Download citation
Download citation
link to html
The title compounds, C28H31N2O3+·Cl·H2O (common name rhod­amine-6g), (I), and C21H17N2O3+·Cl·3H2O (common name rhod­amine-123), (II), both have planar xanthene skeletons with a formal +1 charge on the amino N atoms delocalized through the π-electron system so that the N—Csp2 bond distances indicate significant double-bond character. The substituted planar phenyl groups make angles of 63.29 (8) and 87.96 (11)° with the xanthene planes in (I) and (II), respectively. In both mol­ecules, the carbonyl bond vectors point toward the xanthene rings. The ethyl­amine groups in (I) are oriented similarly with their CH2–CH3 bond vectors pointing nearly perpendicular to the xanthene plane. The chloride ions and water mol­ecules are disordered in both structures. In (I), the chloride ion and water mol­ecule are disordered between two sites. One water and chloride alternately occupy the same site with occupancy factors of 0.5. The other 0.5-chloride and 0.5-water occupy two distinct positions separated by 0.747 (8) Å. In (II), the chloride ion is disordered between three sites and one of the waters is disordered about two other sites. Both crystal structures are stabilized by hydrogen bonds involving the chloride ions, amino groups and water mol­ecules, as well as by π–π stacking between xanthene planes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101003675/fr1307sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101003675/fr1307Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101003675/fr1307IIsup3.hkl
Contains datablock II

CCDC references: 164693; 164694

Comment top

Rhodamine derivatives are lipophilic cationic dyes that have found wide use in tunable lasers and other electro-optical devices (Wittman et al., 1992; Johnson & McGrane, 1993). Our interest in these compounds, however, is in their use and development as potential anticancer agents. Rhodamine-123 has been shown to be selectively taken up by mitochondria of tumor cells (Summerhayes et al., 1982) and to suppress the growth of rat prostate tumor cells (Arcadi, 1998). These compounds are also substrates for P-glycoprotein, a membrane-bound protein that expels cytotoxic drugs from cells making them resistant to chemotherapy (Eytan et al., 1997). The rhodamine molecules' interactions with the different cellular components are dependent on the three-dimensional stereochemistries of both ligands and receptors. The two rhodamine structures are presented here to provide accurate three-dimensional data that may contribute to elucidating the stereochemical bases of their biological activity. \sch

The conformations of (I) and (II) are shown in the displacement ellipsoid plot in Figure 1. The fourteen atoms of the xanthene rings define planes with r.m.s. deviations of the fitted atoms from the planes equal to 0.048 Å for (I) and 0.015 Å for (II). The dihedral angles between the xanthene planes and substituent phenyl ring planes are 63.29 (8) and 87.96 (11)° in (I) and (II), respectively. These compare with values that range from 76.2 to 88.1° for reported structures of metal complexes of rhodamine-6 g (Wang et al., 1997; Liu et al., 1998) and a value of 78.6° for an iodide hydrate of rhodamine-6 g (Fun et al., 1997). The ethylamine groups in (I) have similar orientations with C2—N5—C23—C24 and C10—N16—C27—C28 torsion angles of 84.0 (5) and -76.7 (5)°, respectively. The C17—C18—C29—O30 torsion angle [35.3 (4)°] in (I) and the C17—C18—C23—O24 torsion angle [-2.8 (6)°] in (II) places the phenylcarbonyl groups pointing toward the xanthene rings. This contrasts with the opposite conformation for the phenylcarbonyl group found in the rhodamine-Cu complex (Liu et al., 1998) and in the iodide hydrate (Fun et al., 1997). Delocalization of the positive charge between the N atoms is indicated by the C2—N15 and C10—N16 distances, which show significant double-bond character. In (I) the C2—N15 and C10—N16 bond distances are 1.324 (3) and 1.339 (4) Å, respectively, and in (II) they are 1.343 (5) and 1.341 (5) Å. The short C2—N15 distance observed in (I) is also significantly shorter than equivalent partial double-bond distances found in the other rhodamine derivatives referenced above.

In (I) both amino N atoms are involved in hydrogen bonds to disordered chlorine and water O atoms (Table 1). The disorder is unique in that 0.5 chlorine (Cl1) and 0.5 oxygen (O1W) share the same position. This position is hydrogen bonded to N16. The other 0.5 chlorine and 0.5 water oxygen started out sharing a common second position but converged to two distinct sites (O2w, Cl2) during refinement. The site assigned to 0.5 water (O2w) makes contacts of 2.13 (1) Å and 2.798 (8) Å to center of symmetry related atoms O2wi and Cl2i [symmetry code: (i) 1 - x, -y, 1 - z], respectively. The site occupied by Cl1 or O1W makes contacts of 2.814 (6) Å with Cl2ii and 3.276 (7) Å with O2Wii [symmetry code: (ii) x, 1 + y, 1 + z]. Because of the possible short Cl1—Cl2ii and O2W—O2Wi contacts, it is proposed that when N16 is hydrogen bonded to Cl1, N15 is hydrogen bonded to O2W and the center of symmetry related Rhodamine-6 g would have N16i hydrogen bonded to O1Wi and N15i hydrogen bonded to Cl2i. An equally probable opposite arrangement would occur in other unit cells, i.e., N16 hydrogen bonded to O1W, N15 hydrogen bonded to Cl2, N16i hydrogen bonded to Cl1i and N15i hydrogen bonded to O2Wi. In this way the charge balance is maintained and all contacts between disordered sites are of the water oxygen-chloride ion hydrogen-bonded type. In addition, the average of the two possible arrangements of the disorded atoms taken over all unit cells preserves the centrosymmetric distribution of atoms.

In (II), the chloride ion is disordered about one major site and two minor sites. The major site (occupancy factor = 0.68) is hydrogen bonded to N15 and one of the minor sites is hydrogen bonded to a water molecule. N15 is also hydrogen bonded to a disordered water oxygen (occupancy 1/2). N16 is hydrogen bonded to two water molecules and a symmetry-related water is hydrogen bonded to the phenylcarbonyl oxygen (see Table 2).

The crystal lattices in these structures are also stabilized by π-π stacking interactions of their xanthene rings. The perpendicular separations between their planes are 3.457 (4) Å in (I) and 3.445 (5) Å in (II).

Related literature top

For related literature, see: Arcadi (1998); Eytan et al. (1997); Fun et al. (1997); Johnson & McGrane (1993); Liu et al. (1998); Summerhayes et al. (1982); Wang et al. (1997); Wittman et al. (1992).

Experimental top

Compounds (I) and (II) were supplied by Eastman-Kodak Company. Orange crystals of both compounds were obtained by slow evaporation of a methanol, ethanol, water mixture maintained at room temperature. Crystals of (II) were unstable in air and for data collection were sealed in capillary tubes with some mother liquor.

Refinement top

Methyl group H positions were located form difference Fourier maps, idealized and refined as riding atoms using SHELXL97 instructions which also allowed for rotation about the C—C bonds. Isotropic displacement parameters for these atoms were assigned to a free variable which was refined. All other rhodamine H atoms were fixed geometrically and treated as riding atoms using SHELXL97 defaults. A second free variable was assigned to the displacement parameters for the amino and aromatic H atoms, a third for methylene H atoms and all were refined isotropically. O1W and O2W H atoms in (II) were positioned based on hydrogen-bond geometry and restrained with SHELXL97 instructions DFIX and DANG [O—H 0.95 (2) and H—H 1.52 (4) Å]. H atoms on the disordered water molecules in (I) and (II) were not located. Occupancy factors for disordered atoms were estimated from electron-density maps and consideration of the refined displacement parameters.

Computing details top

For both compounds, data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software. Data reduction: DATRDN Xray76 (Stewart, 1976) for (I); Xray76 (Stewart, 1976) for (II). For both compounds, program(s) used to solve structure: MULTAN80 (Main et al., 1980); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) view of (I) (top) and (II) (bottom) showing 40% probability displacement ellipsoids along with the numbering schemes. Hydrogen bonds to the rhodamine derivatives are represented by dashed bonds.
(I) 9-[2-(ethoxycarbonyl)phenyl]-3,6-bis(ethylamino)- 2,7-dimethylxanthylium chloride monohydrate top
Crystal data top
C28H31N2O3+·Cl·H2OZ = 2
Mr = 496.46F(000) = 528
Triclinic, P1Dx = 1.243 Mg m3
a = 9.1947 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.240 (3) ÅCell parameters from 25 reflections
c = 13.1995 (13) Åθ = 8–15°
α = 95.874 (13)°µ = 0.18 mm1
β = 91.525 (10)°T = 293 K
γ = 102.63 (2)°Plate, orange
V = 1322.6 (4) Å30.60 × 0.40 × 0.40 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.6°
Graphite monochromatorh = 1010
θ/2θ scansk = 1313
4642 measured reflectionsl = 015
4642 independent reflections3 standard reflections every 120 min
3182 reflections with I > 2σ(I) intensity decay: no decay
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.217H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.116P)2 + 0.4678P]
where P = (Fo2 + 2Fc2)/3
4642 reflections(Δ/σ)max = 0.001
333 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C28H31N2O3+·Cl·H2Oγ = 102.63 (2)°
Mr = 496.46V = 1322.6 (4) Å3
Triclinic, P1Z = 2
a = 9.1947 (13) ÅMo Kα radiation
b = 11.240 (3) ŵ = 0.18 mm1
c = 13.1995 (13) ÅT = 293 K
α = 95.874 (13)°0.60 × 0.40 × 0.40 mm
β = 91.525 (10)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.000
4642 measured reflections3 standard reflections every 120 min
4642 independent reflections intensity decay: no decay
3182 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.217H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.33 e Å3
4642 reflectionsΔρmin = 0.26 e Å3
333 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Mean-plane data from final SHELXL refinement run:-

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

7.5735 (0.0042) x + 4.0918 (0.0061) y - 2.4571 (0.0078) z = 1.3181 (0.0068)

* 0.0411 (0.0024) C1 * 0.0766 (0.0025) C2 * 0.0336 (0.0026) C3 * -0.0222 (0.0025) C4 * -0.0321 (0.0026) C5 * -0.0585 (0.0024) C6 * -0.0265 (0.0026) C7 * 0.0484 (0.0025) C8 * 0.0706 (0.0026) C9 * 0.0335 (0.0024) C10 * -0.0180 (0.0024) C11 * -0.0451 (0.0025) C12 * -0.0790 (0.0019) O13 * -0.0224 (0.0026) C14 0.1521 (0.0033) N15 0.0596 (0.0033) N16 - 0.0247 (0.0036) C17 0.0217 (0.0046) C25 0.1568 (0.0045) C26

Rms deviation of fitted atoms = 0.0477

0.7746 (0.0120) x + 8.4932 (0.0097) y + 6.7195 (0.0147) z = 10.7398 (0.0160)

Angle to previous plane (with approximate e.s.d.) = 63.29 (0.08)

* 0.0076 (0.0019) C17 * -0.0104 (0.0019) C18 * 0.0064 (0.0021) C19 * 0.0005 (0.0023) C20 * -0.0033 (0.0024) C21 * -0.0009 (0.0022) C22 - 0.1062 (0.0048) C29

Rms deviation of fitted atoms = 0.0060

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2386 (3)0.3742 (2)0.8054 (2)0.0622 (7)
H10.20150.42140.76150.087 (3)*
C20.2871 (3)0.2692 (3)0.7657 (2)0.0610 (7)
C30.3429 (4)0.1978 (2)0.8362 (2)0.0637 (7)
C40.3486 (3)0.2338 (2)0.9365 (2)0.0616 (7)
H40.38410.18610.98070.087 (3)*
C50.3033 (3)0.3411 (2)0.9796 (2)0.0572 (7)
C60.3110 (3)0.3823 (2)1.08276 (19)0.0573 (7)
C70.2665 (3)0.4918 (2)1.1146 (2)0.0593 (7)
C80.2788 (4)0.5482 (2)1.2161 (2)0.0656 (7)
H80.31980.51131.26630.087 (3)*
C90.2335 (4)0.6543 (3)1.2442 (2)0.0670 (8)
C100.1718 (3)0.7129 (2)1.1668 (2)0.0635 (7)
C110.1606 (3)0.6602 (2)1.0653 (2)0.0634 (7)
H110.12190.69741.01430.087 (3)*
C120.2072 (3)0.5531 (2)1.0415 (2)0.0571 (7)
O130.1938 (2)0.50885 (16)0.94044 (13)0.0607 (5)
C140.2457 (3)0.4070 (2)0.9079 (2)0.0577 (7)
N150.2834 (3)0.2350 (2)0.66645 (17)0.0730 (7)
H150.31500.17000.64740.087 (3)*
N160.1275 (3)0.8172 (2)1.1932 (2)0.0750 (7)
H160.13270.84391.25690.087 (3)*
C170.3761 (3)0.3152 (2)1.15768 (19)0.0573 (7)
C180.2952 (3)0.2592 (2)1.23509 (19)0.0571 (7)
C190.3660 (4)0.2009 (3)1.3031 (2)0.0680 (8)
H190.31340.16581.35590.087 (3)*
C200.5112 (4)0.1945 (3)1.2936 (2)0.0785 (9)
H200.55660.15421.33910.087 (3)*
C210.5908 (4)0.2473 (3)1.2172 (3)0.0830 (9)
H210.69000.24291.21060.087 (3)*
C220.5231 (4)0.3067 (3)1.1502 (2)0.0714 (8)
H220.57780.34221.09850.087 (3)*
C230.2304 (4)0.2978 (3)0.5868 (2)0.0779 (9)
H23A0.14580.32960.61030.099 (5)*
H23B0.19630.23920.52720.099 (5)*
C240.3475 (5)0.4011 (4)0.5571 (3)0.0983 (12)
H24A0.37920.46080.61520.126 (4)*
H24B0.30740.43860.50390.126 (4)*
H24C0.43130.37020.53310.126 (4)*
C250.3906 (5)0.0828 (3)0.7967 (2)0.0859 (10)
H25A0.41690.04280.85310.126 (4)*
H25B0.47540.10340.75580.126 (4)*
H25C0.31010.02880.75600.126 (4)*
C260.2502 (5)0.7098 (3)1.3529 (3)0.0870 (10)
H26A0.29470.65991.39360.126 (4)*
H26B0.15380.71431.37710.126 (4)*
H26C0.31280.79081.35770.126 (4)*
C270.0711 (4)0.8882 (3)1.1212 (3)0.0836 (10)
H27A0.01800.94351.15770.099 (5)*
H27B0.00070.83291.07240.099 (5)*
C280.1927 (5)0.9614 (3)1.0650 (3)0.0939 (11)
H28A0.26301.01611.11290.126 (4)*
H28B0.15031.00811.01990.126 (4)*
H28C0.24260.90691.02600.126 (4)*
C290.1343 (4)0.2567 (3)1.2425 (2)0.0653 (7)
O300.0473 (3)0.2469 (2)1.17170 (17)0.0832 (7)
O310.1005 (3)0.2663 (3)1.34014 (16)0.0891 (7)
C320.0565 (4)0.2560 (5)1.3622 (3)0.1059 (13)
H32A0.07830.21661.42370.099 (5)*
H32B0.11990.20701.30630.099 (5)*
C330.0846 (6)0.3803 (6)1.3756 (5)0.148 (2)
H33A0.01940.42881.42970.126 (4)*
H33B0.18650.37591.39230.126 (4)*
H33C0.06630.41751.31350.126 (4)*
Cl10.0737 (2)0.96327 (16)1.39878 (15)0.1320 (7)0.50
O1W0.0737 (2)0.96327 (16)1.39878 (15)0.1320 (7)0.50
Cl20.3220 (7)0.0100 (5)0.5379 (3)0.171 (2)0.50
O2W0.4004 (7)0.0273 (8)0.5229 (4)0.0667 (15)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.086 (2)0.0564 (15)0.0485 (15)0.0214 (14)0.0063 (13)0.0111 (12)
C20.0768 (18)0.0581 (16)0.0487 (15)0.0150 (13)0.0073 (13)0.0076 (12)
C30.090 (2)0.0539 (15)0.0510 (15)0.0224 (14)0.0103 (14)0.0074 (12)
C40.087 (2)0.0521 (15)0.0507 (15)0.0229 (14)0.0084 (13)0.0110 (12)
C50.0774 (18)0.0472 (14)0.0493 (14)0.0156 (12)0.0098 (12)0.0107 (11)
C60.0752 (18)0.0485 (14)0.0501 (14)0.0138 (12)0.0109 (12)0.0122 (11)
C70.0811 (19)0.0496 (14)0.0499 (14)0.0164 (13)0.0137 (13)0.0111 (11)
C80.091 (2)0.0535 (15)0.0538 (15)0.0180 (14)0.0092 (14)0.0076 (12)
C90.088 (2)0.0549 (16)0.0604 (17)0.0200 (14)0.0194 (15)0.0067 (13)
C100.0756 (19)0.0474 (14)0.0688 (18)0.0150 (13)0.0203 (14)0.0057 (12)
C110.0798 (19)0.0505 (15)0.0648 (17)0.0218 (13)0.0145 (14)0.0113 (13)
C120.0704 (17)0.0509 (14)0.0513 (15)0.0140 (12)0.0124 (12)0.0081 (11)
O130.0844 (13)0.0518 (10)0.0515 (10)0.0247 (9)0.0100 (9)0.0093 (8)
C140.0745 (18)0.0473 (14)0.0541 (15)0.0162 (12)0.0120 (12)0.0108 (11)
N150.105 (2)0.0713 (15)0.0473 (13)0.0301 (14)0.0036 (12)0.0040 (11)
N160.100 (2)0.0582 (14)0.0735 (16)0.0319 (13)0.0202 (14)0.0067 (12)
C170.0792 (19)0.0457 (14)0.0478 (14)0.0162 (12)0.0035 (12)0.0036 (11)
C180.0774 (18)0.0524 (14)0.0458 (14)0.0222 (13)0.0093 (12)0.0079 (11)
C190.101 (2)0.0629 (17)0.0482 (15)0.0312 (16)0.0083 (14)0.0132 (12)
C200.099 (3)0.080 (2)0.0679 (19)0.0460 (18)0.0069 (17)0.0081 (16)
C210.080 (2)0.090 (2)0.085 (2)0.0338 (18)0.0023 (18)0.0062 (18)
C220.077 (2)0.0705 (19)0.0671 (18)0.0152 (15)0.0063 (15)0.0100 (15)
C230.100 (2)0.087 (2)0.0483 (16)0.0276 (18)0.0041 (15)0.0034 (15)
C240.117 (3)0.105 (3)0.078 (2)0.026 (2)0.009 (2)0.030 (2)
C250.137 (3)0.074 (2)0.0574 (18)0.048 (2)0.0109 (18)0.0048 (15)
C260.130 (3)0.072 (2)0.0660 (19)0.039 (2)0.0154 (19)0.0009 (15)
C270.100 (2)0.0586 (18)0.102 (3)0.0374 (17)0.016 (2)0.0072 (17)
C280.122 (3)0.0595 (19)0.104 (3)0.0217 (19)0.006 (2)0.0211 (18)
C290.085 (2)0.0645 (17)0.0511 (16)0.0221 (15)0.0059 (15)0.0151 (13)
O300.0801 (15)0.1048 (17)0.0637 (13)0.0176 (12)0.0010 (11)0.0129 (12)
O310.0853 (16)0.130 (2)0.0604 (13)0.0386 (14)0.0127 (11)0.0149 (12)
C320.087 (3)0.159 (4)0.082 (3)0.046 (3)0.015 (2)0.020 (3)
C330.119 (4)0.173 (5)0.153 (5)0.067 (4)0.001 (3)0.047 (4)
Cl10.1636 (17)0.1009 (12)0.1281 (14)0.0226 (11)0.0547 (12)0.0003 (10)
O1W0.1636 (17)0.1009 (12)0.1281 (14)0.0226 (11)0.0547 (12)0.0003 (10)
Cl20.284 (6)0.134 (3)0.110 (3)0.093 (4)0.005 (3)0.012 (2)
O2W0.088 (3)0.101 (4)0.0245 (19)0.051 (3)0.006 (2)0.004 (2)
Geometric parameters (Å, º) top
C1—C141.361 (4)O31—C321.462 (4)
C1—C21.409 (4)C32—C331.470 (7)
C2—N151.324 (3)Cl2—O2W0.747 (8)
C2—C31.442 (4)C1—H10.9300
C3—C41.341 (4)C4—H40.9300
C3—C251.502 (4)C8—H80.9300
C4—C51.429 (4)C11—H110.9300
C5—C61.387 (4)N15—H150.8600
C5—C141.419 (4)N16—H160.8600
C6—C71.408 (4)C19—H190.9300
C6—C171.491 (4)C20—H200.9300
C7—C121.406 (4)C21—H210.9300
C7—C81.413 (4)C22—H220.9300
C8—C91.366 (4)C23—H23A0.9700
C9—C101.439 (4)C23—H23B0.9700
C9—C261.495 (4)C24—H24A0.9600
C10—N161.339 (4)C24—H24B0.9600
C10—C111.400 (4)C24—H24C0.9600
C11—C121.373 (4)C25—H25A0.9600
C12—O131.368 (3)C25—H25B0.9600
O13—C141.369 (3)C25—H25C0.9600
N15—C231.455 (4)C26—H26A0.9600
N16—C271.457 (4)C26—H26B0.9600
C17—C221.381 (4)C26—H26C0.9600
C17—C181.400 (4)C27—H27A0.9700
C18—C191.392 (4)C27—H27B0.9700
C18—C291.479 (4)C28—H28A0.9600
C19—C201.361 (4)C28—H28B0.9600
C20—C211.370 (5)C28—H28C0.9600
C21—C221.374 (4)C32—H32A0.9700
C23—C241.493 (5)C32—H32B0.9700
C27—C281.498 (5)C33—H33A0.9600
C29—O301.195 (3)C33—H33B0.9600
C29—O311.333 (3)C33—H33C0.9600
C14—C1—C2120.3 (2)C10—C11—H11120.2
N15—C2—C1122.1 (2)C2—N15—H15117.2
N15—C2—C3119.6 (3)C23—N15—H15117.2
C1—C2—C3118.3 (2)C10—N16—H16117.9
C4—C3—C2119.3 (2)C27—N16—H16117.9
C4—C3—C25120.9 (3)C20—C19—H19119.5
C2—C3—C25119.8 (2)C18—C19—H19119.5
C3—C4—C5124.0 (2)C19—C20—H20119.9
C6—C5—C14119.8 (2)C21—C20—H20119.9
C6—C5—C4125.4 (2)C20—C21—H21120.2
C14—C5—C4114.8 (2)C22—C21—H21120.2
C5—C6—C7119.4 (2)C21—C22—H22119.1
C5—C6—C17119.7 (2)C17—C22—H22119.1
C7—C6—C17120.8 (2)N15—C23—H23A109.0
C12—C7—C6119.1 (2)C24—C23—H23A109.0
C12—C7—C8115.9 (2)N15—C23—H23B109.0
C6—C7—C8125.0 (2)C24—C23—H23B109.0
C9—C8—C7123.3 (3)H23A—C23—H23B107.8
C8—C9—C10118.7 (3)C23—C24—H24A109.5
C8—C9—C26120.7 (3)C23—C24—H24B109.5
C10—C9—C26120.5 (3)H24A—C24—H24B109.5
N16—C10—C11121.5 (3)C23—C24—H24C109.5
N16—C10—C9119.3 (3)H24A—C24—H24C109.5
C11—C10—C9119.2 (2)H24B—C24—H24C109.5
C12—C11—C10119.6 (3)C3—C25—H25A109.5
O13—C12—C11115.7 (2)C3—C25—H25B109.5
O13—C12—C7121.1 (2)H25A—C25—H25B109.5
C11—C12—C7123.2 (3)C3—C25—H25C109.5
C12—O13—C14120.2 (2)H25A—C25—H25C109.5
C1—C14—O13116.6 (2)H25B—C25—H25C109.5
C1—C14—C5123.2 (2)C9—C26—H26A109.5
O13—C14—C5120.2 (2)C9—C26—H26B109.5
C2—N15—C23125.6 (3)H26A—C26—H26B109.5
C10—N16—C27124.3 (3)C9—C26—H26C109.5
C22—C17—C18118.1 (2)H26A—C26—H26C109.5
C22—C17—C6118.6 (2)H26B—C26—H26C109.5
C18—C17—C6123.3 (3)N16—C27—H27A109.1
C19—C18—C17119.4 (3)C28—C27—H27A109.1
C19—C18—C29119.8 (2)N16—C27—H27B109.1
C17—C18—C29120.8 (2)C28—C27—H27B109.1
C20—C19—C18121.0 (3)H27A—C27—H27B107.8
C19—C20—C21120.2 (3)C27—C28—H28A109.5
C20—C21—C22119.6 (3)C27—C28—H28B109.5
C21—C22—C17121.8 (3)H28A—C28—H28B109.5
N15—C23—C24112.8 (3)C27—C28—H28C109.5
N16—C27—C28112.6 (3)H28A—C28—H28C109.5
O30—C29—O31124.9 (3)H28B—C28—H28C109.5
O30—C29—C18125.2 (3)O31—C32—H32A110.1
O31—C29—C18109.9 (2)C33—C32—H32A110.1
C29—O31—C32117.5 (3)O31—C32—H32B110.1
O31—C32—C33108.1 (4)C33—C32—H32B110.1
C14—C1—H1119.9H32A—C32—H32B108.4
C2—C1—H1119.9C32—C33—H33A109.5
C3—C4—H4118.0C32—C33—H33B109.5
C5—C4—H4118.0H33A—C33—H33B109.5
C9—C8—H8118.3C32—C33—H33C109.5
C7—C8—H8118.3H33A—C33—H33C109.5
C12—C11—H11120.2H33B—C33—H33C109.5
C14—C1—C2—N15179.3 (3)C2—C1—C14—O13178.8 (2)
C14—C1—C2—C30.5 (4)C2—C1—C14—C51.2 (5)
N15—C2—C3—C4179.0 (3)C12—O13—C14—C1175.2 (2)
C1—C2—C3—C40.8 (4)C12—O13—C14—C54.9 (4)
N15—C2—C3—C252.3 (5)C6—C5—C14—C1178.1 (3)
C1—C2—C3—C25177.9 (3)C4—C5—C14—C12.3 (4)
C2—C3—C4—C50.5 (5)C6—C5—C14—O131.9 (4)
C25—C3—C4—C5179.2 (3)C4—C5—C14—O13177.6 (2)
C3—C4—C5—C6178.4 (3)C1—C2—N15—C230.2 (5)
C3—C4—C5—C142.0 (4)C3—C2—N15—C23180.0 (3)
C14—C5—C6—C72.3 (4)C11—C10—N16—C273.0 (5)
C4—C5—C6—C7178.2 (3)C9—C10—N16—C27176.5 (3)
C14—C5—C6—C17178.1 (2)C5—C6—C17—C2261.2 (4)
C4—C5—C6—C172.4 (4)C7—C6—C17—C22114.5 (3)
C5—C6—C7—C123.6 (4)C5—C6—C17—C18118.3 (3)
C17—C6—C7—C12179.3 (2)C7—C6—C17—C1866.0 (4)
C5—C6—C7—C8175.2 (3)C22—C17—C18—C192.0 (4)
C17—C6—C7—C80.5 (4)C6—C17—C18—C19178.5 (2)
C12—C7—C8—C91.5 (4)C22—C17—C18—C29175.3 (3)
C6—C7—C8—C9179.7 (3)C6—C17—C18—C294.1 (4)
C7—C8—C9—C100.8 (5)C17—C18—C19—C201.9 (4)
C7—C8—C9—C26179.7 (3)C29—C18—C19—C20175.4 (3)
C8—C9—C10—N16179.8 (3)C18—C19—C20—C210.9 (5)
C26—C9—C10—N160.9 (5)C19—C20—C21—C220.0 (5)
C8—C9—C10—C110.3 (4)C20—C21—C22—C170.1 (5)
C26—C9—C10—C11178.6 (3)C18—C17—C22—C211.1 (4)
N16—C10—C11—C12179.9 (3)C6—C17—C22—C21179.4 (3)
C9—C10—C11—C120.6 (4)C2—N15—C23—C2484.6 (4)
C10—C11—C12—O13179.3 (2)C10—N16—C27—C2876.5 (4)
C10—C11—C12—C70.1 (4)C19—C18—C29—O30142.0 (3)
C6—C7—C12—O130.7 (4)C17—C18—C29—O3035.3 (4)
C8—C7—C12—O13178.2 (2)C19—C18—C29—O3137.6 (4)
C6—C7—C12—C11179.9 (3)C17—C18—C29—O31145.1 (3)
C8—C7—C12—C111.2 (4)O30—C29—O31—C324.2 (5)
C11—C12—O13—C14175.9 (2)C18—C29—O31—C32175.4 (3)
C7—C12—O13—C143.5 (4)C29—O31—C32—C3393.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N15—H15···Cl20.862.202.992 (5)152
N15—H15···O2W0.862.453.247 (7)154
N16—H16···Cl10.862.343.133 (3)154
N16—H16···O1W0.862.343.133 (3)154
(II) 9-[2-(methoxycarbonyl)phenyl]-3,6-diamio- xanthylium chloride trihydrate top
Crystal data top
C21H17N2O3+·Cl·3H2OF(000) = 1808
Mr = 434.88Dx = 1.286 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.5624 (14) ÅCell parameters from 21 reflections
b = 21.468 (3) Åθ = 6–14°
c = 15.427 (3) ŵ = 0.21 mm1
β = 95.409 (12)°T = 293 K
V = 4471.5 (11) Å3Plate, orange
Z = 80.4 × 0.3 × 0.2 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.8°
Graphite monochromatorh = 016
θ/2θ scansk = 025
3924 measured reflectionsl = 1818
3924 independent reflections3 standard reflections every 180 min
2256 reflections with I > 2σ(I) intensity decay: <1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.268 w = 1/[σ2(Fo2) + (0.1558P)2 + 2.1805P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.005
3924 reflectionsΔρmax = 0.41 e Å3
314 parametersΔρmin = 0.20 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0030 (8)
Crystal data top
C21H17N2O3+·Cl·3H2OV = 4471.5 (11) Å3
Mr = 434.88Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.5624 (14) ŵ = 0.21 mm1
b = 21.468 (3) ÅT = 293 K
c = 15.427 (3) Å0.4 × 0.3 × 0.2 mm
β = 95.409 (12)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.000
3924 measured reflections3 standard reflections every 180 min
3924 independent reflections intensity decay: <1%
2256 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0726 restraints
wR(F2) = 0.268H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.41 e Å3
3924 reflectionsΔρmin = 0.20 e Å3
314 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Mean plane data from final SHELX refinement run

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

13.4409 (0.0028) x + 0.9635 (0.0190) y + 0.4870 (0.0072) z = 2.1230 (0.0063)

* -0.0130 (0.0031) C1 * 0.0099 (0.0031) C2 * 0.0154 (0.0031) C3 * 0.0141 (0.0031) C4 * -0.0019 (0.0031) C5 * 0.0015 (0.0030) C6 * -0.0135 (0.0032) C7 * -0.0174 (0.0032) C8 * 0.0016 (0.0034) C9 * 0.0367 (0.0031) C10 * 0.0094 (0.0030) C11 * -0.0177 (0.0031) C12 * -0.0117 (0.0024) O13 * -0.0135 (0.0031) C14 0.0197 (0.0043) N15 0.1017 (0.0040) N16 0.1625 (0.0046) C17

Rms deviation of fitted atoms = 0.0153

- 1.9736 (0.0246) x - 5.4817 (0.0387) y + 14.8917 (0.0081) z = 5.5157 (0.0067)

Angle to previous plane (with approximate e.s.d.) = 87.96 (0.11)

* 0.0040 (0.0029) C17 * -0.0053 (0.0028) C18 * -0.0001 (0.0032) C19 * 0.0070 (0.0036) C20 * -0.0083 (0.0036) C21 * 0.0028 (0.0033) C22 0.0049 (0.0063) C23

Rms deviation of fitted atoms = 0.0053

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1218 (3)0.31515 (17)0.3483 (3)0.0639 (10)
H10.11710.35610.36690.084 (3)*
C20.1276 (3)0.30185 (17)0.2600 (3)0.0647 (10)
C30.1335 (3)0.23964 (18)0.2334 (2)0.0678 (10)
H30.13660.23060.17480.084 (3)*
C40.1346 (3)0.19253 (17)0.2918 (2)0.0640 (10)
H40.13900.15170.27240.084 (3)*
C50.1293 (2)0.20394 (15)0.3822 (2)0.0558 (9)
C60.1306 (2)0.15796 (16)0.4465 (2)0.0582 (9)
C70.1250 (3)0.17561 (16)0.5331 (2)0.0574 (9)
C80.1252 (3)0.13368 (18)0.6037 (3)0.0685 (10)
H80.12750.09110.59310.084 (3)*
C90.1221 (3)0.1543 (2)0.6872 (3)0.0750 (11)
H90.12180.12540.73220.084 (3)*
C100.1195 (3)0.2176 (2)0.7063 (2)0.0678 (10)
C110.1168 (3)0.26110 (19)0.6380 (2)0.0661 (10)
H110.11340.30360.64900.084 (3)*
C120.1194 (2)0.23922 (16)0.5548 (2)0.0570 (9)
O130.11894 (18)0.28359 (11)0.49163 (15)0.0632 (7)
C140.1231 (2)0.26735 (15)0.4064 (2)0.0554 (9)
N150.1271 (3)0.34833 (17)0.2017 (2)0.0835 (11)
H15A0.12320.38640.21850.084 (3)*
H15B0.13070.34000.14750.084 (3)*
N160.1199 (3)0.2381 (2)0.7884 (2)0.0861 (11)
H16A0.12180.21190.83080.084 (3)*
H16B0.11820.27740.79880.084 (3)*
C170.1481 (3)0.09132 (16)0.4239 (2)0.0619 (9)
C180.0741 (3)0.04864 (16)0.3978 (2)0.0614 (9)
C190.0999 (3)0.01293 (18)0.3789 (3)0.0791 (12)
H190.05060.04170.36170.084 (3)*
C200.1967 (4)0.0308 (2)0.3856 (3)0.0917 (14)
H200.21310.07180.37370.084 (3)*
C210.2697 (4)0.0112 (2)0.4097 (3)0.0945 (15)
H210.33570.00100.41270.084 (3)*
C220.2458 (3)0.07223 (19)0.4297 (3)0.0813 (12)
H220.29590.10040.44720.084 (3)*
C230.0308 (3)0.06757 (17)0.3915 (2)0.0653 (10)
O240.0592 (2)0.11815 (13)0.4107 (2)0.0883 (9)
O250.0921 (2)0.02381 (13)0.3605 (2)0.0969 (11)
C260.1973 (4)0.0383 (3)0.3526 (4)0.1085 (17)
H26A0.23410.00290.32910.202 (19)*
H26B0.20980.07330.31460.202 (19)*
H26C0.21750.04810.40910.202 (19)*
Cl0.3640 (2)0.17706 (16)0.00454 (19)0.1557 (11)0.68
Cl2A0.4815 (9)0.0827 (5)0.0290 (10)0.142 (4)0.16
Cl2B0.5172 (9)0.0593 (6)0.0342 (11)0.151 (5)0.16
O1W0.3501 (4)0.3135 (2)0.0367 (3)0.1255 (14)
H1WA0.397 (4)0.341 (2)0.015 (4)0.181 (16)*
H1WB0.367 (5)0.2715 (13)0.019 (4)0.181 (16)*
O2W0.4059 (5)0.1202 (3)0.1879 (6)0.199 (3)
H2WA0.435 (6)0.103 (4)0.136 (3)0.181 (16)*
H2WB0.437 (5)0.099 (3)0.237 (2)0.181 (16)*
O3WB0.0691 (7)0.4775 (4)0.3592 (11)0.168 (5)0.50
O3W0.0561 (11)0.4702 (4)0.2896 (6)0.151 (5)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.060 (2)0.055 (2)0.076 (3)0.0002 (16)0.0073 (18)0.0024 (18)
C20.056 (2)0.067 (2)0.071 (2)0.0044 (17)0.0049 (17)0.0131 (19)
C30.065 (2)0.079 (3)0.060 (2)0.0022 (19)0.0048 (17)0.005 (2)
C40.066 (2)0.059 (2)0.067 (2)0.0053 (17)0.0059 (18)0.0077 (18)
C50.0536 (19)0.0498 (19)0.064 (2)0.0009 (15)0.0065 (15)0.0017 (16)
C60.051 (2)0.053 (2)0.069 (2)0.0028 (15)0.0012 (16)0.0052 (17)
C70.054 (2)0.055 (2)0.062 (2)0.0042 (15)0.0044 (16)0.0007 (17)
C80.067 (2)0.061 (2)0.076 (3)0.0076 (18)0.0026 (19)0.0047 (19)
C90.072 (3)0.081 (3)0.071 (3)0.010 (2)0.004 (2)0.014 (2)
C100.056 (2)0.091 (3)0.057 (2)0.0093 (19)0.0086 (16)0.001 (2)
C110.063 (2)0.073 (2)0.063 (2)0.0085 (18)0.0087 (17)0.0128 (19)
C120.0490 (19)0.058 (2)0.065 (2)0.0051 (15)0.0070 (15)0.0003 (17)
O130.0738 (16)0.0525 (14)0.0642 (16)0.0019 (11)0.0110 (12)0.0041 (11)
C140.0506 (19)0.055 (2)0.061 (2)0.0025 (15)0.0065 (15)0.0031 (16)
N150.092 (3)0.078 (2)0.080 (2)0.0059 (19)0.0067 (19)0.0135 (19)
N160.082 (2)0.113 (3)0.064 (2)0.009 (2)0.0118 (17)0.005 (2)
C170.067 (2)0.0504 (19)0.068 (2)0.0027 (17)0.0032 (17)0.0010 (17)
C180.066 (2)0.050 (2)0.067 (2)0.0016 (16)0.0025 (17)0.0046 (16)
C190.088 (3)0.055 (2)0.093 (3)0.005 (2)0.002 (2)0.012 (2)
C200.091 (3)0.063 (3)0.118 (4)0.017 (2)0.007 (3)0.021 (2)
C210.077 (3)0.078 (3)0.126 (4)0.022 (2)0.002 (3)0.019 (3)
C220.066 (3)0.066 (2)0.110 (3)0.004 (2)0.003 (2)0.013 (2)
C230.072 (2)0.054 (2)0.070 (2)0.0067 (19)0.0030 (18)0.0003 (18)
O240.0678 (18)0.0681 (18)0.129 (3)0.0003 (14)0.0097 (16)0.0209 (17)
O250.0701 (19)0.0706 (18)0.146 (3)0.0122 (15)0.0080 (18)0.0146 (18)
C260.076 (3)0.101 (4)0.145 (5)0.023 (3)0.008 (3)0.005 (3)
Cl0.147 (2)0.181 (3)0.141 (2)0.021 (2)0.0258 (17)0.0309 (19)
Cl2A0.118 (8)0.107 (8)0.198 (13)0.007 (6)0.004 (8)0.011 (8)
Cl2B0.115 (8)0.107 (8)0.222 (15)0.011 (7)0.037 (9)0.044 (9)
O1W0.140 (4)0.122 (3)0.116 (3)0.020 (3)0.022 (2)0.032 (3)
O2W0.167 (5)0.123 (4)0.291 (8)0.036 (4)0.052 (5)0.018 (4)
O3WB0.107 (6)0.067 (5)0.322 (17)0.013 (4)0.020 (10)0.012 (9)
O3W0.276 (15)0.043 (4)0.135 (8)0.015 (5)0.031 (7)0.002 (4)
Geometric parameters (Å, º) top
C1—C141.362 (5)C23—O251.315 (4)
C1—C21.401 (5)O25—C261.454 (6)
C2—N151.343 (5)Cl2A—Cl2B1.236 (19)
C2—C31.402 (5)Cl2B—O3WBi2.01 (2)
C3—C41.354 (5)O3WB—O3W1.083 (15)
C4—C51.425 (5)O3WB—Cl2Bii2.01 (2)
C5—C61.398 (5)C1—H10.9300
C5—C141.416 (5)C3—H30.9300
C6—C71.397 (5)C4—H40.9300
C6—C171.497 (5)C8—H80.9300
C7—C121.410 (5)C9—H90.9300
C7—C81.413 (5)C11—H110.9300
C8—C91.367 (6)N15—H15A0.8600
C9—C101.392 (6)N15—H15B0.8600
C10—N161.341 (5)N16—H16A0.8600
C10—C111.406 (5)N16—H16B0.8600
C11—C121.369 (5)C19—H190.9300
C12—O131.363 (4)C20—H200.9300
O13—C141.367 (4)C21—H210.9300
C17—C221.381 (5)C22—H220.9300
C17—C181.391 (5)C26—H26A0.9600
C18—C191.405 (5)C26—H26B0.9600
C18—C231.473 (5)C26—H26C0.9600
C19—C201.363 (6)O1W—H1WA0.95 (2)
C20—C211.364 (6)O1W—H1WB0.98 (2)
C21—C221.392 (6)O2W—H2WA0.99 (2)
C23—O241.199 (4)O2W—H2WB0.95 (2)
C14—C1—C2119.2 (3)O24—C23—C18124.4 (3)
N15—C2—C1120.2 (4)O25—C23—C18113.6 (3)
N15—C2—C3120.6 (4)C23—O25—C26117.4 (4)
C1—C2—C3119.3 (3)Cl2A—Cl2B—O3WBi177.0 (12)
C4—C3—C2121.0 (4)O3W—O3WB—Cl2Bii135.8 (12)
C3—C4—C5121.6 (3)C14—C1—H1120.4
C6—C5—C14119.3 (3)C2—C1—H1120.4
C6—C5—C4125.1 (3)C4—C3—H3119.5
C14—C5—C4115.7 (3)C2—C3—H3119.5
C7—C6—C5119.2 (3)C3—C4—H4119.2
C7—C6—C17120.4 (3)C5—C4—H4119.2
C5—C6—C17120.1 (3)C9—C8—H8119.2
C6—C7—C12119.9 (3)C7—C8—H8119.2
C6—C7—C8124.6 (3)C8—C9—H9119.4
C12—C7—C8115.5 (3)C10—C9—H9119.4
C9—C8—C7121.5 (4)C12—C11—H11120.9
C8—C9—C10121.2 (4)C10—C11—H11120.9
N16—C10—C9121.5 (4)C2—N15—H15A120.0
N16—C10—C11119.2 (4)C2—N15—H15B120.0
C9—C10—C11119.3 (4)H15A—N15—H15B120.0
C12—C11—C10118.2 (4)C10—N16—H16A120.0
O13—C12—C11115.6 (3)C10—N16—H16B120.0
O13—C12—C7120.2 (3)H16A—N16—H16B120.0
C11—C12—C7124.2 (3)C20—C19—H19119.8
C12—O13—C14120.8 (3)C18—C19—H19119.8
C1—C14—O13116.2 (3)C19—C20—H20119.9
C1—C14—C5123.3 (3)C21—C20—H20119.9
O13—C14—C5120.5 (3)C20—C21—H21119.8
C22—C17—C18119.0 (3)C22—C21—H21119.8
C22—C17—C6116.2 (3)C17—C22—H22119.8
C18—C17—C6124.8 (3)C21—C22—H22119.8
C17—C18—C19119.5 (4)O25—C26—H26A109.5
C17—C18—C23120.2 (3)O25—C26—H26B109.5
C19—C18—C23120.3 (3)H26A—C26—H26B109.5
C20—C19—C18120.4 (4)O25—C26—H26C109.5
C19—C20—C21120.2 (4)H26A—C26—H26C109.5
C20—C21—C22120.3 (4)H26B—C26—H26C109.5
C17—C22—C21120.5 (4)H1WA—O1W—H1WB107 (4)
O24—C23—O25122.0 (4)H2WA—O2W—H2WB107 (4)
C14—C1—C2—N15179.6 (3)C2—C1—C14—O13178.8 (3)
C14—C1—C2—C30.8 (5)C2—C1—C14—C50.5 (5)
N15—C2—C3—C4179.6 (3)C12—O13—C14—C1179.7 (3)
C1—C2—C3—C40.7 (5)C12—O13—C14—C50.9 (5)
C2—C3—C4—C50.4 (6)C6—C5—C14—C1179.8 (3)
C3—C4—C5—C6179.7 (3)C4—C5—C14—C10.2 (5)
C3—C4—C5—C140.1 (5)C6—C5—C14—O130.5 (5)
C14—C5—C6—C70.3 (5)C4—C5—C14—O13179.1 (3)
C4—C5—C6—C7179.9 (3)C7—C6—C17—C2285.0 (5)
C14—C5—C6—C17173.4 (3)C5—C6—C17—C2288.7 (4)
C4—C5—C6—C176.2 (5)C7—C6—C17—C1895.3 (4)
C5—C6—C7—C120.7 (5)C5—C6—C17—C1891.1 (5)
C17—C6—C7—C12173.0 (3)C22—C17—C18—C190.7 (6)
C5—C6—C7—C8179.7 (3)C6—C17—C18—C19179.5 (4)
C17—C6—C7—C86.6 (5)C22—C17—C18—C23179.6 (4)
C6—C7—C8—C9178.3 (4)C6—C17—C18—C230.7 (6)
C12—C7—C8—C91.3 (5)C17—C18—C19—C200.3 (6)
C7—C8—C9—C100.5 (6)C23—C18—C19—C20179.2 (4)
C8—C9—C10—N16177.7 (4)C18—C19—C20—C210.8 (7)
C8—C9—C10—C112.0 (6)C19—C20—C21—C221.6 (8)
N16—C10—C11—C12178.1 (3)C18—C17—C22—C210.0 (7)
C9—C10—C11—C121.6 (5)C6—C17—C22—C21179.7 (4)
C10—C11—C12—O13178.5 (3)C20—C21—C22—C171.2 (8)
C10—C11—C12—C70.3 (5)C17—C18—C23—O242.8 (6)
C6—C7—C12—O130.2 (5)C19—C18—C23—O24176.1 (4)
C8—C7—C12—O13179.9 (3)C17—C18—C23—O25175.7 (3)
C6—C7—C12—C11177.9 (3)C19—C18—C23—O255.5 (5)
C8—C7—C12—C111.7 (5)O24—C23—O25—C262.0 (6)
C11—C12—O13—C14178.9 (3)C18—C23—O25—C26179.5 (4)
C7—C12—O13—C140.6 (5)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N15—H15A···O3W0.862.343.140 (10)156
N15—H15B···Cliii0.862.243.103 (5)177
N16—H16A···O1Wiv0.862.122.909 (5)153
N16—H16B···O2Wiv0.862.233.086 (7)172
O1W—H1WA···O24i0.95 (2)1.97 (5)2.810 (5)146 (6)
O1W—H1WB···Cl0.98 (2)2.06 (2)3.008 (5)163 (5)
O2W—H2WA···Cl2A0.99 (2)1.88 (3)2.861 (18)170 (7)
O2W—H2WB···O2Wv0.95 (2)2.38 (6)3.043 (13)127 (5)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z+1; (v) x+1, y, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC28H31N2O3+·Cl·H2OC21H17N2O3+·Cl·3H2O
Mr496.46434.88
Crystal system, space groupTriclinic, P1Monoclinic, C2/c
Temperature (K)293293
a, b, c (Å)9.1947 (13), 11.240 (3), 13.1995 (13)13.5624 (14), 21.468 (3), 15.427 (3)
α, β, γ (°)95.874 (13), 91.525 (10), 102.63 (2)90, 95.409 (12), 90
V3)1322.6 (4)4471.5 (11)
Z28
Radiation typeMo KαMo Kα
µ (mm1)0.180.21
Crystal size (mm)0.60 × 0.40 × 0.400.4 × 0.3 × 0.2
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4642, 4642, 3182 3924, 3924, 2256
Rint0.0000.000
(sin θ/λ)max1)0.5950.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.217, 1.03 0.072, 0.268, 1.05
No. of reflections46423924
No. of parameters333314
No. of restraints06
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.260.41, 0.20

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, DATRDN Xray76 (Stewart, 1976), Xray76 (Stewart, 1976), MULTAN80 (Main et al., 1980), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N15—H15···Cl20.862.202.992 (5)152.2
N15—H15···O2W0.862.453.247 (7)154.0
N16—H16···Cl10.862.343.133 (3)154.3
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N15—H15A···O3W0.862.343.140 (10)155.6
N15—H15B···Cli0.862.243.103 (5)177.1
N16—H16A···O1Wii0.862.122.909 (5)153.2
N16—H16B···O2Wii0.862.233.086 (7)171.7
O1W—H1WA···O24iii0.95 (2)1.97 (5)2.810 (5)146 (6)
O1W—H1WB···Cl0.98 (2)2.06 (2)3.008 (5)163 (5)
O2W—H2WA···Cl2A0.99 (2)1.88 (3)2.861 (18)170 (7)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds