Download citation
Download citation
link to html
The two title calix­[4]­arene compounds, C34H32O8, (I), and C36H36O8·CH3Cl, (II), respectively, which differ only in the size of the alkyl function on the pendant ester group, are compared. Compound (I) forms a novel supramolecular array, whilst (II) fails to do so due to accommodating a chloro­form guest molecule in the lower-rim cavity.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101019163/fr1354sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101019163/fr1354Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101019163/fr1354IIsup3.hkl
Contains datablock II

CCDC references: 180162; 180163

Comment top

There is much current interest in the design of supramolecular structures where the guest–host assembly is formed by non-covalent interactions (Lehn, 1995; Gutsche, 1998). Calixarenes are a promising platform as good candidates for self-assembly (Mandolini & Ungaro, 2000), owing to their high symmetry and ease of chemical modification. The title calix[4]arenes, 2,4-dihydroxy-1,3-bis(methoxycarbonylmethoxy)calix[4]arene, (I), and 2,4-dihydroxy-1,3-bis(ethoxycarbonylmethoxy)calix[4]arene chloroform solvate, (II), are well established in the literature as building blocks for more elaborate calixarenes (Beer et al., 1998). In addition, compound (I) has been shown to extract Cs+ and Sr2+ (Arena et al., 1999; Grunder et al., 1999), however, their crystal structures have not been reported in the literature.

The molecular structures of (I) and (II) are shown in Figs. 1 and 2, respectively, whilst the supramolecular structure of (I) is shown in Fig. 3. The crystal structure of (I) is unusual in that it forms a honeycomb structure of columnar hexagonal tubes. These tubes have an internal diameter of 4.83 (9) Å and are constructed by the stacking of three calixarenes alternatively offset by 60°, giving overall C3 symmetry. The driving force to the formation of this structure is ππ-stacking/interlocking between the calixarene rings and dipole–dipole interactions between the lower rim methyl ester groups. This is demonstrated by the head-to-tail arrangement of the carbonyl groups on the lower rim. To our knowledge, this is the first example of a honeycomb structure for a purely organic calixarene. Calixarene (II) failed to form a nanotubular array, a result of the carbonyl groups on the ethyl ester pendant arms being directed away from each other due to their conformational rearrangement in order to accommodate the chloroform guest.

The structures of (I) and (II) are best described comparatively, and hence the values in brackets refer to the equivalent parameter in (II) to that stated for (I). The angles about the meso-C atoms [C1, C8, C17 and C24 for (I), and C7, C14, C21 and C28 for (II)], given in Tables 1 and 2, are reasonably close to ideal tetrahedral geometry, indicating a strain-free macrocycle. The upper rim of calixarene (I) forms a cavity with separations between meso-C atoms of 5.067 (2), 5.075 (2), 5.079 (2) and 5.070 (2) Å [5.066 (3), 5.090 (3), 5.067 (3) and 5.099 (3) Å] and cross-ring distances between meso-C atoms of 7.312 (2) and 7.031 (2) Å [7.352 (3) and 7.008 (3) Å]. The asymmetry of the macrocycle is caused by the lower-rim substituents, which form a number of intramolecular hydrogen bonds with each other. In addition, the angles of the aromatic rings in the calixarene with respect to the mean plane of the macrocyle (defined by the meso-C atoms) are 71.70 (4) and 68.46 (3)° [73.68 (7) and 68.42 (6)°] for the alkyl ester functionalized rings, whilst those for the hydroxy-substituted rings are 42.35 (4) and 37.86 (5)° [45.52 (7) and 49.17 (6)°]. Thus, the hydroxy-substituted rings are allowed to lie more in the plane of the macrocycle due to their relatively small functional groups on the lower rim and the intramolecular interactions in which they are involved. The separation of the terminal methyl groups of the ester function is 6.475 (2) Å [7.141 (3) Å], reflecting the dilation of the lower rim substituents in calixarene (II) in order to accommodate the chloroform moiety.

Pertinent hydrogen-bonding parameters are given in Tables 2 and 4. The pendant ester groups are locked in position by strong hydrogen bonding between the hydroxy substituent and the oxy-linkage between the calixarene and the ester and these are of comparable strength in (I) and (II). There is a further interaction between the carbonyl group of the ester and the hydroxy substituent, making it a bifurcated donor. This interaction is weaker in (I) compared with (II) as the arms are allowed to adopt the most favourable conformation, as opposed to those of (II) which interact with the chloroform guest molecule. Non-classical interactions, presumably electrostatic, occur in (II) between the guest and host [D···A = Cl2···O5 = 3.316 (2) Å, Cl1···O8 = 3.349 (2) Å, C37···O4 = 3.221 (3) Å and C37···O5 = 3.075 (3) Å].

Experimental top

Calixarenes (I) and (II) were synthesized by reaction of calix[4]arene with the appropriate bromoalkyl acetate according to previously described procedures (Aoki et al., 1992). Calixarene (I) was recrystallized from a methanol/chloroform mixture. Crystals of (II) suitable for diffraction analysis were obtained by recrystallization from an ethyl acetate/chloroform mixture and immediately transferred to the diffractometer, as the crystals degraded, losing solvent, after standing for a short time in air.

Refinement top

All H atoms were included in idealized positions with X—H distances of 0.84, 0.95, 0.99 and 0.98 Å for hydroxyl, methine, methylene and methyl H, respectively. The coordinates of these fixed atoms were allowed to ride on those of the parent atoms. The displacement parameters of the H atoms were constrained to be a factor of 1.2 greater than those of the parent atoms for those associated with aromatic moities and 1.5 greater than the parent values for the others. A Flack (1983) parameter of -0.10 (4), determined by refinement using 3510 Friedel pairs, indicated that the correct absolute structure of (II) has been identified.

Computing details top

For both compounds, cell refinement: DENZO (Hooft 1998) and COLLECT (Otwinowski & Minor, 1997); data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. View of (I) shown with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. View of (II) shown with 50% probability displacement ellipsoids.
[Figure 3] Fig. 3. The supramolecular structure exhibited by (I).
(I) top
Crystal data top
C34H32O8F(000) = 5400
Mr = 568.6Dx = 1.307 Mg m3
Rhombohedral, R3Mo Kα radiation, λ = 0.71073 Å
a = 32.840 (5) ÅCell parameters from 13396 reflections
c = 13.918 (3) Åθ = 1.0–30.5°
α = 90°µ = 0.09 mm1
γ = 120°T = 150 K
V = 13000 (4) Å3Block, colourless
Z = 180.3 × 0.2 × 0.2 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
4617 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.044
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
θmax = 27.5°, θmin = 2.2°
Tmin = 0.973, Tmax = 0.982h = 4233
25617 measured reflectionsk = 3042
6609 independent reflectionsl = 1718
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0542P)2 + 5.423P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.044(Δ/σ)max = 0.002
wR(F2) = 0.114Δρmax = 0.24 e Å3
S = 1.04Δρmin = 0.20 e Å3
6609 reflectionsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
384 parametersExtinction coefficient: 0.00040 (7)
0 restraints
Crystal data top
C34H32O8V = 13000 (4) Å3
Mr = 568.6Z = 18
Rhombohedral, R3Mo Kα radiation
a = 32.840 (5) ŵ = 0.09 mm1
c = 13.918 (3) ÅT = 150 K
α = 90°0.3 × 0.2 × 0.2 mm
γ = 120°
Data collection top
Nonius KappaCCD area-detector
diffractometer
6609 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
4617 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.982Rint = 0.044
25617 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
6609 reflectionsΔρmin = 0.20 e Å3
384 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.56335 (5)0.78110 (5)0.16352 (10)0.0320 (3)
H1A0.52980.77150.17150.038*
H1B0.57320.79480.09850.038*
C20.56859 (5)0.73802 (5)0.17118 (10)0.0311 (3)
C30.59427 (5)0.72950 (6)0.10245 (11)0.0375 (4)
H30.60840.75110.05090.045*
C40.59978 (5)0.69053 (6)0.10721 (12)0.0420 (4)
H40.61730.68530.05930.050*
C50.57964 (5)0.65926 (6)0.18224 (12)0.0396 (4)
H50.58350.63250.18570.048*
C60.55384 (5)0.66618 (5)0.25266 (11)0.0341 (4)
C70.54816 (5)0.70557 (5)0.24602 (10)0.0300 (3)
C80.53106 (6)0.63158 (5)0.33435 (12)0.0367 (4)
H8A0.49840.62510.34260.044*
H8B0.52960.60160.31710.044*
C90.55699 (5)0.64900 (5)0.42880 (11)0.0322 (3)
C100.59991 (6)0.65119 (5)0.44250 (13)0.0401 (4)
H100.61240.64100.39260.048*
C110.62482 (5)0.66790 (6)0.52713 (13)0.0426 (4)
H110.65340.66780.53630.051*
C120.60802 (5)0.68476 (6)0.59812 (12)0.0389 (4)
H120.62580.69740.65520.047*
C130.56553 (5)0.68366 (5)0.58774 (11)0.0319 (3)
C140.53999 (5)0.66399 (5)0.50432 (11)0.0295 (3)
C150.54940 (6)0.70594 (6)0.66286 (11)0.0373 (4)
H15A0.51520.69340.65600.045*
H15B0.55520.69750.72770.045*
C160.57482 (5)0.75888 (5)0.65322 (10)0.0329 (3)
C170.61101 (6)0.78698 (6)0.71592 (11)0.0426 (4)
H170.61980.77250.76460.051*
C180.63446 (6)0.83522 (6)0.70923 (12)0.0467 (4)
H180.65860.85380.75370.056*
C190.62265 (5)0.85650 (6)0.63738 (11)0.0378 (4)
H190.63880.88980.63310.045*
C200.58757 (5)0.82999 (5)0.57129 (10)0.0296 (3)
C210.56329 (5)0.78108 (5)0.58095 (10)0.0286 (3)
C220.57563 (5)0.85367 (5)0.49139 (10)0.0311 (3)
H22A0.58640.88660.51010.037*
H22B0.54100.83740.48370.037*
C230.59770 (5)0.85348 (5)0.39546 (10)0.0263 (3)
C240.64517 (5)0.88396 (5)0.37778 (10)0.0285 (3)
H240.66370.90640.42530.034*
C250.66603 (5)0.88238 (5)0.29275 (10)0.0291 (3)
H250.69830.90420.28160.035*
C260.63988 (5)0.84906 (5)0.22396 (10)0.0283 (3)
H260.65470.84710.16690.034*
C270.59210 (5)0.81839 (5)0.23756 (10)0.0266 (3)
C280.57179 (5)0.82241 (5)0.32210 (10)0.0252 (3)
C290.49624 (5)0.81350 (5)0.30570 (12)0.0321 (3)
H29A0.50730.82930.24280.039*
H29B0.49970.83730.35370.039*
C300.44584 (5)0.77557 (5)0.29865 (10)0.0265 (3)
C310.36809 (5)0.76153 (6)0.28930 (12)0.0428 (4)
H31A0.36190.74520.22750.064*
H31B0.35090.77870.29240.064*
H31C0.35770.73850.34160.064*
C320.45809 (5)0.61746 (5)0.52656 (13)0.0378 (4)
H32A0.46540.60840.58930.045*
H32B0.45210.59260.47920.045*
C330.41585 (5)0.62333 (5)0.53537 (10)0.0304 (3)
C340.33309 (5)0.58229 (7)0.54553 (13)0.0472 (4)
H34A0.33290.59700.60660.071*
H34B0.30650.55000.54370.071*
H34C0.33040.60030.49230.071*
O20.52051 (4)0.70860 (4)0.31499 (7)0.0357 (3)
H20.51910.73320.30670.054*
O10.49634 (3)0.66134 (3)0.49579 (7)0.0319 (3)
O30.52325 (3)0.79260 (3)0.33383 (7)0.0281 (2)
O40.52754 (4)0.75722 (4)0.51796 (8)0.0363 (3)
H4A0.51660.72820.52530.054*
O50.41717 (4)0.66008 (4)0.54139 (9)0.0470 (3)
O60.37676 (4)0.58146 (4)0.53655 (8)0.0402 (3)
O70.43258 (4)0.73475 (4)0.29201 (9)0.0451 (3)
O80.41804 (3)0.79429 (4)0.29878 (8)0.0367 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0305 (8)0.0292 (8)0.0334 (8)0.0127 (7)0.0068 (6)0.0002 (6)
C20.0255 (8)0.0271 (8)0.0351 (8)0.0090 (7)0.0108 (6)0.0092 (6)
C30.0253 (8)0.0359 (9)0.0412 (9)0.0077 (7)0.0078 (7)0.0103 (7)
C40.0267 (8)0.0406 (10)0.0544 (10)0.0136 (8)0.0051 (7)0.0202 (8)
C50.0278 (8)0.0293 (9)0.0608 (11)0.0135 (7)0.0118 (7)0.0178 (8)
C60.0290 (8)0.0260 (8)0.0469 (9)0.0135 (7)0.0130 (7)0.0111 (7)
C70.0282 (8)0.0258 (8)0.0359 (8)0.0134 (7)0.0093 (6)0.0091 (6)
C80.0329 (9)0.0206 (8)0.0572 (10)0.0138 (7)0.0090 (7)0.0081 (7)
C90.0259 (8)0.0182 (7)0.0527 (9)0.0111 (6)0.0046 (7)0.0009 (6)
C100.0309 (9)0.0310 (9)0.0639 (11)0.0196 (7)0.0035 (8)0.0044 (8)
C110.0235 (8)0.0340 (9)0.0718 (12)0.0155 (7)0.0069 (8)0.0020 (8)
C120.0286 (9)0.0336 (9)0.0521 (10)0.0138 (7)0.0102 (7)0.0025 (7)
C130.0265 (8)0.0254 (8)0.0424 (9)0.0118 (7)0.0003 (6)0.0091 (6)
C140.0199 (7)0.0198 (7)0.0490 (9)0.0101 (6)0.0011 (6)0.0077 (6)
C150.0367 (9)0.0393 (9)0.0348 (8)0.0183 (8)0.0024 (7)0.0104 (7)
C160.0316 (8)0.0368 (9)0.0305 (8)0.0173 (7)0.0052 (6)0.0038 (6)
C170.0473 (10)0.0492 (11)0.0308 (8)0.0237 (9)0.0035 (7)0.0026 (7)
C180.0452 (10)0.0481 (11)0.0375 (9)0.0164 (9)0.0097 (8)0.0082 (8)
C190.0340 (9)0.0339 (9)0.0392 (9)0.0121 (7)0.0009 (7)0.0063 (7)
C200.0285 (8)0.0319 (8)0.0306 (7)0.0168 (7)0.0046 (6)0.0018 (6)
C210.0245 (8)0.0306 (8)0.0300 (7)0.0131 (7)0.0029 (6)0.0021 (6)
C220.0292 (8)0.0241 (8)0.0418 (9)0.0148 (7)0.0010 (6)0.0038 (6)
C230.0245 (7)0.0211 (7)0.0367 (8)0.0140 (6)0.0023 (6)0.0017 (6)
C240.0247 (8)0.0205 (7)0.0386 (8)0.0101 (6)0.0075 (6)0.0024 (6)
C250.0203 (7)0.0235 (7)0.0416 (8)0.0094 (6)0.0026 (6)0.0045 (6)
C260.0270 (8)0.0283 (8)0.0320 (8)0.0156 (7)0.0005 (6)0.0048 (6)
C270.0270 (8)0.0220 (7)0.0327 (7)0.0138 (6)0.0065 (6)0.0030 (6)
C280.0189 (7)0.0175 (7)0.0390 (8)0.0088 (6)0.0032 (6)0.0051 (6)
C290.0233 (8)0.0236 (8)0.0506 (9)0.0127 (6)0.0035 (6)0.0076 (6)
C300.0240 (7)0.0267 (8)0.0273 (7)0.0116 (6)0.0007 (6)0.0037 (6)
C310.0203 (8)0.0534 (11)0.0504 (10)0.0152 (8)0.0034 (7)0.0028 (8)
C320.0229 (8)0.0270 (8)0.0600 (10)0.0098 (7)0.0015 (7)0.0127 (7)
C330.0251 (8)0.0340 (9)0.0298 (7)0.0131 (7)0.0002 (6)0.0053 (6)
C340.0222 (8)0.0604 (12)0.0525 (10)0.0158 (8)0.0048 (7)0.0040 (9)
O20.0453 (7)0.0253 (6)0.0426 (6)0.0221 (5)0.0027 (5)0.0029 (4)
O10.0185 (5)0.0251 (5)0.0512 (6)0.0102 (4)0.0012 (4)0.0105 (4)
O30.0185 (5)0.0205 (5)0.0441 (6)0.0088 (4)0.0038 (4)0.0056 (4)
O40.0340 (6)0.0251 (6)0.0475 (6)0.0131 (5)0.0082 (5)0.0013 (5)
O50.0359 (7)0.0363 (7)0.0718 (8)0.0204 (6)0.0098 (6)0.0041 (6)
O60.0217 (6)0.0368 (6)0.0543 (7)0.0089 (5)0.0032 (5)0.0048 (5)
O70.0308 (6)0.0250 (6)0.0738 (8)0.0098 (5)0.0114 (5)0.0039 (5)
O80.0222 (5)0.0360 (6)0.0526 (7)0.0149 (5)0.0040 (5)0.0010 (5)
Geometric parameters (Å, º) top
C31—O81.4495 (18)C12—H120.9500
C31—H31A0.9800C13—C141.388 (2)
C31—H31B0.9800C13—C151.515 (2)
C31—H31C0.9800C14—O11.3969 (17)
C32—O11.4241 (17)C15—C161.512 (2)
C32—C331.498 (2)C15—H15A0.9900
C32—H32A0.9900C15—H15B0.9900
C32—H32B0.9900C16—C171.389 (2)
C33—O51.1889 (18)C16—C211.401 (2)
C33—O61.3317 (18)C17—C181.375 (2)
C34—O61.4534 (19)C17—H170.9500
C34—H34A0.9800C18—C191.382 (2)
C34—H34B0.9800C18—H180.9500
C34—H34C0.9800C19—C201.389 (2)
C1—C21.512 (2)C19—H190.9500
C1—C271.516 (2)C20—C211.397 (2)
C1—H1A0.9900C20—C221.516 (2)
C1—H1B0.9900C21—O41.3569 (17)
C2—C31.393 (2)C22—C231.521 (2)
C2—C71.398 (2)C22—H22A0.9900
C3—C41.381 (2)C22—H22B0.9900
C3—H30.9500C23—C241.390 (2)
C4—C51.380 (2)C23—C281.3925 (19)
C4—H40.9500C24—C251.381 (2)
C5—C61.387 (2)C24—H240.9500
C5—H50.9500C25—C261.383 (2)
C6—C71.399 (2)C25—H250.9500
C6—C81.514 (2)C26—C271.390 (2)
C7—O21.3587 (18)C26—H260.9500
C8—C91.514 (2)C27—C281.391 (2)
C8—H8A0.9900C28—O31.4018 (16)
C8—H8B0.9900C29—O31.4212 (16)
C9—C101.388 (2)C29—C301.496 (2)
C9—C141.391 (2)C29—H29A0.9900
C10—C111.382 (2)C29—H29B0.9900
C10—H100.9500C30—O71.1883 (17)
C11—C121.376 (2)C30—O81.3314 (17)
C11—H110.9500O2—H20.8400
C12—C131.385 (2)O4—H4A0.8400
O8—C31—H31A109.5C13—C14—C9122.73 (13)
O8—C31—H31B109.4C13—C14—O1117.55 (13)
H31A—C31—H31B109.5C9—C14—O1119.66 (13)
O8—C31—H31C109.5C16—C15—C13111.63 (12)
H31A—C31—H31C109.5C16—C15—H15A109.3
H31B—C31—H31C109.5C13—C15—H15A109.3
O1—C32—C33107.43 (12)C16—C15—H15B109.3
O1—C32—H32A110.2C13—C15—H15B109.3
C33—C32—H32A110.2H15A—C15—H15B108.0
O1—C32—H32B110.2C17—C16—C21117.99 (15)
C33—C32—H32B110.2C17—C16—C15120.36 (14)
H32A—C32—H32B108.5C21—C16—C15121.64 (14)
O5—C33—O6125.06 (14)C18—C17—C16121.55 (15)
O5—C33—C32124.77 (14)C18—C17—H17119.2
O6—C33—C32110.16 (13)C16—C17—H17119.2
O6—C34—H34A109.5C17—C18—C19119.63 (15)
O6—C34—H34B109.5C17—C18—H18120.2
H34A—C34—H34B109.5C19—C18—H18120.2
O6—C34—H34C109.5C18—C19—C20121.13 (15)
H34A—C34—H34C109.5C18—C19—H19119.4
H34B—C34—H34C109.5C20—C19—H19119.4
C2—C1—C27113.07 (11)C19—C20—C21118.33 (14)
C2—C1—H1A109.0C19—C20—C22120.69 (14)
C27—C1—H1A109.0C21—C20—C22120.98 (13)
C2—C1—H1B109.0O4—C21—C20115.68 (12)
C27—C1—H1B109.0O4—C21—C16122.97 (13)
H1A—C1—H1B107.8C20—C21—C16121.33 (13)
C3—C2—C7117.80 (14)C20—C22—C23113.31 (12)
C3—C2—C1120.21 (14)C20—C22—H22A108.9
C7—C2—C1121.99 (13)C23—C22—H22A108.9
C4—C3—C2121.75 (16)C20—C22—H22B108.9
C4—C3—H3119.1C23—C22—H22B108.9
C2—C3—H3119.1H22A—C22—H22B107.7
C5—C4—C3119.34 (15)C24—C23—C28116.89 (13)
C5—C4—H4120.3C24—C23—C22121.17 (13)
C3—C4—H4120.3C28—C23—C22121.93 (13)
C4—C5—C6121.18 (15)C25—C24—C23121.55 (13)
C4—C5—H5119.4C25—C24—H24119.2
C6—C5—H5119.4C23—C24—H24119.2
C5—C6—C7118.67 (15)C24—C25—C26119.96 (13)
C5—C6—C8121.39 (14)C24—C25—H25120.0
C7—C6—C8119.93 (14)C26—C25—H25120.0
O2—C7—C2123.64 (13)C25—C26—C27120.57 (13)
O2—C7—C6115.08 (13)C25—C26—H26119.7
C2—C7—C6121.24 (14)C27—C26—H26119.7
C9—C8—C6113.26 (12)C26—C27—C28117.88 (12)
C9—C8—H8A108.9C26—C27—C1120.96 (13)
C6—C8—H8A108.9C28—C27—C1121.15 (13)
C9—C8—H8B108.9C27—C28—C23122.91 (13)
C6—C8—H8B108.9C27—C28—O3117.64 (12)
H8A—C8—H8B107.7C23—C28—O3119.42 (12)
C10—C9—C14117.06 (14)O3—C29—C30108.29 (11)
C10—C9—C8120.24 (14)O3—C29—H29A110.0
C14—C9—C8122.70 (13)C30—C29—H29A110.1
C11—C10—C9121.46 (15)O3—C29—H29B110.0
C11—C10—H10119.3C30—C29—H29B110.0
C9—C10—H10119.3H29A—C29—H29B108.4
C12—C11—C10119.70 (15)O7—C30—O8124.88 (13)
C12—C11—H11120.2O7—C30—C29124.97 (13)
C10—C11—H11120.1O8—C30—C29110.13 (12)
C11—C12—C13121.06 (15)C7—O2—H2109.5
C11—C12—H12119.5C14—O1—C32113.33 (10)
C13—C12—H12119.5C28—O3—C29113.38 (10)
C12—C13—C14117.77 (14)C21—O4—H4A109.5
C12—C13—C15120.40 (14)C33—O6—C34115.62 (13)
C14—C13—C15121.73 (13)C30—O8—C31116.11 (12)
O1—C32—C33—O518.6 (2)C17—C18—C19—C200.3 (3)
O1—C32—C33—O6162.14 (12)C18—C19—C20—C212.0 (2)
C27—C1—C2—C3107.33 (15)C18—C19—C20—C22178.63 (14)
C27—C1—C2—C772.80 (18)C19—C20—C21—O4176.15 (13)
C7—C2—C3—C40.1 (2)C22—C20—C21—O43.18 (19)
C1—C2—C3—C4179.99 (13)C19—C20—C21—C162.2 (2)
C2—C3—C4—C50.4 (2)C22—C20—C21—C16178.52 (13)
C3—C4—C5—C60.3 (2)C17—C16—C21—O4177.63 (14)
C4—C5—C6—C70.5 (2)C15—C16—C21—O43.1 (2)
C4—C5—C6—C8179.08 (14)C17—C16—C21—C200.5 (2)
C3—C2—C7—O2176.85 (13)C15—C16—C21—C20178.70 (13)
C1—C2—C7—O23.0 (2)C19—C20—C22—C2399.81 (16)
C3—C2—C7—C60.9 (2)C21—C20—C22—C2380.88 (17)
C1—C2—C7—C6179.21 (13)C20—C22—C23—C2476.00 (17)
C5—C6—C7—O2176.84 (13)C20—C22—C23—C28102.80 (15)
C8—C6—C7—O21.75 (19)C28—C23—C24—C252.2 (2)
C5—C6—C7—C21.1 (2)C22—C23—C24—C25176.61 (13)
C8—C6—C7—C2179.70 (13)C23—C24—C25—C261.8 (2)
C5—C6—C8—C9104.44 (16)C24—C25—C26—C273.0 (2)
C7—C6—C8—C977.01 (17)C25—C26—C27—C280.0 (2)
C6—C8—C9—C1072.20 (18)C25—C26—C27—C1178.71 (12)
C6—C8—C9—C14106.82 (16)C2—C1—C27—C2680.57 (17)
C14—C9—C10—C110.5 (2)C2—C1—C27—C2898.09 (16)
C8—C9—C10—C11178.55 (14)C26—C27—C28—C234.3 (2)
C9—C10—C11—C122.9 (2)C1—C27—C28—C23174.40 (12)
C10—C11—C12—C132.5 (2)C26—C27—C28—O3177.63 (11)
C11—C12—C13—C141.5 (2)C1—C27—C28—O33.67 (18)
C11—C12—C13—C15174.99 (14)C24—C23—C28—C275.4 (2)
C12—C13—C14—C95.1 (2)C22—C23—C28—C27173.47 (12)
C15—C13—C14—C9171.26 (13)C24—C23—C28—O3176.58 (11)
C12—C13—C14—O1177.63 (12)C22—C23—C28—O34.57 (19)
C15—C13—C14—O16.0 (2)O3—C29—C30—O718.4 (2)
C10—C9—C14—C134.7 (2)O3—C29—C30—O8162.94 (11)
C8—C9—C14—C13174.40 (13)C13—C14—O1—C3294.09 (15)
C10—C9—C14—O1178.17 (12)C9—C14—O1—C3288.58 (16)
C8—C9—C14—O12.8 (2)C33—C32—O1—C14167.04 (12)
C12—C13—C15—C1677.23 (17)C27—C28—O3—C2995.19 (14)
C14—C13—C15—C1699.07 (17)C23—C28—O3—C2986.68 (15)
C13—C15—C16—C17102.87 (17)C30—C29—O3—C28166.48 (11)
C13—C15—C16—C2176.36 (18)O5—C33—O6—C340.3 (2)
C21—C16—C17—C181.3 (2)C32—C33—O6—C34179.61 (13)
C15—C16—C17—C18179.49 (15)O7—C30—O8—C310.5 (2)
C16—C17—C18—C191.4 (3)C29—C30—O8—C31178.17 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.841.922.7273 (14)160
O4—H4A···O10.841.992.7987 (15)161
O2—H2···O70.842.883.4142 (16)124
O4—H4A···O50.842.903.4434 (16)124
(II) top
Crystal data top
C36H36O8·CH3ClF(000) = 748
Mr = 716.02Dx = 1.397 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.027 (2) ÅCell parameters from 14325 reflections
b = 10.243 (2) Åθ = 1–27.5°
c = 16.852 (3) ŵ = 0.32 mm1
β = 100.39 (3)°T = 100 K
V = 1702.6 (6) Å3Block, colourless
Z = 20.10 × 0.08 × 0.06 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
6130 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.052
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
θmax = 27.5°, θmin = 2.5°
Tmin = 0.969, Tmax = 0.981h = 1313
24715 measured reflectionsk = 1313
7629 independent reflectionsl = 2121
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0566P)2]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max = 0.03
R[F2 > 2σ(F2)] = 0.041Δρmax = 0.29 e Å3
wR(F2) = 0.100Δρmin = 0.25 e Å3
S = 0.95Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
7629 reflectionsExtinction coefficient: 0.0153 (14)
438 parametersAbsolute structure: Flack (1983)
1 restraintAbsolute structure parameter: 0.10 (4)
H-atom parameters constrained
Crystal data top
C36H36O8·CH3ClV = 1702.6 (6) Å3
Mr = 716.02Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.027 (2) ŵ = 0.32 mm1
b = 10.243 (2) ÅT = 100 K
c = 16.852 (3) Å0.10 × 0.08 × 0.06 mm
β = 100.39 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
7629 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
6130 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.981Rint = 0.052
24715 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.100Δρmax = 0.29 e Å3
S = 0.95Δρmin = 0.25 e Å3
7629 reflectionsAbsolute structure: Flack (1983)
438 parametersAbsolute structure parameter: 0.10 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6949 (2)0.7611 (2)0.20101 (13)0.0240 (5)
C20.8342 (2)0.7631 (2)0.20199 (13)0.0274 (5)
H20.86740.75990.15270.033*
C30.9247 (2)0.7698 (2)0.27465 (14)0.0292 (5)
H31.01940.77210.27480.035*
C40.8776 (2)0.7730 (2)0.34662 (13)0.0263 (5)
H40.94070.77610.39590.032*
C50.7389 (2)0.7717 (2)0.34842 (13)0.0238 (5)
C60.6497 (2)0.7684 (2)0.27421 (12)0.0226 (5)
C70.6919 (2)0.7688 (2)0.42875 (12)0.0264 (5)
H7A0.59270.78330.42000.032*
H7B0.73630.84030.46320.032*
C80.7250 (2)0.6401 (2)0.47125 (12)0.0249 (5)
C90.8421 (2)0.6223 (2)0.52891 (13)0.0296 (5)
H90.90220.69360.54330.036*
C100.8721 (2)0.5024 (2)0.56551 (13)0.0322 (6)
H100.95170.49180.60510.039*
C110.7860 (2)0.3987 (3)0.54424 (13)0.0305 (5)
H110.80700.31680.56990.037*
C120.6687 (2)0.4105 (2)0.48588 (13)0.0262 (5)
C130.6389 (2)0.5334 (2)0.45111 (12)0.0245 (5)
C140.5782 (2)0.2921 (2)0.46107 (13)0.0290 (5)
H14A0.59700.22480.50380.035*
H14B0.48210.31840.45600.035*
C150.6005 (2)0.2338 (2)0.38182 (13)0.0254 (5)
C160.7087 (2)0.1504 (2)0.37861 (14)0.0290 (5)
H160.76720.12590.42710.035*
C170.7324 (2)0.1026 (2)0.30549 (15)0.0294 (5)
H170.80520.04370.30430.035*
C180.6502 (2)0.1404 (2)0.23423 (15)0.0285 (5)
H180.66870.10890.18430.034*
C190.5406 (2)0.2240 (2)0.23463 (13)0.0238 (5)
C200.5159 (2)0.2657 (2)0.30901 (13)0.0228 (5)
C210.4574 (2)0.2692 (2)0.15481 (13)0.0247 (5)
H21A0.43500.19300.11880.030*
H21B0.37120.30760.16460.030*
C220.5326 (2)0.3693 (2)0.11360 (12)0.0237 (5)
C230.6129 (2)0.3321 (3)0.05827 (13)0.0282 (5)
H230.61860.24240.04490.034*
C240.6847 (2)0.4233 (3)0.02247 (13)0.0327 (6)
H240.73840.39670.01570.039*
C250.6776 (2)0.5529 (2)0.04276 (13)0.0287 (5)
H250.72800.61510.01850.034*
C260.5990 (2)0.5956 (2)0.09756 (12)0.0238 (5)
C270.5261 (2)0.5019 (2)0.13216 (12)0.0214 (5)
C280.5985 (2)0.7382 (2)0.12169 (13)0.0259 (5)
H28A0.50560.76430.12730.031*
H28B0.62630.79280.07900.031*
C290.4400 (2)0.8813 (2)0.27686 (16)0.0342 (6)
H29A0.49720.95500.26510.041*
H29B0.42010.89330.33180.041*
C300.3107 (2)0.8790 (2)0.21677 (13)0.0242 (5)
C310.1150 (3)0.9994 (3)0.16073 (15)0.0449 (7)
H31A0.07380.91150.15200.054*
H31B0.13251.03200.10830.054*
C320.0213 (3)1.0874 (3)0.19128 (15)0.0377 (6)
H32A0.01791.06510.24740.057*
H32B0.06941.07840.15840.057*
H32C0.05261.17760.18840.057*
C330.2809 (2)0.2891 (2)0.31157 (15)0.0297 (5)
H33A0.29230.20720.34330.036*
H33B0.23870.26790.25530.036*
C340.1931 (2)0.3843 (2)0.34768 (13)0.0253 (5)
C350.0389 (2)0.4354 (3)0.35154 (14)0.0318 (6)
H35A0.00330.52450.36440.038*
H35B0.06080.39610.40130.038*
C360.1627 (2)0.4406 (2)0.28741 (14)0.0311 (5)
H36A0.14040.48200.23900.047*
H36B0.23310.49150.30680.047*
H36C0.19580.35180.27430.047*
C370.1481 (2)1.0586 (2)0.07061 (13)0.0286 (5)
H370.22991.10020.10370.034*
O10.50990 (14)0.76174 (15)0.27263 (8)0.0231 (3)
O20.52623 (16)0.56023 (16)0.39538 (9)0.0300 (4)
H2A0.48160.49130.38370.045*
O30.40849 (14)0.35053 (15)0.31349 (9)0.0232 (3)
O40.44131 (15)0.53302 (15)0.18481 (9)0.0255 (3)
H4A0.46620.60390.20790.038*
O50.27314 (19)0.7906 (2)0.17372 (12)0.0494 (5)
O60.24262 (17)0.99057 (17)0.21792 (10)0.0361 (4)
O70.23446 (16)0.46840 (19)0.39445 (10)0.0375 (4)
O80.06216 (15)0.35562 (16)0.32079 (9)0.0276 (4)
Cl10.06484 (8)0.96828 (8)0.13453 (5)0.0563 (2)
Cl20.04219 (6)1.18233 (6)0.02198 (3)0.03249 (15)
Cl30.20159 (7)0.95519 (7)0.00142 (4)0.04352 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0228 (12)0.0183 (11)0.0297 (11)0.0010 (10)0.0012 (9)0.0036 (9)
C20.0266 (13)0.0247 (12)0.0301 (12)0.0023 (10)0.0032 (10)0.0045 (10)
C30.0196 (12)0.0263 (13)0.0407 (13)0.0040 (10)0.0028 (10)0.0049 (11)
C40.0230 (12)0.0187 (12)0.0341 (12)0.0026 (10)0.0030 (9)0.0001 (10)
C50.0226 (12)0.0158 (11)0.0307 (12)0.0004 (9)0.0009 (9)0.0023 (9)
C60.0197 (12)0.0163 (11)0.0303 (12)0.0004 (9)0.0000 (9)0.0010 (9)
C70.0247 (12)0.0286 (13)0.0239 (11)0.0027 (11)0.0012 (9)0.0040 (10)
C80.0241 (12)0.0305 (13)0.0197 (10)0.0046 (10)0.0032 (8)0.0047 (9)
C90.0278 (13)0.0342 (14)0.0249 (11)0.0042 (11)0.0005 (9)0.0082 (10)
C100.0316 (14)0.0389 (15)0.0225 (11)0.0105 (12)0.0048 (10)0.0056 (10)
C110.0327 (14)0.0348 (14)0.0236 (12)0.0084 (11)0.0036 (10)0.0019 (10)
C120.0252 (12)0.0334 (13)0.0209 (11)0.0026 (10)0.0062 (9)0.0015 (9)
C130.0190 (12)0.0325 (14)0.0213 (11)0.0065 (10)0.0018 (8)0.0003 (9)
C140.0276 (13)0.0314 (14)0.0281 (12)0.0048 (11)0.0051 (9)0.0097 (10)
C150.0219 (12)0.0214 (12)0.0325 (12)0.0024 (9)0.0043 (9)0.0069 (9)
C160.0207 (12)0.0239 (13)0.0411 (14)0.0008 (10)0.0022 (10)0.0093 (10)
C170.0215 (12)0.0202 (12)0.0476 (15)0.0010 (10)0.0094 (10)0.0035 (10)
C180.0245 (13)0.0229 (13)0.0384 (13)0.0016 (10)0.0065 (10)0.0012 (10)
C190.0218 (12)0.0163 (11)0.0334 (12)0.0036 (9)0.0055 (9)0.0019 (9)
C200.0166 (11)0.0170 (11)0.0354 (12)0.0012 (9)0.0065 (9)0.0026 (9)
C210.0210 (11)0.0235 (12)0.0287 (11)0.0002 (10)0.0022 (9)0.0076 (9)
C220.0203 (12)0.0295 (14)0.0196 (11)0.0000 (10)0.0015 (8)0.0020 (9)
C230.0245 (13)0.0325 (14)0.0268 (12)0.0035 (10)0.0027 (9)0.0094 (10)
C240.0299 (14)0.0478 (17)0.0218 (11)0.0041 (12)0.0087 (10)0.0018 (10)
C250.0239 (13)0.0379 (15)0.0243 (12)0.0025 (11)0.0041 (9)0.0026 (10)
C260.0208 (12)0.0295 (13)0.0199 (11)0.0006 (10)0.0003 (9)0.0013 (9)
C270.0170 (11)0.0283 (13)0.0178 (10)0.0029 (9)0.0003 (8)0.0012 (9)
C280.0231 (12)0.0282 (13)0.0257 (11)0.0020 (10)0.0024 (9)0.0076 (9)
C290.0254 (13)0.0252 (14)0.0486 (15)0.0066 (11)0.0024 (11)0.0081 (11)
C300.0212 (12)0.0232 (13)0.0284 (12)0.0039 (10)0.0051 (9)0.0017 (10)
C310.0337 (15)0.065 (2)0.0325 (14)0.0191 (14)0.0035 (11)0.0030 (13)
C320.0310 (14)0.0409 (16)0.0392 (15)0.0032 (12)0.0010 (11)0.0085 (12)
C330.0200 (12)0.0278 (14)0.0419 (14)0.0019 (11)0.0078 (10)0.0031 (10)
C340.0203 (12)0.0269 (13)0.0292 (12)0.0013 (10)0.0059 (9)0.0066 (10)
C350.0235 (13)0.0353 (15)0.0383 (13)0.0063 (11)0.0096 (10)0.0036 (11)
C360.0236 (13)0.0281 (14)0.0416 (14)0.0009 (11)0.0060 (10)0.0021 (11)
C370.0260 (13)0.0302 (14)0.0289 (12)0.0030 (11)0.0028 (10)0.0018 (10)
O10.0162 (8)0.0204 (8)0.0315 (8)0.0017 (6)0.0010 (6)0.0001 (7)
O20.0255 (9)0.0275 (9)0.0325 (9)0.0018 (7)0.0065 (7)0.0043 (7)
O30.0163 (8)0.0221 (8)0.0312 (8)0.0001 (7)0.0047 (6)0.0020 (6)
O40.0257 (9)0.0227 (9)0.0300 (8)0.0027 (7)0.0101 (6)0.0035 (6)
O50.0357 (11)0.0448 (12)0.0581 (12)0.0122 (9)0.0175 (9)0.0221 (10)
O60.0283 (9)0.0329 (11)0.0440 (10)0.0110 (8)0.0016 (7)0.0010 (8)
O70.0258 (9)0.0458 (11)0.0405 (10)0.0011 (9)0.0046 (7)0.0167 (9)
O80.0192 (8)0.0278 (9)0.0360 (9)0.0025 (7)0.0056 (6)0.0012 (7)
Cl10.0497 (4)0.0625 (5)0.0613 (5)0.0083 (4)0.0224 (3)0.0275 (4)
Cl20.0317 (3)0.0304 (3)0.0330 (3)0.0039 (3)0.0004 (2)0.0026 (2)
Cl30.0426 (4)0.0462 (4)0.0388 (3)0.0154 (3)0.0004 (3)0.0137 (3)
Geometric parameters (Å, º) top
C1—C61.390 (3)C22—C271.398 (3)
C1—C21.395 (3)C23—C241.382 (4)
C1—C281.520 (3)C23—H230.9500
C2—C31.388 (3)C24—C251.376 (4)
C2—H20.9500C24—H240.9500
C3—C41.379 (3)C25—C261.388 (3)
C3—H30.9500C25—H250.9500
C4—C51.396 (3)C26—C271.396 (3)
C4—H40.9500C26—C281.517 (3)
C5—C61.401 (3)C27—O41.372 (3)
C5—C71.512 (3)C28—H28A0.9900
C6—O11.399 (3)C28—H28B0.9900
C7—C81.508 (3)C29—O11.419 (3)
C7—H7A0.9900C29—C301.495 (3)
C7—H7B0.9900C29—H29A0.9900
C8—C91.395 (3)C29—H29B0.9900
C8—C131.396 (3)C30—O51.179 (3)
C9—C101.382 (3)C30—O61.333 (3)
C9—H90.9500C31—O61.459 (3)
C10—C111.375 (4)C31—C321.461 (4)
C10—H100.9500C31—H31A0.9900
C11—C121.396 (3)C31—H31B0.9900
C11—H110.9500C32—H32A0.9800
C12—C131.398 (3)C32—H32B0.9800
C12—C141.527 (3)C32—H32C0.9800
C13—O21.360 (3)C33—O31.421 (3)
C14—C151.516 (3)C33—C341.513 (3)
C14—H14A0.9900C33—H33A0.9900
C14—H14B0.9900C33—H33B0.9900
C15—C161.390 (3)C34—O71.191 (3)
C15—C201.399 (3)C34—O81.342 (3)
C16—C171.386 (3)C35—O81.467 (3)
C16—H160.9500C35—C361.492 (3)
C17—C181.384 (3)C35—H35A0.9900
C17—H170.9500C35—H35B0.9900
C18—C191.395 (3)C36—H36A0.9800
C18—H180.9500C36—H36B0.9800
C19—C201.388 (3)C36—H36C0.9800
C19—C211.522 (3)C37—Cl11.743 (2)
C20—O31.396 (3)C37—Cl21.758 (2)
C21—C221.514 (3)C37—Cl31.766 (2)
C21—H21A0.9900C37—H371.0000
C21—H21B0.9900O2—H2A0.8400
C22—C231.391 (3)O4—H4A0.8400
C6—C1—C2118.32 (19)C24—C23—C22121.2 (2)
C6—C1—C28122.12 (19)C24—C23—H23119.4
C2—C1—C28119.3 (2)C22—C23—H23119.4
C3—C2—C1120.3 (2)C25—C24—C23119.3 (2)
C3—C2—H2119.8C25—C24—H24120.4
C1—C2—H2119.8C23—C24—H24120.4
C4—C3—C2120.3 (2)C24—C25—C26122.0 (2)
C4—C3—H3119.9C24—C25—H25119.0
C2—C3—H3119.9C26—C25—H25119.0
C3—C4—C5121.3 (2)C25—C26—C27117.7 (2)
C3—C4—H4119.4C25—C26—C28120.8 (2)
C5—C4—H4119.4C27—C26—C28121.51 (19)
C4—C5—C6117.3 (2)O4—C27—C26122.9 (2)
C4—C5—C7119.48 (19)O4—C27—C22115.5 (2)
C6—C5—C7123.2 (2)C26—C27—C22121.7 (2)
C1—C6—C5122.4 (2)C26—C28—C1110.62 (18)
C1—C6—O1117.76 (18)C26—C28—H28A109.5
C5—C6—O1119.64 (19)C1—C28—H28A109.5
C5—C7—C8111.43 (18)C26—C28—H28B109.5
C5—C7—H7A109.3C1—C28—H28B109.5
C8—C7—H7A109.3H28A—C28—H28B108.1
C5—C7—H7B109.3O1—C29—C30109.17 (19)
C8—C7—H7B109.3O1—C29—H29A109.8
H7A—C7—H7B108.0C30—C29—H29A109.8
C9—C8—C13118.2 (2)O1—C29—H29B109.8
C9—C8—C7122.1 (2)C30—C29—H29B109.8
C13—C8—C7119.67 (19)H29A—C29—H29B108.3
C10—C9—C8121.0 (2)O5—C30—O6124.1 (2)
C10—C9—H9119.5O5—C30—C29124.8 (2)
C8—C9—H9119.5O6—C30—C29111.13 (19)
C11—C10—C9119.6 (2)O6—C31—C32110.4 (2)
C11—C10—H10120.2O6—C31—H31A109.6
C9—C10—H10120.2C32—C31—H31A109.6
C10—C11—C12121.7 (2)O6—C31—H31B109.6
C10—C11—H11119.1C32—C31—H31B109.6
C12—C11—H11119.1H31A—C31—H31B108.1
C13—C12—C11117.5 (2)C31—C32—H32A109.5
C13—C12—C14122.0 (2)C31—C32—H32B109.5
C11—C12—C14120.5 (2)H32A—C32—H32B109.5
O2—C13—C12124.0 (2)C31—C32—H32C109.5
O2—C13—C8114.2 (2)H32A—C32—H32C109.5
C12—C13—C8121.8 (2)H32B—C32—H32C109.5
C15—C14—C12112.28 (18)O3—C33—C34107.01 (19)
C15—C14—H14A109.1O3—C33—H33A110.3
C12—C14—H14A109.1C34—C33—H33A110.3
C15—C14—H14B109.1O3—C33—H33B110.3
C12—C14—H14B109.1C34—C33—H33B110.3
H14A—C14—H14B107.9H33A—C33—H33B108.6
C16—C15—C20117.6 (2)O7—C34—O8125.8 (2)
C16—C15—C14121.1 (2)O7—C34—C33125.0 (2)
C20—C15—C14121.2 (2)O8—C34—C33109.2 (2)
C17—C16—C15120.8 (2)O8—C35—C36107.53 (18)
C17—C16—H16119.6O8—C35—H35A110.2
C15—C16—H16119.6C36—C35—H35A110.2
C18—C17—C16120.1 (2)O8—C35—H35B110.2
C18—C17—H17119.9C36—C35—H35B110.2
C16—C17—H17119.9H35A—C35—H35B108.5
C17—C18—C19121.0 (2)C35—C36—H36A109.5
C17—C18—H18119.5C35—C36—H36B109.5
C19—C18—H18119.5H36A—C36—H36B109.5
C20—C19—C18117.5 (2)C35—C36—H36C109.5
C20—C19—C21123.1 (2)H36A—C36—H36C109.5
C18—C19—C21119.3 (2)H36B—C36—H36C109.5
C19—C20—O3120.34 (19)Cl1—C37—Cl2110.74 (13)
C19—C20—C15122.8 (2)Cl1—C37—Cl3110.17 (14)
O3—C20—C15116.72 (19)Cl2—C37—Cl3110.17 (12)
C22—C21—C19111.87 (18)Cl1—C37—H37108.6
C22—C21—H21A109.2Cl2—C37—H37108.6
C19—C21—H21A109.2Cl3—C37—H37108.6
C22—C21—H21B109.2C6—O1—C29117.35 (17)
C19—C21—H21B109.2C13—O2—H2A109.5
H21A—C21—H21B107.9C20—O3—C33115.05 (17)
C23—C22—C27118.2 (2)C27—O4—H4A109.5
C23—C22—C21121.2 (2)C30—O6—C31115.7 (2)
C27—C22—C21120.5 (2)C34—O8—C35117.06 (18)
C6—C1—C2—C31.2 (3)C18—C19—C20—C154.1 (3)
C28—C1—C2—C3173.1 (2)C21—C19—C20—C15173.7 (2)
C1—C2—C3—C40.8 (4)C16—C15—C20—C194.0 (3)
C2—C3—C4—C51.0 (4)C14—C15—C20—C19173.8 (2)
C3—C4—C5—C60.6 (3)C16—C15—C20—O3179.5 (2)
C3—C4—C5—C7177.1 (2)C14—C15—C20—O31.7 (3)
C2—C1—C6—C52.9 (3)C20—C19—C21—C22104.0 (2)
C28—C1—C6—C5171.2 (2)C18—C19—C21—C2273.7 (3)
C2—C1—C6—O1177.8 (2)C19—C21—C22—C2391.8 (2)
C28—C1—C6—O13.8 (3)C19—C21—C22—C2786.3 (2)
C4—C5—C6—C12.6 (3)C27—C22—C23—C240.1 (3)
C7—C5—C6—C1175.0 (2)C21—C22—C23—C24178.1 (2)
C4—C5—C6—O1177.45 (19)C22—C23—C24—C250.8 (3)
C7—C5—C6—O10.1 (3)C23—C24—C25—C260.8 (4)
C4—C5—C7—C868.5 (3)C24—C25—C26—C270.0 (3)
C6—C5—C7—C8109.0 (2)C24—C25—C26—C28177.1 (2)
C5—C7—C8—C995.3 (2)C25—C26—C27—O4177.6 (2)
C5—C7—C8—C1382.6 (3)C28—C26—C27—O45.4 (3)
C13—C8—C9—C100.3 (3)C25—C26—C27—C220.9 (3)
C7—C8—C9—C10178.3 (2)C28—C26—C27—C22176.2 (2)
C8—C9—C10—C110.7 (4)C23—C22—C27—O4177.69 (18)
C9—C10—C11—C120.4 (4)C21—C22—C27—O44.2 (3)
C10—C11—C12—C131.9 (3)C23—C22—C27—C260.9 (3)
C10—C11—C12—C14177.5 (2)C21—C22—C27—C26177.26 (19)
C11—C12—C13—O2178.0 (2)C25—C26—C28—C197.6 (2)
C14—C12—C13—O22.7 (3)C27—C26—C28—C179.3 (3)
C11—C12—C13—C82.3 (3)C6—C1—C28—C2698.7 (3)
C14—C12—C13—C8177.0 (2)C2—C1—C28—C2675.3 (3)
C9—C8—C13—O2179.02 (19)O1—C29—C30—O50.8 (3)
C7—C8—C13—O22.9 (3)O1—C29—C30—O6179.08 (18)
C9—C8—C13—C121.3 (3)O3—C33—C34—O725.3 (3)
C7—C8—C13—C12176.8 (2)O3—C33—C34—O8156.88 (17)
C13—C12—C14—C1578.2 (3)C1—C6—O1—C2998.8 (2)
C11—C12—C14—C15101.2 (2)C5—C6—O1—C2986.2 (3)
C12—C14—C15—C1680.8 (3)C30—C29—O1—C6136.33 (19)
C12—C14—C15—C2096.9 (2)C19—C20—O3—C3385.3 (2)
C20—C15—C16—C171.0 (3)C15—C20—O3—C3399.1 (2)
C14—C15—C16—C17176.8 (2)C34—C33—O3—C20159.09 (18)
C15—C16—C17—C181.8 (4)O5—C30—O6—C310.6 (3)
C16—C17—C18—C191.7 (4)C29—C30—O6—C31179.4 (2)
C17—C18—C19—C201.2 (3)C32—C31—O6—C30152.1 (2)
C17—C18—C19—C21176.7 (2)O7—C34—O8—C350.3 (3)
C18—C19—C20—O3179.40 (19)C33—C34—O8—C35178.09 (19)
C21—C19—C20—O31.7 (3)C36—C35—O8—C34149.92 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O30.841.922.706 (2)154
O2—H2A···O70.842.533.071 (2)123
O4—H4A···O10.841.962.790 (2)172
O4—H4A···O50.842.713.119 (3)112

Experimental details

(I)(II)
Crystal data
Chemical formulaC34H32O8C36H36O8·CH3Cl
Mr568.6716.02
Crystal system, space groupRhombohedral, R3Monoclinic, P21
Temperature (K)150100
a, b, c (Å)32.840 (5), 32.840 (5), 13.918 (3)10.027 (2), 10.243 (2), 16.852 (3)
α, β, γ (°)90, 90, 12090, 100.39 (3), 90
V3)13000 (4)1702.6 (6)
Z182
Radiation typeMo KαMo Kα
µ (mm1)0.090.32
Crystal size (mm)0.3 × 0.2 × 0.20.10 × 0.08 × 0.06
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Multi-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.973, 0.9820.969, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
25617, 6609, 4617 24715, 7629, 6130
Rint0.0440.052
(sin θ/λ)max1)0.6500.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.114, 1.04 0.041, 0.100, 0.95
No. of reflections66097629
No. of parameters384438
No. of restraints01
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.200.29, 0.25
Absolute structure?Flack (1983)
Absolute structure parameter?0.10 (4)

Computer programs: DENZO (Hooft 1998) and COLLECT (Otwinowski & Minor, 1997), DENZO and COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1990).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.841.922.7273 (14)159.8
O4—H4A···O10.841.992.7987 (15)160.5
O2—H2···O70.842.883.4142 (16)123.7
O4—H4A···O50.842.903.4434 (16)124.3
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O30.841.922.706 (2)154.4
O2—H2A···O70.842.533.071 (2)123.3
O4—H4A···O10.841.962.790 (2)172.3
O4—H4A···O50.842.713.119 (3)111.7
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds