C1—S124.1 (2)C13—C2—B7121.2 (3)
B4—C1—S117.93 (19)C13—C2—B11121.7 (3)
B6—C1—S122.48 (19)
C13—C2—C1—S5.3 (3)C1—S—C14—C1599.0 (2)
C2—C1—S—C1490.4 (2)C1—S—C14—C1984.2 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds