Download citation
Download citation
link to html
The title compound, [Mg2Br2(C14H14NO)2(C4H8O)4]·2C7H8, has been crystallized as a C2-symmetric dimer and the Mg atom has a distorted octahedral geometry. The metal is chelated by the N atom of the ketiminate and the O atom of the ether moiety, giving a rigid structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100001281/fr1246sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100001281/fr1246Isup2.hkl
Contains datablock I

CCDC reference: 145520

Comment top

Ketiminates are an important class of compounds since they can lead to α-tertiary amines by nucleophilic addition (Charette et al., 1998, and refrences therein). However, only lithium-ketiminates (Barr et al., 1984a,b, 1985, 1986, 1987, 1989; Armstrong et al., 1987; Clegg et al., 1983; Shearer et al., 1979) and their sodium analogues (Clegg et al., 1992) have been crystallized due to the difficulties associated with the preparation of these high energy species. To our knowledge, the corresponding magnesio-ketiminates and their α-alkoxy analogues have never been characterized. Therefore, we wish to report herein the first crystallographic characterization of an O-protected α-alkoxy magnesio ketiminate, (I). We have shown in the past that sequential nucleophilic additions to chiral cyanohydrins lead to α-tertiary amines in high yields and diastereoselectivities (Charette & Mellon, 1998). The induced quaternary stereogenic center has been assigned, and a chelated N-magnesio-ketiminate having the metal cis to the alkoxy group has been postulated to explain the stereochemical outcome of the reaction. An enantioselective version involving a chiral Lewis acid has been developed (Charette & Gagnon, 1999), and the level of induction also depends on the structural features of the ketiminate intermediate. The X-ray structure reported in this paper (Fig. 1) confirms the cis stereochemistry of the ketiminate obtained under those conditions, thus providing further mechanistic insights into the double nucleophilic addition reaction to cyanohydrins. \sch

The compound (I) crystallizes as a dimer in space group C2/c with a twofold axis of symmetry passing through the center of the dimer formed by the nitrogen and magnesium atoms. The simeric nature of the molecule is supported by the fact that the Mg—Ni (symmetry code: (i) 1 - x, y, 1/2 - z) distance is significantly shorter thatn the Mg—N bond. disordered solvent molecules are located in large channels in the a direction. The magnesium adopts a distorted octahedral geometry with two coordinated tetrahydrofuran molecules. The Mg—Ni bond length of 2.090 (3) Å and the C2—N—Mg angle of 119.5 (3)° shows that the magnesium is cis to the ether moiety. Morever, the O—Mg bond length of 2.229 (3) Å and the octahedral geometry of the magnesium demonstrates that the metal is chelated by the oxygen of the ether. The difference in the O—Mg bond length with the average of 2.106 (3) Å found in Cambridge Structural Database is probably due to geometry constraints imposed by the sp2 C2 and sp3 C1. The five-membered ring formed by C1—C2—N—Mg—O as well as C3 all lie in a plane to within an RMS deviation of 0.02 Å. The C2—N bond length of 1.217 (4) Å corresponds to a C=N double bond, confirming the ketiminate functionality.

Experimental top

To a stirred solution of (2-naphthylmethyloxy)acetonitrile (0.036 g, 0.18 mmol) in anhydrous toluene (2 ml) at 273 K was added methylmagnesium bromide (2.96 M in ether, 0.065 ml, 0.19 mmol). The solution was slowly warmed to room temperature and stirred until the disappearance of the starting material as indicated by thi-layer chromatography. The white suspension was then solubilized by the addition of anhydrous tetrahydrofuran (5 ml). The complex (I) was crystallized under argon in a glove box at 258 K for one month. Due to moisture sensitivity of the ketiminate, the crystal was placed under a flow of nitrogen (T = 220 K) during the data collection.

Refinement top

The decay correction was linear. Hydrogen atoms constrained to the parent site using a riding model; SHELXL96 defaults, C—H 0.94 to 0.98 Å. A torsional parameter was refined for the methyl group C3. The isotropic factors, Uiso, were adjusted to 50% higher value of the parent site (methyl) and 20% higher (others). THe toluene solvent was modeled as disordered with two orientations of populations 0.891 (7) and 0.109 (7), related by an in-plane rotation of approximately 120%. Solvent was refined anisotropically using restraints (SAME/ISOR/SIMU/DELU). A final verification of possible voids was performed using the VOID routine of the PLATON program (Spek, 1995).

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: NRC-2, NRC-2A (Ahmed et al., 1973); program(s) used to solve structure: SHELXS96 (Sheldrick, 1990); program(s) used to refine structure: NRCVAX (Gabe et al., 1989) and SHELXL96 (Sheldrick, 1996); molecular graphics: ORTEPII (Johnson, 1976) in NRCVAX (Gabe et al., 1989); software used to prepare material for publication: NRCVAX (Gabe et al., 1989) and SHELXL96 (Sheldrick, 1996).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of the molecule eith 40% ellipsoids. The disordered solvanet is not illustrated.
(Z)—N-(Bromomagnesio)-1-(2-naphthylmethoxy)propan-2-imine top
Crystal data top
[Mg2(C14H14NO)2(C4H8O)4Br2]·2C7H8F(000) = 2320.0
Mr = 1105.6Dx = 1.323 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54056 Å
a = 23.12 (2) ÅCell parameters from 25 reflections
b = 12.566 (9) Åθ = 20.0–22.0°
c = 19.142 (10) ŵ = 2.47 mm1
β = 93.32 (7)°T = 220 K
V = 5552 (7) Å3Block, clear light yellow
Z = 40.27 × 0.15 × 0.14 mm
Data collection top
Nonius CAD-4 with gas-stream cryostat
diffractometer
2611 reflections with I > 2σ(I)
Radiation source: normal-focus xray tubeRint = 0.096
Graphite monochromatorθmax = 69.9°, θmin = 3.8°
ω/2θ scanh = 2828
Absorption correction: integration
ABSORP in NRCVAX (Gabe et al., 1989)
k = 1515
Tmin = 0.594, Tmax = 0.771l = 2323
15403 measured reflections5 standard reflections every 60 min
5238 independent reflections intensity decay: 20.3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0212P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.78(Δ/σ)max = 0.001
5238 reflectionsΔρmax = 0.72 e Å3
384 parametersΔρmin = 0.27 e Å3
297 restraintsExtinction correction: SHELXL96 (Sheldrick, 1996), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.000029 (8)
Crystal data top
[Mg2(C14H14NO)2(C4H8O)4Br2]·2C7H8V = 5552 (7) Å3
Mr = 1105.6Z = 4
Monoclinic, C2/cCu Kα radiation
a = 23.12 (2) ŵ = 2.47 mm1
b = 12.566 (9) ÅT = 220 K
c = 19.142 (10) Å0.27 × 0.15 × 0.14 mm
β = 93.32 (7)°
Data collection top
Nonius CAD-4 with gas-stream cryostat
diffractometer
2611 reflections with I > 2σ(I)
Absorption correction: integration
ABSORP in NRCVAX (Gabe et al., 1989)
Rint = 0.096
Tmin = 0.594, Tmax = 0.7715 standard reflections every 60 min
15403 measured reflections intensity decay: 20.3%
5238 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043297 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 0.78Δρmax = 0.72 e Å3
5238 reflectionsΔρmin = 0.27 e Å3
384 parameters
Special details top

Experimental. A crystal of the compound was attached to a glass fiber and transferred rapidly under a cold stream of nitrogen to a Nonius CAD-4 system equipped with a low temperature gas-stream cryostat for data collection at 220 (2) K. Space group confirmed by PLATON program (Spek, 1995). Data reduction performed using a locally modified version of the NRC-2 program (Ahmed et al., 1973). The structure was solved by direct method using SHELXS96 (Sheldrick, 1990) and difmap synthesis using NRCVAX (Gabe et al. (1989) and SHELXL96 (Sheldrick, 1996). All non-hydrogen atoms anisotropic, hydrogen atoms isotropic.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R-factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br0.476522 (19)0.24799 (4)0.03476 (2)0.04327 (13)
Mg0.51258 (5)0.26637 (10)0.17051 (6)0.0268 (3)
O0.60560 (10)0.2654 (2)0.14575 (12)0.0343 (6)
N0.55995 (13)0.2706 (2)0.26922 (14)0.0270 (7)
C10.64631 (16)0.2749 (3)0.20501 (19)0.0393 (11)
H1A0.66820.34140.20210.047*
H1B0.67370.21540.20580.047*
C20.61264 (17)0.2742 (3)0.27128 (18)0.0304 (9)
C30.65322 (17)0.2807 (3)0.3368 (2)0.0508 (13)
H3A0.67470.34700.33670.076*
H3B0.68010.22130.33760.076*
H3C0.63070.27780.37800.076*
C40.63271 (16)0.2473 (3)0.08056 (17)0.0399 (9)
H4A0.60290.22670.04460.048*
H4B0.66010.18810.08670.048*
C50.66437 (18)0.3434 (3)0.0556 (2)0.0361 (10)
C60.63239 (18)0.4317 (3)0.0306 (2)0.0416 (11)
H60.59170.42980.02970.050*
C70.6597 (2)0.5212 (4)0.0074 (2)0.0460 (12)
H70.63760.58000.00880.055*
C80.72094 (18)0.5250 (3)0.0078 (2)0.0399 (10)
C90.7509 (2)0.6146 (4)0.0161 (2)0.0549 (14)
H90.72990.67330.03440.066*
C100.8105 (2)0.6166 (4)0.0130 (2)0.0612 (14)
H100.82980.67730.02840.073*
C110.8425 (2)0.5305 (4)0.0126 (2)0.0543 (14)
H110.88320.53320.01450.065*
C120.81522 (19)0.4415 (4)0.0351 (2)0.0490 (12)
H120.83730.38300.05170.059*
C130.75354 (18)0.4365 (4)0.0337 (2)0.0410 (11)
C140.72395 (18)0.3470 (3)0.0575 (2)0.0410 (11)
H140.74530.28830.07510.049*
O210.51396 (12)0.43569 (19)0.15512 (14)0.0360 (7)
C220.55903 (18)0.5079 (3)0.1804 (2)0.0390 (10)
H22A0.59670.48520.16470.047*
H22B0.56130.51040.23160.047*
C230.5426 (2)0.6169 (3)0.1499 (2)0.0532 (14)
H23A0.55290.67370.18340.064*
H23B0.56190.63000.10650.064*
C240.4780 (2)0.6100 (3)0.1362 (2)0.0515 (14)
H24A0.46460.65720.09780.062*
H24B0.45760.62810.17810.062*
C250.46919 (19)0.4950 (3)0.1165 (2)0.0474 (12)
H25A0.43080.47080.12890.057*
H25B0.47230.48530.06610.057*
O310.51366 (12)0.09292 (19)0.16760 (14)0.0335 (7)
C320.5557 (2)0.0302 (3)0.1348 (2)0.0523 (13)
H32A0.59430.04210.15740.063*
H32B0.55670.04890.08520.063*
C330.5379 (2)0.0836 (3)0.1428 (3)0.0609 (16)
H33A0.55000.11140.18910.073*
H33B0.55370.12880.10680.073*
C340.4727 (2)0.0748 (4)0.1332 (3)0.0706 (18)
H34A0.45390.13030.15970.085*
H34B0.45990.08120.08370.085*
C350.45876 (18)0.0358 (3)0.1612 (2)0.0422 (11)
H35A0.43120.07270.12880.051*
H35B0.44190.03020.20680.051*
C410.2490 (4)0.0379 (7)0.2561 (4)0.081 (2)0.891 (7)
C420.2238 (4)0.0966 (8)0.2032 (4)0.086 (2)0.891 (7)
H420.23460.08520.15720.104*0.891 (7)
C430.1825 (4)0.1728 (8)0.2156 (5)0.100 (3)0.891 (7)
H430.16620.21360.17830.120*0.891 (7)
C440.1648 (4)0.1895 (9)0.2833 (5)0.112 (3)0.891 (7)
H440.13710.24180.29220.134*0.891 (7)
C450.1883 (4)0.1293 (8)0.3349 (4)0.097 (3)0.891 (7)
H450.17590.13790.38040.117*0.891 (7)
C460.2308 (5)0.0540 (9)0.3228 (4)0.088 (3)0.891 (7)
H460.24730.01390.36040.106*0.891 (7)
C470.2963 (4)0.0418 (7)0.2422 (5)0.136 (4)0.891 (7)
H47A0.32780.00580.22080.203*0.891 (7)
H47B0.28070.09690.21090.203*0.891 (7)
H47C0.31040.07380.28600.203*0.891 (7)
C510.209 (4)0.147 (6)0.211 (3)0.091 (9)0.109 (7)
C520.247 (3)0.071 (5)0.194 (3)0.085 (9)0.109 (7)
H520.26010.06770.14880.102*0.109 (7)
C530.267 (4)0.002 (6)0.244 (3)0.096 (10)0.109 (7)
H530.28500.06540.23070.115*0.109 (7)
C540.260 (3)0.019 (5)0.315 (3)0.096 (9)0.109 (7)
H540.28310.01540.35020.115*0.109 (7)
C550.219 (4)0.088 (8)0.331 (3)0.094 (10)0.109 (7)
H550.20940.09640.37790.113*0.109 (7)
C560.190 (2)0.149 (5)0.279 (3)0.092 (8)0.109 (7)
H560.15820.19140.28970.110*0.109 (7)
C570.188 (2)0.231 (4)0.158 (3)0.123 (16)0.109 (7)
H57A0.17800.29520.18260.185*0.109 (7)
H57B0.15510.20440.13070.185*0.109 (7)
H57C0.21950.24630.12790.185*0.109 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0588 (3)0.0443 (2)0.02624 (19)0.0038 (3)0.00125 (16)0.0006 (3)
Mg0.0334 (7)0.0233 (7)0.0238 (6)0.0022 (6)0.0030 (5)0.0004 (6)
O0.0363 (14)0.0388 (17)0.0282 (13)0.0002 (14)0.0046 (11)0.0012 (14)
N0.0367 (17)0.0159 (17)0.0284 (15)0.0013 (14)0.0033 (13)0.0008 (13)
C10.036 (2)0.044 (3)0.038 (2)0.001 (2)0.0012 (18)0.003 (2)
C20.043 (2)0.023 (2)0.0245 (19)0.0006 (18)0.0023 (17)0.0003 (15)
C30.044 (3)0.066 (4)0.042 (3)0.001 (2)0.003 (2)0.002 (2)
C40.048 (2)0.040 (2)0.033 (2)0.001 (3)0.0128 (17)0.006 (2)
C50.041 (3)0.038 (2)0.031 (2)0.000 (2)0.0092 (19)0.0027 (19)
C60.032 (2)0.053 (3)0.039 (3)0.001 (2)0.001 (2)0.002 (2)
C70.048 (3)0.054 (3)0.035 (3)0.003 (2)0.006 (2)0.005 (2)
C80.040 (3)0.049 (3)0.030 (2)0.007 (2)0.0003 (19)0.000 (2)
C90.063 (3)0.051 (3)0.050 (4)0.012 (3)0.006 (3)0.006 (2)
C100.060 (4)0.069 (4)0.055 (3)0.025 (3)0.006 (3)0.003 (3)
C110.038 (3)0.080 (4)0.045 (3)0.010 (3)0.006 (2)0.012 (3)
C120.041 (3)0.063 (3)0.044 (3)0.003 (3)0.012 (2)0.005 (2)
C130.038 (3)0.053 (3)0.033 (2)0.003 (2)0.007 (2)0.003 (2)
C140.040 (3)0.043 (3)0.040 (3)0.006 (2)0.007 (2)0.000 (2)
O210.0436 (19)0.0233 (14)0.0395 (17)0.0014 (14)0.0113 (14)0.0078 (13)
C220.050 (3)0.028 (2)0.038 (2)0.008 (2)0.002 (2)0.0036 (19)
C230.063 (4)0.029 (3)0.066 (4)0.007 (2)0.004 (3)0.011 (2)
C240.073 (4)0.032 (3)0.051 (3)0.013 (2)0.014 (3)0.011 (2)
C250.051 (3)0.034 (2)0.056 (3)0.011 (2)0.014 (2)0.004 (2)
O310.0427 (19)0.0238 (14)0.0344 (17)0.0006 (13)0.0058 (14)0.0084 (12)
C320.061 (3)0.032 (3)0.066 (3)0.007 (2)0.016 (3)0.002 (2)
C330.098 (5)0.025 (3)0.060 (4)0.006 (3)0.013 (3)0.008 (2)
C340.076 (4)0.042 (3)0.093 (5)0.011 (3)0.002 (4)0.028 (3)
C350.051 (3)0.037 (2)0.039 (3)0.013 (2)0.002 (2)0.006 (2)
C410.096 (7)0.081 (6)0.066 (4)0.046 (4)0.001 (4)0.016 (4)
C420.083 (7)0.127 (8)0.050 (4)0.055 (5)0.003 (4)0.000 (5)
C430.079 (7)0.128 (7)0.091 (5)0.043 (5)0.011 (5)0.022 (6)
C440.083 (7)0.128 (8)0.125 (7)0.044 (5)0.022 (5)0.000 (6)
C450.106 (8)0.115 (8)0.073 (5)0.065 (5)0.024 (5)0.018 (5)
C460.117 (8)0.098 (8)0.050 (4)0.058 (5)0.005 (4)0.007 (4)
C470.096 (8)0.133 (8)0.176 (9)0.020 (5)0.002 (6)0.047 (6)
C510.077 (19)0.118 (19)0.076 (14)0.064 (15)0.013 (16)0.001 (15)
C520.08 (2)0.106 (18)0.068 (15)0.078 (15)0.008 (16)0.014 (15)
C530.10 (2)0.10 (2)0.090 (17)0.060 (17)0.006 (19)0.008 (17)
C540.11 (2)0.102 (19)0.078 (15)0.067 (15)0.003 (18)0.004 (17)
C550.11 (2)0.10 (2)0.074 (15)0.074 (16)0.009 (17)0.005 (16)
C560.078 (18)0.109 (18)0.088 (15)0.070 (14)0.005 (15)0.005 (15)
C570.07 (3)0.18 (4)0.12 (3)0.06 (3)0.02 (3)0.05 (3)
Geometric parameters (Å, º) top
Br—Mg2.693 (2)C24—H24A0.9800
Mg—Ni2.090 (3)C24—H24B0.9800
Mg—N2.129 (3)C25—H25A0.9800
Mg—O212.148 (3)C25—H25B0.9800
Mg—O312.180 (3)O31—C321.425 (4)
Mg—O2.229 (3)O31—C351.457 (4)
O—C11.436 (4)C32—C331.498 (5)
O—C41.447 (4)C32—H32A0.9800
N—C21.217 (4)C32—H32B0.9800
N—Mgi2.090 (3)C33—C341.512 (7)
C1—C21.526 (5)C33—H33A0.9800
C1—H1A0.9800C33—H33B0.9800
C1—H1B0.9800C34—C351.531 (5)
C2—C31.525 (5)C34—H34A0.9800
C3—H3A0.9700C34—H34B0.9800
C3—H3B0.9700C35—H35A0.9800
C3—H3C0.9700C35—H35B0.9800
C4—C51.504 (5)C41—C421.356 (10)
C4—H4A0.9800C41—C461.383 (9)
C4—H4B0.9800C41—C471.517 (10)
C5—C141.377 (5)C42—C431.382 (10)
C5—C61.403 (5)C42—H420.9400
C6—C71.375 (5)C43—C441.396 (10)
C6—H60.9400C43—H430.9400
C7—C81.417 (6)C44—C451.335 (10)
C7—H70.9400C44—H440.9400
C8—C91.412 (6)C45—C461.393 (10)
C8—C131.417 (6)C45—H450.9400
C9—C101.377 (7)C46—H460.9400
C9—H90.9400C47—H47A0.9700
C10—C111.384 (6)C47—H47B0.9700
C10—H100.9400C47—H47C0.9700
C11—C121.366 (6)C51—C521.36 (2)
C11—H110.9400C51—C561.39 (2)
C12—C131.426 (5)C51—C571.52 (2)
C12—H120.9400C52—C531.38 (2)
C13—C141.405 (5)C52—H520.9400
C14—H140.9400C53—C541.40 (2)
O21—C251.444 (4)C53—H530.9400
O21—C221.444 (4)C54—C551.34 (2)
C22—C231.527 (5)C54—H540.9400
C22—H22A0.9800C55—C561.39 (2)
C22—H22B0.9800C55—H550.9400
C23—C241.504 (6)C56—H560.9400
C23—H23A0.9800C57—H57A0.9700 (15)
C23—H23B0.9800C57—H57B0.9700
C24—C251.504 (5)C57—H57C0.970 (2)
Ni—Mg—N84.11 (14)C23—C24—C25102.5 (4)
Ni—Mg—O2193.97 (12)C23—C24—H24A111.3
N—Mg—O2194.93 (11)C25—C24—H24A111.3
Ni—Mg—O3192.89 (11)C23—C24—H24B111.3
N—Mg—O3192.39 (11)C25—C24—H24B111.3
O21—Mg—O31170.45 (11)H24A—C24—H24B109.2
Ni—Mg—O158.78 (12)O21—C25—C24106.6 (4)
N—Mg—O74.68 (12)O21—C25—H25A110.4
O21—Mg—O87.37 (11)C24—C25—H25A110.4
O31—Mg—O88.65 (11)O21—C25—H25B110.4
Ni—Mg—Br108.75 (11)C24—C25—H25B110.4
N—Mg—Br166.72 (9)H25A—C25—H25B108.6
O21—Mg—Br87.64 (8)C32—O31—C35107.7 (3)
O31—Mg—Br83.86 (8)C32—O31—Mg125.0 (2)
O—Mg—Br92.46 (10)C35—O31—Mg118.9 (2)
C1—O—C4113.4 (3)O31—C32—C33106.5 (4)
C1—O—Mg115.3 (2)O31—C32—H32A110.4
C4—O—Mg131.0 (2)C33—C32—H32A110.4
C2—N—Mgi144.7 (3)O31—C32—H32B110.4
C2—N—Mg119.5 (3)C33—C32—H32B110.4
Mgi—N—Mg95.81 (14)H32A—C32—H32B108.6
O—C1—C2108.3 (3)C32—C33—C34101.3 (4)
O—C1—H1A110.05C32—C33—H33A111.5
C2—C1—H1A110.0C34—C33—H33A111.5
O—C1—H1B110.0C32—C33—H33B111.5
C2—C1—H1B110.0C34—C33—H33B111.5
H1A—C1—H1B108.4H33A—C33—H33B109.3
N—C2—C3126.5 (4)C33—C34—C35104.6 (4)
N—C2—C1122.1 (3)C33—C34—H34A110.8
C3—C2—C1111.4 (3)C35—C34—H34A110.8
C2—C3—H3A109.5C33—C34—H34B110.8
C2—C3—H3B109.5C35—C34—H34B110.8
H3A—C3—H3B109.5H34A—C34—H34B108.9
C2—C3—H3C109.5O31—C35—C34106.1 (4)
H3A—C3—H3C109.5O31—C35—H35A110.5
H3B—C3—H3C109.5C34—C35—H35A110.5
O—C4—C5113.0 (3)O31—C35—H35B110.5
O—C4—H4A108.98C34—C35—H35B110.5
C5—C4—H4A109.0H35A—C35—H35B108.7
O—C4—H4B109.0C42—C41—C46118.0 (9)
C5—C4—H4B109.0C42—C41—C47120.8 (8)
H4A—C4—H4B107.8C46—C41—C47121.2 (9)
C14—C5—C6119.3 (4)C41—C42—C43121.3 (8)
C14—C5—C4121.5 (4)C41—C42—H42119.4
C6—C5—C4119.1 (4)C43—C42—H42119.4
C7—C6—C5121.0 (4)C42—C43—C44120.4 (9)
C7—C6—H6119.5C42—C43—H43119.8
C5—C6—H6119.5C44—C43—H43119.8
C6—C7—C8120.2 (4)C45—C44—C43118.2 (10)
C6—C7—H7119.9C45—C44—H44120.9
C8—C7—H7119.9C43—C44—H44120.9
C9—C8—C13118.6 (4)C44—C45—C46121.6 (9)
C9—C8—C7122.3 (4)C44—C45—H45119.2
C13—C8—C7119.2 (4)C46—C45—H45119.2
C10—C9—C8120.6 (5)C41—C46—C45120.5 (9)
C10—C9—H9119.7C41—C46—H46119.8
C8—C9—H9119.7C45—C46—H46119.8
C9—C10—C11121.0 (5)C41—C47—H47A109.5
C9—C10—H10119.5C41—C47—H47B109.5
C11—C10—H10119.5H47A—C47—H47B109.5
C12—C11—C10120.3 (5)C41—C47—H47C109.5
C12—C11—H11119.9H47A—C47—H47C109.5
C10—C11—H11119.9H47B—C47—H47C109.5
C11—C12—C13120.7 (5)C52—C51—C56119 (2)
C11—C12—H12119.7C52—C51—C57120 (3)
C13—C12—H12119.7C56—C51—C57121 (3)
C14—C13—C8118.8 (4)C51—C52—C53120 (3)
C14—C13—C12122.3 (4)C51—C52—H52120.1
C8—C13—C12118.9 (4)C53—C52—H52120
C5—C14—C13121.5 (4)C52—C53—C54119 (3)
C5—C14—H14119.2C52—C53—H53120
C13—C14—H14119.2C54—C53—H53120
C25—O21—C22109.2 (3)C55—C54—C53118 (3)
C25—O21—Mg124.4 (2)C55—C54—H54121
C22—O21—Mg126.4 (2)C53—C54—H54121
O21—C22—C23106.1 (3)C54—C55—C56121 (3)
O21—C22—H22A110.5C54—C55—H55120
C23—C22—H22A110.5C56—C55—H55120
O21—C22—H22B110.5C51—C56—C55120 (3)
C23—C22—H22B110.5C51—C56—H56120
H22A—C22—H22B108.7C55—C56—H56120
C24—C23—C22103.8 (4)C51—C57—H57A109
C24—C23—H23A111.0C51—C57—H57B109
C22—C23—H23A111.0H57A—C57—H57B109.5
C24—C23—H23B111.0C51—C57—H57C109
C22—C23—H23B111.0H57A—C57—H57C109.47
H23A—C23—H23B109.0H57B—C57—H57C109.47
Ni—Mg—O—C12.2 (5)C12—C13—C14—C5179.8 (4)
N—Mg—O—C13.9 (2)Ni—Mg—O21—C2565.3 (3)
O21—Mg—O—C192.0 (2)N—Mg—O21—C25149.7 (3)
O31—Mg—O—C196.7 (2)O31—Mg—O21—C2570.5 (8)
Br—Mg—O—C1179.5 (2)O—Mg—O21—C25135.9 (3)
Ni—Mg—O—C4171.5 (3)Br—Mg—O21—C2543.4 (3)
N—Mg—O—C4169.8 (3)Ni—Mg—O21—C22115.4 (3)
O21—Mg—O—C494.3 (3)N—Mg—O21—C2231.0 (3)
O31—Mg—O—C477.0 (3)O31—Mg—O21—C22108.9 (7)
Br—Mg—O—C46.8 (3)O—Mg—O21—C2243.4 (3)
Ni—Mg—N—C2177.0 (2)Br—Mg—O21—C22136.0 (3)
O21—Mg—N—C283.5 (3)C25—O21—C22—C234.7 (5)
O31—Mg—N—C290.3 (3)Mg—O21—C22—C23174.7 (3)
O—Mg—N—C22.4 (3)O21—C22—C23—C2424.3 (5)
Br—Mg—N—C217.1 (6)C22—C23—C24—C2533.5 (5)
Ni—Mg—N—Mgi2.94 (16)C22—O21—C25—C2416.9 (5)
O21—Mg—N—Mgi96.43 (12)Mg—O21—C25—C24163.7 (3)
O31—Mg—N—Mgi89.72 (12)C23—C24—C25—O2131.5 (5)
O—Mg—N—Mgi177.67 (12)Ni—Mg—O31—C32177.8 (3)
Br—Mg—N—Mgi162.9 (3)N—Mg—O31—C3293.6 (3)
C4—O—C1—C2170.3 (3)O21—Mg—O31—C3246.4 (8)
Mg—O—C1—C24.5 (4)O—Mg—O31—C3219.0 (3)
Mgi—N—C2—C31.7 (7)Br—Mg—O31—C3273.6 (3)
Mg—N—C2—C3178.2 (3)Ni—Mg—O31—C3538.1 (3)
Mgi—N—C2—C1179.5 (3)N—Mg—O31—C35122.3 (3)
Mg—N—C2—C10.5 (5)O21—Mg—O31—C3597.7 (7)
O—C1—C2—N2.8 (5)O—Mg—O31—C35163.1 (3)
O—C1—C2—C3178.3 (3)Br—Mg—O31—C3570.4 (3)
C1—O—C4—C570.6 (4)C35—O31—C32—C3329.9 (5)
Mg—O—C4—C5115.6 (3)Mg—O31—C32—C33177.3 (3)
O—C4—C5—C14108.6 (4)O31—C32—C33—C3437.7 (5)
O—C4—C5—C670.6 (5)C32—C33—C34—C3530.7 (5)
C14—C5—C6—C70.6 (6)C32—O31—C35—C349.4 (5)
C4—C5—C6—C7179.9 (4)Mg—O31—C35—C34159.1 (3)
C5—C6—C7—C80.6 (7)C33—C34—C35—O3114.2 (5)
C6—C7—C8—C9179.3 (4)C46—C41—C42—C432.1 (15)
C6—C7—C8—C131.3 (6)C47—C41—C42—C43177.1 (7)
C13—C8—C9—C101.4 (7)C41—C42—C43—C441.4 (13)
C7—C8—C9—C10178.0 (4)C42—C43—C44—C450.8 (13)
C8—C9—C10—C111.1 (7)C43—C44—C45—C462.2 (13)
C9—C10—C11—C120.1 (8)C42—C41—C46—C450.7 (15)
C10—C11—C12—C131.0 (7)C47—C41—C46—C45178.5 (7)
C9—C8—C13—C14179.9 (4)C44—C45—C46—C411.5 (14)
C7—C8—C13—C140.7 (6)C56—C51—C52—C530 (13)
C9—C8—C13—C120.5 (6)C57—C51—C52—C53177 (8)
C7—C8—C13—C12178.9 (4)C51—C52—C53—C5417 (13)
C11—C12—C13—C14178.9 (4)C52—C53—C54—C5521 (13)
C11—C12—C13—C80.7 (6)C53—C54—C55—C569 (16)
C6—C5—C14—C131.2 (6)C52—C51—C56—C5513 (14)
C4—C5—C14—C13179.5 (4)C57—C51—C56—C55165 (9)
C8—C13—C14—C50.6 (6)C54—C55—C56—C518 (16)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Mg2(C14H14NO)2(C4H8O)4Br2]·2C7H8
Mr1105.6
Crystal system, space groupMonoclinic, C2/c
Temperature (K)220
a, b, c (Å)23.12 (2), 12.566 (9), 19.142 (10)
β (°) 93.32 (7)
V3)5552 (7)
Z4
Radiation typeCu Kα
µ (mm1)2.47
Crystal size (mm)0.27 × 0.15 × 0.14
Data collection
DiffractometerNonius CAD-4 with gas-stream cryostat
diffractometer
Absorption correctionIntegration
ABSORP in NRCVAX (Gabe et al., 1989)
Tmin, Tmax0.594, 0.771
No. of measured, independent and
observed [I > 2σ(I)] reflections
15403, 5238, 2611
Rint0.096
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.077, 0.78
No. of reflections5238
No. of parameters384
No. of restraints297
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.27

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, NRC-2, NRC-2A (Ahmed et al., 1973), SHELXS96 (Sheldrick, 1990), NRCVAX (Gabe et al., 1989) and SHELXL96 (Sheldrick, 1996), ORTEPII (Johnson, 1976) in NRCVAX (Gabe et al., 1989).

Selected geometric parameters (Å, º) top
Br—Mg2.693 (2)O—C11.436 (4)
Mg—Ni2.090 (3)O—C41.447 (4)
Mg—N2.129 (3)N—C21.217 (4)
Mg—O212.148 (3)C1—C21.526 (5)
Mg—O312.180 (3)C2—C31.525 (5)
Mg—O2.229 (3)C4—C51.504 (5)
Ni—Mg—N84.11 (14)O31—Mg—Br83.86 (8)
Ni—Mg—O2193.97 (12)O—Mg—Br92.46 (10)
N—Mg—O2194.93 (11)C1—O—C4113.4 (3)
Ni—Mg—O3192.89 (11)C1—O—Mg115.3 (2)
N—Mg—O3192.39 (11)C4—O—Mg131.0 (2)
O21—Mg—O31170.45 (11)C2—N—Mgi144.7 (3)
Ni—Mg—O158.78 (12)C2—N—Mg119.5 (3)
N—Mg—O74.68 (12)Mgi—N—Mg95.81 (14)
O21—Mg—O87.37 (11)O—C1—C2108.3 (3)
O31—Mg—O88.65 (11)N—C2—C3126.5 (4)
Ni—Mg—Br108.75 (11)N—C2—C1122.1 (3)
N—Mg—Br166.72 (9)C3—C2—C1111.4 (3)
O21—Mg—Br87.64 (8)
Symmetry code: (i) x+1, y, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds