Download citation
Download citation
link to html
In the title compound, C17H12S5, the di­thiole ring bearing the aryl substituents assumes an envelope conformation with the maximum deviation from planarity being −0.053 Å. The phenyl and benzyl rings are twisted by 33.0 (1) and 31.1 (1)°, respectively, out of the di­thiole plane. The crystal packing is governed by short S...S interactions, with the shortest being 3.550 (2) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100019764/fr1309sup1.cif
Contains datablocks global, X

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100019764/fr1309Xsup2.hkl
Contains datablock X

CCDC reference: 162583

Comment top

During the course of our studies to synthesize new bis(ethylenedithio)tetrathiafulvalene, BEDT-TTF or ET, (I), derivatives, radical cation salts which show electrical conductivity, and in some cases superconductivity (Williams et al., 1985), we have focused on the recently developed reactions of Lawesson's reagent (LR), (II) (Öztürk, 1996; Öztürk & Wallis, 1996), or phosphoruspentasulfide, P4S10, with 1,8-diketones (III). These reactions have proved to be an efficient route to the synthesis of substituted thiophene (IV) and 1,4-dithiin (V) heterocyclic systems, which could be useful building blocks for new BEDT-TTF derivatives.

In an attempt to synthesize 5,6-diphenyl (VI) derivative of BEDT-TTF, tetra-phenyl-1,8-diketone (VIII), which was prepared from the reaction of readily available dithiolate (VII) (Svenstrup & Becher, 1995) with desyl chloride, was treated with both LR and P4S10. In accordance with the result obtained by Lee et al. (1998), diphenylthiophene (IX), rather than diphenyldithiin (VI), was isolated when the reaction was performed with LR. Surprisingly, when the reaction was carried out with P2S5, under the same conditions, benzylphenyldithiole (X) ring formed along with (IX).

In the title compound, (X), except for the C4 atom, the fused heterocycle is nearly planar, with a dihedral angle between the S5/C3/C2/S4/S3 and C1/S2/C2/C3 mean planes of 3.02 (8)°. The thiole ring which bears aryl substituents deviates from planarity while atom C4 is displaced from the S5/C3/C2/S4 mean plane by 0.736 (4) Å. The puckering parameters (Cremer & Pople, 1975) of this ring are Q = 0.469 (3) Å and ϕ = 321.8 (4)°, so the dithiole ring assumes an envelope conformation. The mean bond distances in the dithiole thione ring are SC 1.640 (4) and S—C(sp2) 1.732 (4) Å. These values are comparable with those found in the structures of both 6-(4-methoxyphenyl)thieno[2,3-d][1,3]-dithiole-2-thione (Öztürk & Wallis, 1996) and 5,6-diphenylthieno[2,3-d][1,3]dithiole-2-thione (Kaynak et al., 2000). The other dithiole ring of the fused heterocycle is affected by the presence of the phenyl and benzyl substituents. The bond lengths are quite different from those of adjacent dithiole ring; the mean bond lengths S—C(sp2) and S—C(sp3) are 1.748 (1) and 1.855 (14) Å, respectively. The shortening of the S5—C4 and C4—C5 distances versus the S4—C4 and C4—C11 bond may be described by the two short intramolecular contacts H10···S5 (2.58 Å) and H112···C6 (2.63 Å).

The substituted phenyl rings are essentially planar [maximum deviations being -0.002 (4) and -0.010 (4) Å for C8 and C14, respectively] and twisted slightly out of the plane of the fused heterocycle, with torsion angles of 175.4 (3) and 170.5 (3)° for S5—C4—C5—C6 and S4—C4—C11—C12, respectively. The dihedral angles between the phenyl groups (C5—C10 and C12—C17) and the S5/C3/C2/S4 mean plane are 33.0 (1) and 31.1 (1)°, respectively, while the dihedral angle between these two phenyl groups is 61.5 (1)°.

In the crystal, the molecules are packed in layers related by the translation [001]. The relevant S···S non-bonding contacts involved are S1···S2 (2 - x, 1/2 - y, 1/2 - z) 3.772 (2), S2···S3 (x, 1 + y, z) 3.601 (2), S3···S4 (x, -1 + y, z) 3.630 (2), S4···S5 (x, 1 + y, z) 3.550 (2) Å.

Related literature top

For related literature, see: Cremer & Pople (1975); Kaynak et al. (2000); Lee et al. (1998); Svenstrup & Becher (1995); Williams et al. (1985); Öztürk (1996); Öztürk & Wallis (1996).

Experimental top

2-[5-(2-Oxo-1,2-diphenylethylsulfanyl)-2-thioxo-1,3-dithiol-4-ylsulfanyl]- 1,2-diphenyl-1-ethanone, (VIII). To a solution of dithiolate (VII) (0.26 g, 1 mmol) in dry ethanol (10 ml) and under nitrogen atmosphere was added dropwise desyl chloride (0.5 g, 2 mmol), the solution was then stirred at room temperature for 3 h. The yellow precipitate was filtered and washed with ethanol (5 ml), which was sufficiently pure for use in the next step, mp. 430–431 K (0.57 g, 90%). 1H NMR (200 MHz, CDCl3) δ 7.8 (20 H, m, Ph) 6.1 (H, s, PhCHS) 5.8 (H, s, PhCHS), m/z (EI) 587 M+, found C 63.65, H 3.44%; C31H22O2S5 requires C 63.48, H 3.44%.

5-Benzyl-5-phenyl[1,3]dithiolo[4,5-d][1,3]dithiole-2-thione, (X). A solution of 1,8-diketone (VIII) (1 g, 1.7 mmol) and P4S10 (0.8 g, 1.70 mmol) in dry toluene (30 ml) under nitrogen atmosphere was refluxed until the consumption of starting material, which took approximately 5 h. The solvent was then evaporated under reduced pressure and the remaining viscous material was chromatographed eluting with hexane-dichloromethane (3:1). The first fraction yielded 5,6-diphenylthieno[2,3-d][1,3]dithiole-2-thione, (IX) (0.23 g, 40%), and the second fraction was characterized as (X), mp. 401–402 K (0.17 g, 25%). 1H NMR (200 MHz, CDCl3) δ 7.40–7.18 (8 H, m, Ph) 6.92 (2H, d, J = 12 Hz, Ph) 3.76 (2H, s, PhCH2), 13C NMR (50.32 Hz, CDCl3) 205 (CS), 139, 134, 130, 128.8, 128.5, 127.8, 127.6, 127, 126, 86, 51, m/z (EI) 376 M+, found C 54.28, H 3.21%; C15H12S5 requires C 54.59, H 3.54%, UV (CH3CN, nm) 426.

Refinement top

H atoms of rings were placed geometrically 0.95 Å from their parent atoms, while the positions of H111 and H112 were taken from a difference map. For all H atoms of rings, riding model was used with Ueq(H) = 1.3Ueq(C). The same model was also applied for H atoms of C11, after refining a few cycle isotropically and then fixed.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1993); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: Sir-MolEN; program(s) used to refine structure: LSFM (Fair, 1990); molecular graphics: ORTEPII (Johnson, 1965); software used to prepare material for publication: MolEN.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1965) drawing with the atomic numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
(X) top
Crystal data top
C17H12S5Dx = 1.48 Mg m3
Mr = 376.62Cu Kα radiation, λ = 1.5418 Å
Monoclinic, P21/cCell parameters from 25 reflections
a = 14.178 (3) Åθ = 22.2–42.7°
b = 6.3433 (6) ŵ = 6.23 mm1
c = 19.227 (3) ÅT = 295 K
β = 101.538 (15)°Prismatic, brown
V = 1694.2 (5) Å30.30 × 0.15 × 0.09 mm
Z = 4
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.048
ω/2θ scansθmax = 74.4°
Absorption correction: empirical (using intensity measurements) via ψ scans (north et al., 1968)
?
h = 1717
Tmin = 0.171, Tmax = 0.571k = 07
3891 measured reflectionsl = 230
3448 independent reflections3 standard reflections every 120 min
2513 reflections with I > 3σ(I) intensity decay: 1%
Refinement top
Refinement on FH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(F) + (0.02*F)2 + 0.85] except w = 0 if F2 < cutoff.σ2F , cutoff = 3.0
wR(F2) = 0.054(Δ/σ)max < 0.001
S = 0.95Δρmax = 0.41 e Å3
2513 reflectionsΔρmin = 0.45 e Å3
199 parameters
Crystal data top
C17H12S5V = 1694.2 (5) Å3
Mr = 376.62Z = 4
Monoclinic, P21/cCu Kα radiation
a = 14.178 (3) ŵ = 6.23 mm1
b = 6.3433 (6) ÅT = 295 K
c = 19.227 (3) Å0.30 × 0.15 × 0.09 mm
β = 101.538 (15)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2513 reflections with I > 3σ(I)
Absorption correction: empirical (using intensity measurements) via ψ scans (north et al., 1968)
?
Rint = 0.048
Tmin = 0.171, Tmax = 0.5713 standard reflections every 120 min
3891 measured reflections intensity decay: 1%
3448 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047199 parameters
wR(F2) = 0.054H-atom parameters constrained
S = 0.95Δρmax = 0.41 e Å3
2513 reflectionsΔρmin = 0.45 e Å3
Special details top

Experimental. The structure was determined by direct method (Sir-MolEN) and refined by full-matrix least-squares method (LSFM-MolEN). All non-H atoms were refined with anisotropic thermal parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.16911 (7)0.0945 (2)0.28259 (6)0.0696 (3)
S21.05511 (6)0.4116 (2)0.34326 (5)0.0591 (3)
S31.01321 (7)0.0315 (2)0.35718 (5)0.0546 (3)
S40.89753 (6)0.5290 (2)0.42748 (5)0.0554 (3)
S50.86214 (7)0.0779 (2)0.44768 (5)0.0507 (2)
C11.0850 (3)0.1548 (6)0.3267 (2)0.0524 (12)
C20.9655 (2)0.3491 (6)0.3893 (2)0.0501 (12)
C30.9476 (2)0.1447 (6)0.3973 (2)0.0466 (12)
C40.7999 (2)0.3334 (5)0.4295 (2)0.0439 (12)
C50.7501 (2)0.3995 (6)0.4887 (2)0.0453 (12)
C60.7063 (3)0.5979 (6)0.4836 (2)0.0597 (12)
C70.6594 (3)0.6665 (7)0.5354 (2)0.0717 (12)
C80.6547 (3)0.5418 (8)0.5932 (2)0.0717 (14)
C90.6972 (3)0.3465 (7)0.5987 (2)0.0637 (14)
C100.7450 (3)0.2756 (6)0.5466 (2)0.0522 (12)
C110.7333 (3)0.3270 (6)0.3561 (2)0.0469 (12)
C120.6605 (2)0.1524 (6)0.3457 (2)0.0474 (12)
C130.5816 (3)0.1515 (7)0.3786 (2)0.0600 (12)
C140.5161 (3)0.0122 (8)0.3673 (2)0.0740 (16)
C150.5256 (3)0.1749 (8)0.3217 (2)0.0735 (16)
C160.6031 (3)0.1745 (7)0.2884 (2)0.0659 (14)
C170.6701 (3)0.0145 (7)0.3004 (2)0.0565 (12)
H60.7100.6850.4440.0759*
H70.6290.8010.5310.0899*
H80.6220.5890.6290.0886*
H90.6940.2610.6390.0810*
H100.7740.1400.5510.0671*
H130.5730.2650.4090.0721*
H140.4640.0110.3910.0899*
H150.4790.2850.3130.0924*
H160.6110.2850.2570.0797*
H170.7240.0190.2780.0696*
H1110.7700.3120.3230.0506*
H1120.6990.4640.3530.0481*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0633 (5)0.0767 (7)0.0753 (5)0.0069 (5)0.0292 (4)0.0130 (5)
S20.0512 (4)0.0520 (5)0.0785 (5)0.0040 (4)0.0236 (4)0.0114 (4)
S30.0622 (5)0.0476 (5)0.0564 (5)0.0120 (4)0.0178 (4)0.0010 (4)
S40.0495 (4)0.0440 (5)0.0762 (5)0.0020 (4)0.0211 (4)0.0124 (4)
S50.0573 (4)0.0456 (4)0.0507 (4)0.0125 (4)0.0143 (3)0.0078 (4)
C10.049 (2)0.059 (2)0.048 (2)0.006 (2)0.007 (1)0.007 (2)
C20.044 (2)0.048 (2)0.059 (2)0.001 (2)0.012 (1)0.009 (2)
C30.049 (2)0.044 (2)0.047 (2)0.006 (2)0.010 (1)0.000 (2)
C40.048 (2)0.039 (2)0.045 (2)0.004 (1)0.010 (1)0.002 (1)
C50.045 (2)0.047 (2)0.043 (2)0.001 (2)0.007 (1)0.001 (2)
C60.073 (2)0.053 (2)0.058 (2)0.010 (2)0.025 (2)0.000 (2)
C70.084 (2)0.061 (2)0.077 (2)0.014 (2)0.033 (2)0.005 (2)
C80.074 (2)0.083 (3)0.066 (2)0.005 (2)0.033 (2)0.012 (2)
C90.062 (2)0.078 (3)0.055 (2)0.001 (2)0.021 (2)0.007 (2)
C100.046 (2)0.056 (2)0.055 (2)0.001 (2)0.011 (1)0.003 (2)
C110.050 (2)0.047 (2)0.044 (2)0.006 (2)0.010 (1)0.004 (1)
C120.047 (2)0.050 (2)0.042 (2)0.006 (2)0.001 (1)0.002 (2)
C130.049 (2)0.066 (2)0.064 (2)0.002 (2)0.009 (2)0.011 (2)
C140.054 (2)0.088 (3)0.081 (3)0.012 (2)0.016 (2)0.009 (3)
C150.067 (2)0.066 (3)0.080 (3)0.014 (2)0.003 (2)0.002 (2)
C160.078 (3)0.056 (2)0.056 (2)0.004 (2)0.005 (2)0.006 (2)
C170.060 (2)0.060 (2)0.047 (2)0.006 (2)0.005 (2)0.004 (2)
Geometric parameters (Å, º) top
S1—C11.640 (4)C8—H80.95
S2—C11.729 (4)C9—C101.392 (6)
S2—C21.733 (4)C9—H90.95
S3—C11.736 (4)C10—H100.95
S3—C31.731 (4)C11—C121.500 (5)
S4—C21.747 (4)C11—H1110.91
S4—C41.865 (4)C11—H1121.00
S5—C31.748 (4)C12—C131.390 (6)
S5—C41.845 (3)C12—C171.395 (5)
C2—C31.336 (5)C13—C141.381 (6)
C4—C51.513 (5)C13—H130.95
C4—C111.533 (4)C14—C151.378 (7)
C5—C61.398 (5)C14—H140.95
C5—C101.376 (5)C15—C161.378 (7)
C6—C71.373 (6)C15—H150.95
C6—H60.95C16—C171.377 (6)
C7—C81.376 (6)C16—H160.95
C7—H70.95C17—H170.95
C8—C91.373 (7)
C1—S2—C296.3 (2)C8—C9—C10120.4 (4)
C1—S3—C396.6 (2)C8—C9—H9119.1
C2—S4—C492.8 (2)C10—C9—H9120.5
C3—S5—C492.3 (2)C5—C10—C9120.6 (4)
S1—C1—S2123.0 (2)C5—C10—H10119.5
S1—C1—S3123.5 (3)C9—C10—H10119.8
S2—C1—S3113.4 (2)C4—C11—C12115.0 (3)
S2—C2—S4126.0 (2)C4—C11—H111108.3
S2—C2—C3117.2 (3)C4—C11—H112103.8
S4—C2—C3116.9 (3)C12—C11—H111108.1
S3—C3—S5125.7 (2)C12—C11—H112108.8
S3—C3—C2116.3 (3)H111—C11—H112113.0
S5—C3—C2117.9 (3)C11—C12—C13122.5 (3)
S4—C4—S5105.0 (2)C11—C12—C17119.5 (3)
S4—C4—C5106.9 (2)C13—C12—C17117.9 (4)
S4—C4—C11108.7 (2)C12—C13—C14120.6 (4)
S5—C4—C5112.3 (2)C12—C13—H13119.5
S5—C4—C11109.5 (2)C14—C13—H13119.9
C5—C4—C11113.9 (3)C13—C14—C15121.0 (4)
C4—C5—C6117.7 (3)C13—C14—H14118.8
C4—C5—C10123.9 (3)C15—C14—H14120.2
C6—C5—C10118.4 (3)C14—C15—C16118.9 (4)
C5—C6—C7120.5 (4)C14—C15—H15120.7
C5—C6—H6119.2C16—C15—H15120.4
C7—C6—H6120.3C15—C16—C17120.6 (4)
C6—C7—C8120.7 (4)C15—C16—H16120.1
C6—C7—H7119.5C17—C16—H16119.3
C8—C7—H7119.7C12—C17—C16121.0 (4)
C7—C8—C9119.4 (4)C12—C17—H17119.5
C7—C8—H8120.7C16—C17—H17119.5
C9—C8—H8119.9
C2—S2—C1—S1179.8 (2)C5—C6—C7—H7179.3
C2—S2—C1—S32.9 (2)H6—C6—C7—C8179.4
C1—S2—C2—S4178.7 (3)H6—C6—C7—H71.3
C1—S2—C2—C30.2 (3)C6—C7—C8—C90.2 (7)
C3—S3—C1—S1179.1 (3)C6—C7—C8—H8179.8
C3—S3—C1—S24.0 (2)H7—C7—C8—C9179.1
C1—S3—C3—S5175.1 (2)H7—C7—C8—H80.4
C1—S3—C3—C24.0 (3)C7—C8—C9—C100.3 (6)
C4—S4—C2—S2159.6 (3)C7—C8—C9—H9179.6
C4—S4—C2—C321.6 (3)H8—C8—C9—C10179.9
C2—S4—C4—S535.0 (2)H8—C8—C9—H90.9
C2—S4—C4—C5154.5 (2)C8—C9—C10—C50.2 (6)
C2—S4—C4—C1182.1 (3)C8—C9—C10—H10179.8
C4—S5—C3—S3155.6 (2)H9—C9—C10—C5179.5
C4—S5—C3—C225.3 (3)H9—C9—C10—H100.9
C3—S5—C4—S435.8 (2)C4—C11—C12—C1371.5 (5)
C3—S5—C4—C5151.6 (3)C4—C11—C12—C17109.8 (4)
C3—S5—C4—C1180.8 (3)H111—C11—C12—C13167.4
S2—C2—C3—S32.7 (4)H111—C11—C12—C1711.3
S2—C2—C3—S5176.6 (2)H112—C11—C12—C1344.4
S4—C2—C3—S3178.4 (2)H112—C11—C12—C17134.3
S4—C2—C3—S52.4 (4)C11—C12—C13—C14179.8 (4)
S4—C4—C5—C660.8 (4)C11—C12—C13—H130.3
S4—C4—C5—C10119.7 (3)C17—C12—C13—C141.1 (6)
S5—C4—C5—C6175.4 (3)C17—C12—C13—H13178.3
S5—C4—C5—C105.1 (4)C11—C12—C17—C16178.4 (4)
C11—C4—C5—C659.4 (4)C11—C12—C17—H172.7
C11—C4—C5—C10120.1 (4)C13—C12—C17—C160.4 (6)
S4—C4—C11—C12170.5 (3)C13—C12—C17—H17178.6
S4—C4—C11—H11149.5C12—C13—C14—C152.0 (7)
S4—C4—C11—H11270.8C12—C13—C14—H14178.3
S5—C4—C11—C1256.3 (3)H13—C13—C14—C15177.5
S5—C4—C11—H11164.7H13—C13—C14—H142.3
S5—C4—C11—H112175.0C13—C14—C15—C161.3 (7)
C5—C4—C11—C1270.3 (4)C13—C14—C15—H15177.9
C5—C4—C11—H111168.6H14—C14—C15—C16178.9
C5—C4—C11—H11248.4H14—C14—C15—H151.9
C4—C5—C6—C7179.6 (4)C14—C15—C16—C170.1 (6)
C4—C5—C6—H61.0C14—C15—C16—H16180.0
C10—C5—C6—C70.0 (5)H15—C15—C16—C17179.3
C10—C5—C6—H6179.5H15—C15—C16—H160.8
C4—C5—C10—C9179.5 (3)C15—C16—C17—C121.0 (6)
C4—C5—C10—H100.1C15—C16—C17—H17178.0
C6—C5—C10—C90.0 (6)H16—C16—C17—C12179.1
C6—C5—C10—H10179.7H16—C16—C17—H172.0
C5—C6—C7—C80.1 (6)

Experimental details

Crystal data
Chemical formulaC17H12S5
Mr376.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)14.178 (3), 6.3433 (6), 19.227 (3)
β (°) 101.538 (15)
V3)1694.2 (5)
Z4
Radiation typeCu Kα
µ (mm1)6.23
Crystal size (mm)0.30 × 0.15 × 0.09
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements) via ψ scans (North et al., 1968)
Tmin, Tmax0.171, 0.571
No. of measured, independent and
observed [I > 3σ(I)] reflections
3891, 3448, 2513
Rint0.048
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.054, 0.95
No. of reflections2513
No. of parameters199
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.45

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1993), MolEN (Fair, 1990), Sir-MolEN, LSFM (Fair, 1990), ORTEPII (Johnson, 1965), MolEN.

Selected geometric parameters (Å, º) top
S1—C11.640 (4)S5—C31.748 (4)
S2—C11.729 (4)S5—C41.845 (3)
S2—C21.733 (4)C2—C31.336 (5)
S3—C11.736 (4)C4—C51.513 (5)
S3—C31.731 (4)C4—C111.533 (4)
S4—C21.747 (4)C11—C121.500 (5)
S4—C41.865 (4)
C1—S2—C296.3 (2)S4—C2—C3116.9 (3)
C1—S3—C396.6 (2)S3—C3—S5125.7 (2)
C2—S4—C492.8 (2)S3—C3—C2116.3 (3)
C3—S5—C492.3 (2)S5—C3—C2117.9 (3)
S1—C1—S2123.0 (2)S4—C4—S5105.0 (2)
S1—C1—S3123.5 (3)S4—C4—C5106.9 (2)
S2—C1—S3113.4 (2)S4—C4—C11108.7 (2)
S2—C2—S4126.0 (2)S5—C4—C11109.5 (2)
S2—C2—C3117.2 (3)C4—C11—C12115.0 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds